1
|
Guillín Y, Ortiz C, Hidalgo W. Comparative metabolic study of planktonic and sessile cells in Salmonella Enteritidis ATCC 13076: Elucidating metabolic pathways driving biofilm formation. PLoS One 2025; 20:e0317420. [PMID: 39854347 PMCID: PMC11761094 DOI: 10.1371/journal.pone.0317420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach. The metabolites extracted from the bacterial cells were analyzed by LC/MS approach. Raw data were analyzed using Thermo Xcalibur v 3.1 software. For data processing, XCMS was used for feature detection, retention time, correction and alignment. The data matrix was analyzed by uni- and multivariate statistical methods (PCA, PLS-DA, Heatmap) in MetaboAnalyst software v 6.0. A total of 121 metabolites were presumptively identified as differential metabolic characteristics between the two bacterial states, and they were associated with their corresponding metabolic pathways. Among the metabolites that exhibited positive modulation in planktonic cells were proline, phenylalanine, which act as precursors of essential metabolites and part of the stress adaptation mechanisms. In addition, putrescine and cadaverine, play crucial roles in growth, stress response, and cell stability In contrast, the most representative metabolites in sessile cells included lysine, adenosine, purines, pyrimidines, and citrate, mainly associated with maintaining cellular homeostasis, stress response and metabolic regulation. Finally, pathway enrichment analysis identified metabolic changes in 11 pathways, predominantly involving purine and pyrimidine metabolism, arginine and proline metabolism, and vitamin B6 metabolism. These findings facilitated the identification of potential metabolic pathways associated with biofilm formation in the sessile cells of Salmonella Enteritidis.
Collapse
Affiliation(s)
- Yuliany Guillín
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Microbiología y Bioanálisis, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - William Hidalgo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
2
|
Dewan D, Basu A, Dolai D, Pal S. Biological and Biophysical Methods for Evaluation of Inhibitors of Sortase A in Staphylococcus aureus: An Overview. Cell Biochem Funct 2024; 42:e70002. [PMID: 39470102 DOI: 10.1002/cbf.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Staphylococcus aureus, one of the most notorious pathogens, develops antibiotic resistance by the formation of a thick layer of exopolysaccharides known as biofilms. Sortase A, a transpeptidase responsible for biofilm formation and attachment to the host surface, has emerged as an important drug target for development of anti-virulence agents. A number of sortase A inhibitors, both peptide and non-peptides are reported which involved the use of several experiments which may provide insights regarding binding affinity, specificity, safety, and efficacy of ligands. In this review, we focus on the principles, pros and cons, and the type of information obtained from biophysical (FRET assay, Microscale Thermophoresis, Surface Plasmon Resonance, CD spectroscopy etc.) and biological (cell viability assay, biofilm formation assay, CLSM, western blot analysis, in vivo characterization on mice etc.) methods for estimation of probable sortase A inhibitors, which might be helpful to the researchers who might be interested to delve into the development of sortase A inhibitors as a drug, to address the burning question of antimicrobial resistance (AMR).
Collapse
|
3
|
Cuahtecontzi Delint R, Ishak MI, Tsimbouri PM, Jayawarna V, Burgess KVE, Ramage G, Nobbs AH, Damiati L, Salmeron-Sanchez M, Su B, Dalby MJ. Nanotopography Influences Host-Pathogen Quorum Sensing and Facilitates Selection of Bioactive Metabolites in Mesenchymal Stromal Cells and Pseudomonas aeruginosa Co-Cultures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43374-43386. [PMID: 39113638 PMCID: PMC11345723 DOI: 10.1021/acsami.4c09291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Orthopedic implant-related bacterial infections and resultant antibiotic-resistant biofilms hinder implant-tissue integration and failure. Biofilm quorum sensing (QS) communication determines the pathogen colonization success. However, it remains unclear how implant modifications and host cells are influenced by, or influence, QS. High aspect ratio nanotopographies have shown to reduce biofilm formation of Pseudomonas aeruginosa, a sepsis causing pathogen with well-defined QS molecules. Producing such nanotopographies in relevant orthopedic materials (i.e., titanium) allows for probing QS using mass spectrometry-based metabolomics. However, nanotopographies can reduce host cell adhesion and regeneration. Therefore, we developed a polymer (poly(ethyl acrylate), PEA) coating that organizes extracellular matrix proteins, promoting bioactivity to host cells such as human mesenchymal stromal cells (hMSCs), maintaining biofilm reduction. This allowed us to investigate how hMSCs, after winning the race for the surface against pathogenic cells, interact with the biofilm. Our approach revealed that nanotopographies reduced major virulence pathways, such as LasR. The enhanced hMSCs support provided by the coated nanotopographies was shown to suppress virulence pathways and biofilm formation. Finally, we selected bioactive metabolites and demonstrated that these could be used as adjuncts to the nanostructured surfaces to reduce biofilm formation and enhance hMSC activity. These surfaces make excellent models to study hMSC-pathogen interactions and could be envisaged for use in novel orthopedic implants.
Collapse
Affiliation(s)
- Rosalia Cuahtecontzi Delint
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Mohd I. Ishak
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Penelope M. Tsimbouri
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Vineetha Jayawarna
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Karl V. E. Burgess
- EdinOmics, University
of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Gordon Ramage
- Safeguarding
Health through Infection Prevention (SHIP) Research Group, Research
Centre for Health, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Angela H. Nobbs
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Laila Damiati
- Department
of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Manuel Salmeron-Sanchez
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| | - Bo Su
- Bristol
Dental School Research Laboratories, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, School of Molecular Biosciences,
College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced
Research Centre, University of Glasgow, Glasgow G11 6EW, United Kingdom
| |
Collapse
|
4
|
Lin MM, Yang SS, Huang QY, Cui GH, Jia XF, Yang Y, Shi ZM, Ye H, Zhang XZ. Effect and mechanism of Qingre Huashi decoction on drug-resistant Helicobacter pylori. World J Gastroenterol 2024; 30:3086-3105. [PMID: 38983958 PMCID: PMC11230061 DOI: 10.3748/wjg.v30.i24.3086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Helicobacter pylori (HP), the most common pathogenic microorganism in the stomach, can induce inflammatory reactions in the gastric mucosa, causing chronic gastritis and even gastric cancer. HP infection affects over 4.4 billion people globally, with a worldwide infection rate of up to 50%. The multidrug resistance of HP poses a serious challenge to eradication. It has been de-monstrated that compared to bismuth quadruple therapy, Qingre Huashi decoction (QHD) combined with triple therapy exhibits comparable eradication rates but with a lower incidence of adverse reactions; in addition, QHD can directly inhibit and kill HP in vitro. AIM To explore the effect and mechanism of QHD on clinically multidrug-resistant and strong biofilm-forming HP. METHODS In this study, 12 HP strains were isolated in vitro after biopsy during gastroscopy of HP-infected patients. In vitro, the minimum inhibitory concentration (MIC) values for clinical HP strains and biofilm quantification were determined through the E-test method and crystal violet staining, respectively. The most robust biofilm-forming strain of HP was selected, and QHD was evaluated for its inhibitory and bactericidal effects on the strain with strong biofilm formation. This assessment was performed using agar dilution, E-test, killing dynamics, and transmission electron microscopy (TEM). The study also explored the impact of QHD on antibiotic resistance in these HP strains with strong biofilm formation. Crystalline violet method, scanning electron microscopy, laser confocal scanning microscopy, and (p)ppGpp chromatographic identification were employed to evaluate the effect of QHD on biofilm in strong biofilm-forming HP strains. The effect of QHD on biofilm and efflux pump-related gene expression was evaluated by quantitative polymerase chain reaction. Non-targeted metabolomics with UHPLC-MS/MS was used to identify potential metabolic pathways and biomarkers which were different between the NC and QHD groups. RESULTS HP could form biofilms of different degrees in vitro, and the intensity of formation was associated with the drug resistance of the strain. QHD had strong bacteriostatic and bactericidal effects on HP, with MICs of 32-64 mg/mL. QHD could inhibit the biofilm formation of the strong biofilm-forming HP strains, disrupt the biofilm structure, lower the accumulation of (p)ppGpp, decrease the expression of biofilm-related genes including LuxS, Spot, glup (HP1174), NapA, and CagE, and reduce the expression of efflux pump-related genes such as HP0605, HP0971, HP1327, and HP1489. Based on metabolomic analysis, QHD induced oxidative stress in HP, enhanced metabolism, and potentially inhibited relevant signaling pathways by upregulating adenosine monophosphate (AMP), thereby affecting HP growth, metabolism, and protein synthesis. CONCLUSION QHD exerts bacteriostatic and bactericidal effects on HP, and reduces HP drug resistance by inhibiting HP biofilm formation, destroying its biofilm structure, inhibiting the expression of biofilm-related genes and efflux pump-related genes, enhancing HP metabolism, and activating AMP in HP.
Collapse
Affiliation(s)
- Miao-Miao Lin
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Shan-Shan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Qiu-Yue Huang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Guang-Hui Cui
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Xiao-Fen Jia
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Yao Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Zong-Ming Shi
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| | - Xue-Zhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing 100034, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing 100034, China
| |
Collapse
|
5
|
Piñera-Avellaneda D, Buxadera-Palomero J, Delint RC, Dalby MJ, Burgess KV, Ginebra MP, Rupérez E, Manero JM. Gallium and silver-doped titanium surfaces provide enhanced osteogenesis, reduce bone resorption and prevent bacterial infection in co-culture. Acta Biomater 2024; 180:154-170. [PMID: 38621600 DOI: 10.1016/j.actbio.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Bacterial infection remains a significant problem associated with orthopaedic surgeries leading to surgical site infection (SSI). This unmet medical need can become an even greater complication when surgery is due to malignant bone tumor. In the present study, we evaluated in vitro titanium (Ti) implants subjected to gallium (Ga) and silver (Ag)-doped thermochemical treatment as strategy to prevent SSI and improve osteointegration in bone defects caused by diseases such as osteoporosis, bone tumor, or bone metastasis. Firstly, as Ga has been reported to be an osteoinductive and anti-resorptive agent, its performance in the mixture was proved by studying human mesenchymal stem cells (hMSC) and pre-osteoclasts (RAW264.7) behaviour. Then, the antibacterial potential provided by Ag was assessed by resembling "The Race for the Surface" between hMSC and Pseudomonas aeruginosa in two co-culture methods. Moreover, the presence of quorum sensing molecules in the co-culture was evaluated. The results highlighted the suitability of the mixture to induce osteodifferentiation and reduce osteoclastogenesis in vitro. Furthermore, the GaAg surface promoted strong survival rate and retained osteoinduction potential of hMSCs even after bacterial inoculation. Therefore, GaAg-modified titanium may be an ideal candidate to repair bone defects caused by excessive bone resorption, in addition to preventing SSI. STATEMENT OF SIGNIFICANCE: This article provides important insights into titanium for fractures caused by osteoporosis or bone metastases with high incidence in surgical site infection (SSI) because in this situation bacterial infection can become a major disaster. In order to solve this unmet medical need, we propose a titanium implant modified with gallium and silver to improve osteointegration, reduce bone resorption and avoid bacterial infection. For that aim, we study osteoblast and osteoclast behavior with the main novelty focused on the antibacterial evaluation. In this work, we recreate "the race for the surface" in long-term experiments and study bacterial virulence factors (quorum sensing). Therefore, we believe that our article could be of great interest, providing a great impact on future orthopedic applications.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karl V Burgess
- EdinOmics, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028, Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| |
Collapse
|
6
|
Yuan L, Dai H, He G, Yang Z, Jiao X. Invited review: Current perspectives for analyzing the dairy biofilms by integrated multiomics. J Dairy Sci 2023; 106:8181-8192. [PMID: 37641326 DOI: 10.3168/jds.2023-23306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Biofilms formed by pathogenic or spoilage microorganisms have become serious issues in the dairy industry, as this mode of life renders such microorganisms highly resistant to cleaning-in-place (CIP) procedures, disinfectants, desiccation, and other control strategies. The advent of omics techniques, especially the integration of different omics tools, has greatly improved our understanding of the features of microbial biofilms, and provided in-depth knowledge on developing effective methods that are directly against deleterious biofilms. This review provides novel insights into the single use of each omics tool and the application of multiomics tools to unravel the mechanisms of biofilm formation, specific molecular phenotypes exhibited by biofilms, and biofilm control strategies. Challenges and future perspective on the integration of omics tools for biofilm studies are also addressed.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058 China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| |
Collapse
|
7
|
Debroy R, Ramaiah S. Consolidated knowledge-guided computational pipeline for therapeutic intervention against bacterial biofilms - a review. BIOFOULING 2023; 39:928-947. [PMID: 38108207 DOI: 10.1080/08927014.2023.2294763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Biofilm-associated bacterial infections attributed to multifactorial antimicrobial resistance have caused worldwide challenges in formulating successful treatment strategies. In search of accelerated yet cost-effective therapeutics, several researchers have opted for bioinformatics-based protocols to systemize targeted therapies against biofilm-producing strains. The present review investigated the up-to-date computational databases and servers dedicated to anti-biofilm research to design/screen novel biofilm inhibitors (antimicrobial peptides/phytocompounds/synthetic compounds) and predict their biofilm-inhibition efficacy. Scrutinizing the contemporary in silico methods, a consolidated approach has been highlighted, referred to as a knowledge-guided computational pipeline for biofilm-targeted therapy. The proposed pipeline has amalgamated prominently employed methodologies in genomics, transcriptomics, interactomics and proteomics to identify potential target proteins and their complementary anti-biofilm compounds for effective functional inhibition of biofilm-linked pathways. This review can pave the way for new portals to formulate successful therapeutic interventions against biofilm-producing pathogens.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Malviya J, Alameri AA, Al-Janabi SS, Fawzi OF, Azzawi AL, Obaid RF, Alsudani AA, Alkhayyat AS, Gupta J, Mustafa YF, Karampoor S, Mirzaei R. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J Microbiol Biotechnol 2023; 39:212. [PMID: 37256458 DOI: 10.1007/s11274-023-03651-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Biofilm-related infections substantially contribute to bacterial illnesses, with estimates indicating that at least 80% of such diseases are linked to biofilms. Biofilms exhibit unique metabolic patterns that set them apart from their planktonic counterparts, resulting in significant metabolic reprogramming during biofilm formation. Differential glycolytic enzymes suggest that central metabolic processes are markedly different in biofilms and planktonic cells. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is highly expressed in Staphylococcus aureus biofilm progenitors, indicating that changes in glycolysis activity play a role in biofilm development. Notably, an important consideration is a correlation between elevated cyclic di-guanylate monophosphate (c-di-GMP) activity and biofilm formation in various bacteria. C-di-GMP plays a critical role in maintaining the persistence of Pseudomonas aeruginosa biofilms by regulating alginate production, a significant biofilm matrix component. Furthermore, it has been demonstrated that S. aureus biofilm development is initiated by several tricarboxylic acid (TCA) intermediates in a FnbA-dependent manner. Finally, Glucose 6-phosphatase (G6P) boosts the phosphorylation of histidine-containing protein (HPr) by increasing the activity of HPr kinase, enhancing its interaction with CcpA, and resulting in biofilm development through polysaccharide intercellular adhesion (PIA) accumulation and icaADBC transcription. Therefore, studying the metabolic changes associated with biofilm development is crucial for understanding the complex mechanisms involved in biofilm formation and identifying potential targets for intervention. Accordingly, this review aims to provide a comprehensive overview of recent advances in metabolomic profiling of biofilms, including emerging trends, prevailing challenges, and the identification of potential targets for anti-biofilm strategies.
Collapse
Affiliation(s)
- Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | - Saif S Al-Janabi
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Iraq
| | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Ali A Alsudani
- College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Ameer S Alkhayyat
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U. P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Sánchez-Lozano I, Muñoz-Cruz LC, Hellio C, Band-Schmidt CJ, Cruz-Narváez Y, Becerra-Martínez E, Hernández-Guerrero CJ. Metabolomic Insights of Biosurfactant Activity from Bacillus niabensis against Planktonic Cells and Biofilm of Pseudomonas stutzeri Involved in Marine Biofouling. Int J Mol Sci 2023; 24:ijms24044249. [PMID: 36835662 PMCID: PMC9965525 DOI: 10.3390/ijms24044249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In marine environments, biofilm can cause negative impacts, including the biofouling process. In the search for new non-toxic formulations that inhibit biofilm, biosurfactants (BS) produced by the genus Bacillus have demonstrated considerable potential. To elucidate the changes that BS from B. niabensis promote in growth inhibition and biofilm formation, this research performed a nuclear magnetic resonance (NMR) metabolomic profile analysis to compare the metabolic differences between planktonic cells and biofilms of Pseudomonas stutzeri, a pioneer fouling bacteria. The multivariate analysis showed a clear separation between groups with a higher concentration of metabolites in the biofilm than in planktonic cells of P. stutzeri. When planktonic and biofilm stages were treated with BS, some differences were found among them. In planktonic cells, the addition of BS had a minor effect on growth inhibition, but at a metabolic level, NADP+, trehalose, acetone, glucose, and betaine were up-regulated in response to osmotic stress. When the biofilm was treated with the BS, a clear inhibition was observed and metabolites such as glucose, acetic acid, histidine, lactic acid, phenylalanine, uracil, and NADP+ were also up-regulated, while trehalose and histamine were down-regulated in response to the antibacterial effect of the BS.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Luz Clarita Muñoz-Cruz
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Claire Hellio
- CNRS, IRD, Ifremer, LEMAR, Univ. Brest, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Instituto Politécnico Nacional-ESIQIE-UPALM, Unidad Profesional Adolfo López Mateos, Edificio 7, 1.er Piso, Sección A, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| |
Collapse
|
10
|
Castro BE, Rios R, Carvajal LP, Vargas ML, Cala MP, León L, Hanson B, Dinh AQ, Ortega-Recalde O, Seas C, Munita JM, Arias CA, Rincon S, Reyes J, Diaz L. Multiomics characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates with heterogeneous intermediate resistance to vancomycin (hVISA) in Latin America. J Antimicrob Chemother 2022; 78:122-132. [PMID: 36322484 PMCID: PMC10205466 DOI: 10.1093/jac/dkac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) compromise the clinical efficacy of vancomycin. The hVISA isolates spontaneously produce vancomycin-intermediate Staphylococcus aureus (VISA) cells generated by diverse and intriguing mechanisms. OBJECTIVE To characterize the biomolecular profile of clinical hVISA applying genomic, transcriptomic and metabolomic approaches. METHODS 39 hVISA and 305 VSSA and their genomes were included. Core genome-based Bayesian phylogenetic reconstructions were built and alterations in predicted proteins in VISA/hVISA were interrogated. Linear discriminant analysis and a Genome-Wide Association Study were performed. Differentially expressed genes were identified in hVISA-VSSA by RNA-sequencing. The undirected profiles of metabolites were determined by liquid chromatography and hydrophilic interaction in six CC5-MRSA. RESULTS Genomic relatedness of MRSA associated to hVISA phenotype was not detected. The change Try38 → His in Atl (autolysin) was identified in 92% of the hVISA. We identified SNPs and k-mers associated to hVISA in 11 coding regions with predicted functions in virulence, transport systems, carbohydrate metabolism and tRNA synthesis. Further, capABCDE, sdrD, esaA, esaD, essA and ssaA genes were overexpressed in hVISA, while lacABCDEFG genes were downregulated. Additionally, valine, threonine, leucine tyrosine, FAD and NADH were more abundant in VSSA, while arginine, glycine and betaine were more abundant in hVISA. Finally, we observed altered metabolic pathways in hVISA, including purine and pyrimidine pathway, CoA biosynthesis, amino acid metabolism and aminoacyl tRNA biosynthesis. CONCLUSIONS Our results show that the mechanism of hVISA involves major changes in regulatory systems, expression of virulence factors and reduction in glycolysis via TCA cycle. This work contributes to the understanding of the development of this complex resistance mechanism in regional strains.
Collapse
Affiliation(s)
- Betsy E Castro
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lina P Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Mónica L Vargas
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Mónica P Cala
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Lizeth León
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Blake Hanson
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - An Q Dinh
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics—CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Seas
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose M Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics and Resistant Microbes (GeRM) Group. Clínica Alemana de Santiago, Universidad del Desarrollo School of Medicine, Santiago, Chile
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics and Resistant Microbes (GeRM) Group. Clínica Alemana de Santiago, Universidad del Desarrollo School of Medicine, Santiago, Chile
| |
Collapse
|
11
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
12
|
Cho JA, Roh YJ, Son HR, Choi H, Lee JW, Kim SJ, Lee CH. Assessment of the biofilm-forming ability on solid surfaces of periprosthetic infection-associated pathogens. Sci Rep 2022; 12:18669. [PMID: 36333517 PMCID: PMC9636376 DOI: 10.1038/s41598-022-22929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is one of the leading causes of complications after surgery in clinical settings. In this study, we profiled the biofilm-forming ability of various periprosthetic infection-associated pathogens on medically relevant surfaces, polystyrene (PS) and titanium (Ti). We also explored how a specific environmental stressor, epigallocatechin gallate (EGCG), affected biofilm formation. First, Congo red tests revealed that all microorganisms formed biofilms within 72 h. Then, the amounts of biofilm formation on PS at 24, 48 and 72 h and also on a Ti plate for 72 h were determined. Some microbes preferred one surface over the other, whereas other microbes formed consistent levels of biofilm regardless of the surface material. Staphylococcus lugdunenensis was the most potent, while Enterococcus faecalis and Staphylococcus aureus were the weakest. Bacterial adhesion to hydrocarbon (BATH) tests indicated that the biofilm-forming abilities were not directly correlated with cell surface hydrophobicity (CSH). Finally, an external signal, EGCG, was applied to challenge the biofilm formation of each microorganism. EGCG regulated each microorganism's ability differently, though the change was consistent across surfaces for most pathogens. This study can help a better understanding of a broad spectrum of periprosthetic infection-associated pathogens by relative comparison of their biofilm-forming abilities.
Collapse
Affiliation(s)
- Jung-Ah Cho
- grid.417736.00000 0004 0438 6721School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Yoo Jin Roh
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hye Rim Son
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hojung Choi
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Chemistry, Hanyang University, Seoul, 04762 Republic of Korea
| | - Jeong-Won Lee
- grid.254187.d0000 0000 9475 8840Department of Mechanical Engineering, Chosun University, Gwangju, 61452 Republic of Korea
| | - Sung Jae Kim
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Chang-Hun Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| |
Collapse
|
13
|
Moussa DG, Sharma AK, Mansour TA, Witthuhn B, Perdigão J, Rudney JD, Aparicio C, Gomez A. Functional signatures of ex-vivo dental caries onset. J Oral Microbiol 2022; 14:2123624. [PMID: 36189437 PMCID: PMC9518263 DOI: 10.1080/20002297.2022.2123624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background The etiology of dental caries remains poorly understood. With the advent of next-generation sequencing, a number of studies have focused on the microbial ecology of the disease. However, taxonomic associations with caries have not been consistent. Researchers have also pursued function-centric studies of the caries microbial communities aiming to identify consistently conserved functional pathways. A major question is whether changes in microbiome are a cause or a consequence of the disease. Thus, there is a critical need to define conserved functional signatures at the onset of dental caries. Methods Since it is unethical to induce carious lesions clinically, we developed an innovative longitudinal ex-vivo model integrated with the advanced non-invasive multiphoton second harmonic generation bioimaging to spot the very early signs of dental caries, combined with 16S rRNA short amplicon sequencing and liquid chromatography-mass spectrometry-based targeted metabolomics. Findings For the first time, we induced longitudinally monitored caries lesions validated with the scanning electron microscope. Consequently, we spotted the caries onset and, associated with it, distinguished five differentiating metabolites - Lactate, Pyruvate, Dihydroxyacetone phosphate, Glyceraldehyde 3-phosphate (upregulated) and Fumarate (downregulated). Those metabolites co-occurred with certain bacterial taxa; Streptococcus, Veillonella, Actinomyces, Porphyromonas, Fusobacterium, and Granulicatella, regardless of the abundance of other taxa. Interpretation These findings are crucial for understanding the etiology and dynamics of dental caries, and devising targeted interventions to prevent disease progression.
Collapse
Affiliation(s)
- Dina G. Moussa
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Ashok K. Sharma
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Tamer A Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | - Bruce Witthuhn
- Center for Mass Spectrometry and Proteomics, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jorge Perdigão
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joel D. Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andres Gomez
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
14
|
Wu S, Yang K, Hong Y, Gong Y, Ni J, Yang N, Ding W. A New Perspective on the Antimicrobial Mechanism of Berberine Hydrochloride Against Staphylococcus aureus Revealed by Untargeted Metabolomic Studies. Front Microbiol 2022; 13:917414. [PMID: 35910599 PMCID: PMC9328669 DOI: 10.3389/fmicb.2022.917414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Berberine hydrochloride (BBR) is a natural product widely used in clinical medicine and animal production. It has a variety of antimicrobial effects, but its complex antimicrobial mechanism has not been clarified. This study aimed to discover the metabolic markers and gain a new perspective on the antibacterial mechanism of BBR. The effects of different inhibitory concentrations of BBR on the survival and growth of standard strain Staphylococcus aureus ATCC 25923 were analyzed by the bacteriostatic activity test. Differences in intracellular metabolites of S. aureus following 19 μg/ml BBR exposure for 1 h were investigated by combining non-targeted metabolomics techniques of gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The results showed that the minimum inhibitory concentration of BBR against S. aureus was 51 μg/ml. A total of 368 and 3,454 putative metabolites were identified by GC-MS and LC-MS analyses, respectively. Principal component analysis showed the separation of intracellular metabolite profiles between BBR-exposed samples and non-exposed controls. Pathway activity profiling analysis indicated a global inhibition of metabolisms by BBR exposure, while enhancement was also found in nucleic acid metabolism, amino sugar, and nucleotide sugar metabolism. Several metabolic markers were screened out mainly based on their variable importance of projection values. Two pyridine dicarboxylic acids were significantly downregulated, suggesting the reduction of stress resistance. The oxidized phospholipid (PHOOA-PE) was accumulated, while lipid antioxidant gamma-tocopherol was decreased, and farnesyl PP, the synthetic precursor of another antioxidant (staphyloxanthin), was decreased below the detection threshold. This evidence indicates that BBR reduced the antioxidant capacity of S. aureus. Accumulation of the precursors (UDP-GlcNAc, CDP-ribitol, and CDP-glycerol) and downregulation of the key metabolite D-Ala-D-Ala suggest the inhibition of cell wall synthesis, especially the peptidoglycan synthesis. Metabolites involved in the shikimate pathway (such as 3-dehydroshikimate) and downstream aromatic amino acid synthesis were disturbed. This study provides the first metabolomics information on the antibacterial mechanism of BBR against S. aureus. The key metabolic markers screened in this study suggest that the shikimate pathway, staphyloxanthin synthesis, and peptidoglycan biosynthesis are new directions for further study of BBR antibacterial mechanism in the future.
Collapse
Affiliation(s)
- Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Medical University, Dongguan, China
| | - Ni Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Weijun Ding
| |
Collapse
|
15
|
Garcia Mendez DF, Rengifo Herrera JA, Sanabria J, Wist J. Analysis of the Metabolic Response of Planktonic Cells and Biofilms of Klebsiella pneumoniae to Sublethal Disinfection with Sodium Hypochlorite Measured by NMR. Microorganisms 2022; 10:1323. [PMID: 35889041 PMCID: PMC9323045 DOI: 10.3390/microorganisms10071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a pathogenic agent able to form biofilms on water storage tanks and pipe walls. This opportunistic pathogen can generate a thick layer as one of its essential virulence factors, enabling the bacteria to survive disinfection processes and thus develop drug resistance. Understanding the metabolic differences between biofilm and planktonic cells of the K. pneumoniae response to NaClO is key to developing strategies to control its spread. In this study, we performed an NMR metabolic profile analysis to compare the response to a sublethal concentration of sodium hypochlorite of biofilm and planktonic cells of K. pneumoniae cultured inside silicone tubing. Metabolic profiles revealed changes in the metabolism of planktonic cells after a contact time of 10 min with 7 mg L-1 of sodium hypochlorite. A decrease in the production of metabolites such as lactate, acetate, ethanol, and succinate in this cell type was observed, thus indicating a disruption of glucose intake. In contrast, the biofilms displayed a high metabolic heterogeneity, and the treatment did not affect their metabolic signature.
Collapse
Affiliation(s)
- David Felipe Garcia Mendez
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| | - Julián Andrés Rengifo Herrera
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J.J. Ronco” (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, UNLP-CCT La Plata, CONICET, 47 No. 257, La Plata 1900, Argentina;
| | - Janeth Sanabria
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
- Environmental Microbiology and Biotechnology Laboratory, Engineering Faculty, Engineering School of Environmental & Natural Resources, Universidad del Valle—Meléndez Campus, Cali 13 # 100-00, Colombia
| | - Julien Wist
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
16
|
Subramanian D, Natarajan J. Leveraging big data bioinformatics approaches to extract knowledge from Staphylococcus aureus public omics data. Crit Rev Microbiol 2022; 49:391-413. [PMID: 35468027 DOI: 10.1080/1040841x.2022.2065905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus is a notorious pathogen posing challenges in the medical industry due to drug resistance and biofilm formation. The horizon of knowledge on S. aureus pathogenesis has expanded with the advancement of data-driven bioinformatics techniques. Mining information from sequenced genomes and their expression data is an economic approach that alleviates wastage of resources and redundancy in experiments. The current review covers how big data bioinformatics has been used in the analysis of S. aureus from publicly available -omics data to uncover mechanisms of infection and inhibition. Particularly, advances in the past two decades in biomarker discovery, host responses, phenotype identification, consolidation of information, and drug development are discussed highlighting the challenges and shortcomings. Overall, the review summarizes the diverse aspects of scrupulous re-analysis of S. aureus proteomic and transcriptomic expression datasets retrieved from public repositories in terms of the efforts taken, benefits offered, and follow-up actions. The detailed review thus serves as a reference and aid for (i) Computational biologists by briefing the approaches utilized for bacterial omics re-analysis concerning S. aureus and (ii) Experimental biologists by elucidating the potential of bioinformatics in biological research to generate reliable postulates in a prompt and economical manner.
Collapse
Affiliation(s)
- Devika Subramanian
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| |
Collapse
|
17
|
Mohd Kamal K, Mahamad Maifiah MH, Abdul Rahim N, Hashim YZHY, Abdullah Sani MS, Azizan KA. Bacterial Metabolomics: Sample Preparation Methods. Biochem Res Int 2022; 2022:9186536. [PMID: 35465444 PMCID: PMC9019480 DOI: 10.1155/2022/9186536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolomics is a comprehensive analysis of metabolites existing in biological systems. As one of the important "omics" tools, the approach has been widely employed in various fields in helping to better understand the complex cellular metabolic states and changes. Bacterial metabolomics has gained a significant interest as bacteria serve to provide a better subject or model at systems level. The approach in metabolomics is categorized into untargeted and targeted which serves different paradigms of interest. Nevertheless, the bottleneck in metabolomics has been the sample or metabolite preparation method. A custom-made method and design for a particular species or strain of bacteria might be necessary as most studies generally refer to other bacteria or even yeast and fungi that may lead to unreliable analysis. The paramount aspect of metabolomics design comprises sample harvesting, quenching, and metabolite extraction procedures. Depending on the type of samples and research objective, each step must be at optimal conditions which are significantly important in determining the final output. To date, there are no standardized nor single designated protocols that have been established for a specific bacteria strain for untargeted and targeted approaches. In this paper, the existing and current developments of sample preparation methods of bacterial metabolomics used in both approaches are reviewed. The review also highlights previous literature of optimized conditions used to propose the most ideal methods for metabolite preparation, particularly for bacterial cells. Advantages and limitations of methods are discussed for future improvement of bacterial metabolomics.
Collapse
Affiliation(s)
- Khairunnisa Mohd Kamal
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | | | - Yumi Zuhanis Has-Yun Hashim
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Muhamad Shirwan Abdullah Sani
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia
| |
Collapse
|
18
|
Leggett A, Li DW, Sindeldecker D, Staats A, Rigel N, Bruschweiler-Li L, Brüschweiler R, Stoodley P. Cadaverine Is a Switch in the Lysine Degradation Pathway in Pseudomonas aeruginosa Biofilm Identified by Untargeted Metabolomics. Front Cell Infect Microbiol 2022; 12:833269. [PMID: 35237533 PMCID: PMC8884266 DOI: 10.3389/fcimb.2022.833269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
There is a critical need to accurately diagnose, prevent, and treat biofilms in humans. The biofilm forming P. aeruginosa bacteria can cause acute and chronic infections, which are difficult to treat due to their ability to evade host defenses along with an inherent antibiotic-tolerance. Using an untargeted NMR-based metabolomics approach, we identified statistically significant differences in 52 metabolites between P. aeruginosa grown in the planktonic and lawn biofilm states. Among them, the metabolites of the cadaverine branch of the lysine degradation pathway were systematically decreased in biofilm. Exogenous supplementation of cadaverine caused significantly increased planktonic growth, decreased biofilm accumulation by 49% and led to altered biofilm morphology, converting to a pellicle biofilm at the air-liquid interface. Our findings show how metabolic pathway differences directly affect the growth mode in P. aeruginosa and could support interventional strategies to control biofilm formation.
Collapse
Affiliation(s)
- Abigail Leggett
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Amelia Staats
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nicholas Rigel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Rafael Brüschweiler
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, The Ohio State University, Columbus, OH, United States
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| |
Collapse
|
19
|
Hu W, Liu Z, Fu B, Zhang X, Qi Y, Hu Y, Wang C, Li D, Xu N. Metabolites of the Soy Sauce
Koji
Making with
Aspergillus niger
and
Aspergillus oryzae. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenkang Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Zeping Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Bin Fu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Xiaolong Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Yonggang Qi
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Yong Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| | - Ning Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology National “111” Center for Cellular Regulation and Molecular Pharmaceutics Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan Hubei 430068 China
| |
Collapse
|
20
|
The de novo Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiol Spectr 2021; 9:e0080421. [PMID: 34935415 PMCID: PMC8693917 DOI: 10.1128/spectrum.00804-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.
Collapse
|
21
|
An AY, Choi KYG, Baghela AS, Hancock REW. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front Microbiol 2021; 12:640787. [PMID: 33927701 PMCID: PMC8076610 DOI: 10.3389/fmicb.2021.640787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.
Collapse
Affiliation(s)
| | | | | | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Microbial Metabolomics: From Methods to Translational Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33791977 DOI: 10.1007/978-3-030-51652-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Most microbe-associated infectious diseases severely affect human health. However, clinical diagnosis of pathogenic diseases remains challenging due to the lack of specific and highly reliable methods. To better understand the diagnosis, pathogenesis, and treatment of these diseases, systems biology-driven metabolomics goes beyond the annotated phenotype and better targets the functions than conventional approaches. As a novel strategy for analysis of metabolomes in microbes, microbial metabolomics has been recently used to study many diseases, such as obesity, urinary tract infection (UTI), and hepatitis C. In this chapter, we attempt to introduce various microbial metabolomics methods to better interpret the microbial metabolism underlying a diversity of infectious diseases and inspire scientists to pay more attention to microbial metabolomics, enabling broadly and efficiently its translational applications to infectious diseases, from molecular diagnosis to therapeutic discovery.
Collapse
|
23
|
Yuan L, Mgomi FC, Xu Z, Wang N, He G, Yang Z. Understanding of food biofilms by the application of omics techniques. Future Microbiol 2021; 16:257-269. [PMID: 33595346 DOI: 10.2217/fmb-2020-0218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biofilms constitute a protective barrier for foodborne pathogens to survive under stressful food processing conditions. Therefore, studies into the development and control of biofilms by novel techniques are vital for the food industry. In recent years, foodomics techniques have been developed for biofilm studies, which contributed to a better understanding of biofilm behavior, physiology, composition, as well as their response to antibiofilm methods at different molecular levels including genes, RNA, proteins and metabolic metabolites. Throughout this review, the main studies where foodomics tools used to explore the mechanisms for biofilm formation, dispersal and elimination were reviewed. The data summarized from relevant studies are important to design novel and appropriate biofilm elimination methods for enhancing food safety at any point of food processing lines.
Collapse
Affiliation(s)
- Lei Yuan
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China.,Fujian Provincial Key Laboratory of Food Microbiology & Enzyme Engineering, Xiamen, 361021, China
| | - Fedrick C Mgomi
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zhenbo Xu
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ni Wang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Guoqing He
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenquan Yang
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
24
|
Liu L, Guo S, Chen X, Yang S, Deng X, Tu M, Tao Y, Xiang W, Rao Y. Metabolic profiles of Lactobacillus paraplantarum in biofilm and planktonic states and investigation of its intestinal modulation and immunoregulation in dogs. Food Funct 2021; 12:5317-5332. [PMID: 34015803 DOI: 10.1039/d1fo00905b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of probiotics has recently become a considerably promising research area. The most advanced fourth-generation probiotics involve beneficial bacteria enclosed in biofilms. However, differences in the effects of probiotics in biofilm and those in planktonic states are, as yet, unclear. In this study, it was ascertained that the biofilm mode of Lactobacillus paraplantarum L-ZS9 had a comparatively higher density and stronger resistance. Untargeted metabolomics analysis suggested a significant distinction between planktonic and biofilm cells, with amino acids and carbohydrate metabolism both more active in the biofilm mode. Furthermore, the in vivo experiment showed that the biofilm strain displayed better immunomodulation activity, which could increase the relative abundance of Lactobacillus in the intestinal microbiota of dogs. The relative abundance of intestinal microbiota participating in carbohydrate metabolism was higher in the biofilm probiotic-treated dogs. Correlation analysis between L-ZS9-producing metabolites, dog intestinal microbiome diversity and dog blood immune indexes (sIgA or IgG) revealed the interaction between these three components, which might explain the mechanisms by which biofilm L-ZS9 regulated the intestinal microbiome and immunity activity of the host, through the production of various metabolites. Findings of this study will, thus, enhance understanding of the beneficial effects of biofilm probiotics, as well as provide references for further investigation.
Collapse
Affiliation(s)
- Lei Liu
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Shuyu Guo
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Xing Chen
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Shuhui Yang
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Xi Deng
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Mingxia Tu
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Yufei Tao
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Wenliang Xiang
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Yu Rao
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| |
Collapse
|
25
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Wang H, Chen B, Tian J, Kong Z. Verticillium dahliae VdBre1 is required for cotton infection by modulating lipid metabolism and secondary metabolites. Environ Microbiol 2020; 23:1991-2003. [PMID: 33185953 DOI: 10.1111/1462-2920.15319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023]
Abstract
The soil-borne ascomycete Verticillium dahliae causes wilt disease in more than two hundred dicotyledonous plants including the economically important crop cotton, and results in a severe reduction in cotton fiber yield and quality. During infection, V. dahliae secretes numerous secondary metabolites, which act as toxic factors to promote the infection process. However, the mechanism underlying how V. dahliae secondary metabolites regulate cotton infection remains largely unexplored. In this study, we report that VdBre1, an ubiquitin ligase (E3) enzyme to modify H2B, regulates radial growth and conidia production of V. dahliae. The VdBre1 deletion strains show nonpathogenic symptoms on cotton, and microscopic inspection and penetration assay indicated that penetration ability of the ∆VdBre1 strain was dramatically reduced. RNA-seq revealed that a total of 1643 differentially expressed genes between the ∆VdBre1 strain and the wild type strain V592, among which genes related to lipid metabolism were significantly overrepresented. Remarkably, the volume of lipid droplets in the ∆VdBre1 conidia was shown to be smaller than that of wild-type strains. Further metabolomics analysis revealed that the pathways of lipid metabolism and secondary metabolites, such as steroid biosynthesis and metabolism of terpenoids and polyketides, have dramatically changed in the ∆VdBre1 metabolome. Taken together, these results indicate that VdBre1 plays crucial roles in cotton infection and pathogenecity, by globally regulating lipid metabolism and secondary metabolism of V. dahliae.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 2020; 46:759-778. [PMID: 33030973 DOI: 10.1080/1040841x.2020.1828817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.
Collapse
Affiliation(s)
- Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Grogol, West Jakarta, Indonesia
| | - Lye Siang Lee
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Matthew Lau
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Christopher Delaney
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
High-throughput screening for high-efficiency small-molecule biosynthesis. Metab Eng 2020; 63:102-125. [PMID: 33017684 DOI: 10.1016/j.ymben.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
Abstract
Systems metabolic engineering faces the formidable task of rewiring microbial metabolism to cost-effectively generate high-value molecules from a variety of inexpensive feedstocks for many different applications. Because these cellular systems are still too complex to model accurately, vast collections of engineered organism variants must be systematically created and evaluated through an enormous trial-and-error process in order to identify a manufacturing-ready strain. The high-throughput screening of strains to optimize their scalable manufacturing potential requires execution of many carefully controlled, parallel, miniature fermentations, followed by high-precision analysis of the resulting complex mixtures. This review discusses strategies for the design of high-throughput, small-scale fermentation models to predict improved strain performance at large commercial scale. Established and promising approaches from industrial and academic groups are presented for both cell culture and analysis, with primary focus on microplate- and microfluidics-based screening systems.
Collapse
|
29
|
Shen F, Ge C, Yuan P. Metabolomics Study Reveals Inhibition and Metabolic Dysregulation in Staphylococcus aureus Planktonic Cells and Biofilms Induced by Carnosol. Front Microbiol 2020; 11:538572. [PMID: 33072009 PMCID: PMC7530940 DOI: 10.3389/fmicb.2020.538572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a global health threat accompanied by increasing in drug resistance. To combat this challenge, there is an urgent need to find alternative antimicrobial agents against S. aureus. This study investigated the antimicrobial efficacy of carnosol against S. aureus using an in vitro model. The effects of carnosol were determined based on the antimicrobial effects or formation and disruption of biofilms. Finally, metabolomics of S. aureus grown as planktonic cells and biofilms with carnosol treatment were analyzed using gas chromatography-mass spectrometry. The minimum inhibitory concentrations (MICs) of carnosol were 32 to 256 μg/mL against the sixteen tested S. aureus strains. Among the biofilms, we observed a reduction in bacterial motility of the S. aureus, biofilm development and preformed biofilm after carnosol treatment. Moreover, the significantly altered metabolic pathways upon carnosol treatment in S. aureus planktonic cells and biofilms were highly associated with the perturbation of glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, and aminoacyl-tRNA biosynthesis. In addition, glutathione metabolism, D-glutamine and D-glutamate metabolism were significantly changed in the biofilms. This study establishes the antibacterial and antibiofilm properties of carnosol, and will provide an alternative strategy for overcoming the drug resistance of S. aureus.
Collapse
Affiliation(s)
- Fengge Shen
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunpo Ge
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Rieusset L, Rey M, Muller D, Vacheron J, Gerin F, Dubost A, Comte G, Prigent-Combaret C. Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm. Microb Biotechnol 2020; 13:1562-1580. [PMID: 33000552 PMCID: PMC7415375 DOI: 10.1111/1751-7915.13598] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Plant rhizosphere soil houses complex microbial communities in which microorganisms are often involved in intraspecies as well as interspecies and inter-kingdom signalling networks. Some members of these networks can improve plant health thanks to an important diversity of bioactive secondary metabolites. In this competitive environment, the ability to form biofilms may provide major advantages to microorganisms. With the aim of highlighting the impact of bacterial lifestyle on secondary metabolites production, we performed a metabolomic analysis on four fluorescent Pseudomonas strains cultivated in planktonic and biofilm colony conditions. The untargeted metabolomic analysis led to the detection of hundreds of secondary metabolites in culture extracts. Comparison between biofilm and planktonic conditions showed that bacterial lifestyle is a key factor influencing Pseudomonas metabolome. More than 50% of the detected metabolites were differentially produced according to planktonic or biofilm lifestyles, with the four Pseudomonas strains overproducing several secondary metabolites in biofilm conditions. In parallel, metabolomic analysis associated with genomic prediction and a molecular networking approach enabled us to evaluate the impact of bacterial lifestyle on chemically identified secondary metabolites, more precisely involved in microbial interactions and plant-growth promotion. Notably, this work highlights the major effect of biofilm lifestyle on acyl-homoserine lactone and phenazine production in P. chlororaphis strains.
Collapse
Affiliation(s)
- Laura Rieusset
- CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Marjolaine Rey
- CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Daniel Muller
- CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Florence Gerin
- CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Audrey Dubost
- CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Gilles Comte
- CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Claire Prigent-Combaret
- CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| |
Collapse
|
31
|
Metabolic Profiles of Clinical Strain of Staphylococcus aureus to Subtle Changes in the Environmental Parameters at Different Phases of Growth. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Hu K, Yu X, Chen J, Tang J, Wang L, Li Y, Tang C. Production of characteristic volatile markers and their relation to Staphylococcus aureus growth status in pork. Meat Sci 2020; 160:107956. [DOI: 10.1016/j.meatsci.2019.107956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
|
33
|
Alreshidi MM, Dunstan RH, Macdonald MM, Gottfries J, Roberts TK. The Uptake and Release of Amino Acids by Staphylococcus aureus at Mid-Exponential and Stationary Phases and Their Corresponding Responses to Changes in Temperature, pH and Osmolality. Front Microbiol 2020; 10:3059. [PMID: 32038532 PMCID: PMC6990410 DOI: 10.3389/fmicb.2019.03059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that is associated with nosocomial infections, as well as food poisoning. This bacterium is resistant to antimicrobial agents and can survive in a wide range of environmental conditions. The aim of this study was to measure the uptake and release of amino acids by S. aureus at mid-exponential and stationary phases of growth following exposure to a combination of conditions including variations in temperature, pH and NaCl. Bacterial cells were grown up to mid-exponential and stationary phases in tryptic soy broth (TSB), where the supernatants were collected for analyses of amino acids to determine the uptake and release characteristics. The uptake/release of amino acids was estimated by subtracting the initial levels of the free amino acids in the media from those measured at mid-exponential and stationary phases of growth. When cells were grown at ideal conditions, the analyses revealed that significant uptake of amino acids had occurred by stationary phase compared with the mid-exponential phase. A substantial release of valine and tyrosine into the external media was observed by cells at stationary phase. At both phases, the uptake and release patterns were significantly different between cells grown under ideal control conditions, when compared with those grown under various combinations of sub-optimal environmental conditions. The analyses of the supernatants harvested from controls and treatment groups at exponential phase indicated that the total uptake of amino acids was reduced approximately five times by cells grown with addition of 2.5% NaCl or with pH6 at 35°C, and 2-fold by cells grown at pH8 at 35°C. However, the final quantities of amino acids taken up by cells grown to stationary phase did not significantly alter between control and treated samples. Valine was found to be the most abundant amino acid that was significantly released into the media at stationary phase by both control and treated samples. It was evident that diverse environmental conditions resulted in differential patterns of amino acid uptake and release during adaptation to designated conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - R Hugh Dunstan
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Margaret M Macdonald
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Johan Gottfries
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Tim K Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| |
Collapse
|
34
|
Sadiq FA, Yan B, Zhao J, Zhang H, Chen W. Untargeted metabolomics reveals metabolic state of Bifidobacterium bifidum in the biofilm and planktonic states. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108772] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Lim AT, Vincent IM, Barrett MP, Gilbert IH. Small Polar Hits against S. aureus: Screening, Initial Hit Optimization, and Metabolomic Studies. ACS OMEGA 2019; 4:19199-19215. [PMID: 31763544 PMCID: PMC6869403 DOI: 10.1021/acsomega.9b02507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The global prevalence of antibacterial resistance requires new antibacterial drugs with novel chemical scaffolds and modes of action. It is also vital to design compounds with optimal physicochemical properties to permeate the bacterial cell envelope. We described an approach of combining and integrating whole cell screening and metabolomics into early antibacterial drug discovery using a library of small polar compounds. Whole cell screening of a diverse library of small polar compounds against Staphylococcus aureus gave compound 2. Hit expansion was carried out to determine structure-activity relationships. A selection of compounds from this series, together with other screened active compounds, was subjected to an initial metabolomics study to provide a metabolic fingerprint of the mode of action. It was found that compound 2 and its analogues have a different mode of action from some of the known antibacterial compounds tested. This early study highlighted the potential of whole cell screening and metabolomics in early antibacterial drug discovery. Future works will require improving potency and performing orthogonal studies to confirm the modes of action.
Collapse
Affiliation(s)
- Andrew
S. T. Lim
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| | - Isabel M. Vincent
- Glasgow
Polyomics, University of Glasgow, Wolfson
Wohl Cancer Research Centre, Garscube Campus, Bearsden G61 1QH, U.K.
| | - Michael P. Barrett
- Glasgow
Polyomics, University of Glasgow, Wolfson
Wohl Cancer Research Centre, Garscube Campus, Bearsden G61 1QH, U.K.
- Wellcome
Centre for Molecular Parasitology, Institute of Infection, Immunity
and Inflammation, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Ian H. Gilbert
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| |
Collapse
|
36
|
Penesyan A, Nagy SS, Kjelleberg S, Gillings MR, Paulsen IT. Rapid microevolution of biofilm cells in response to antibiotics. NPJ Biofilms Microbiomes 2019; 5:34. [PMID: 31728201 PMCID: PMC6834608 DOI: 10.1038/s41522-019-0108-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023] Open
Abstract
Infections caused by Acinetobacter baumannii are increasingly antibiotic resistant, generating a significant public health problem. Like many bacteria, A. baumannii adopts a biofilm lifestyle that enhances its antibiotic resistance and environmental resilience. Biofilms represent the predominant mode of microbial life, but research into antibiotic resistance has mainly focused on planktonic cells. We investigated the dynamics of A. baumannii biofilms in the presence of antibiotics. A 3-day exposure of A. baumannii biofilms to sub-inhibitory concentrations of antibiotics had a profound effect, increasing biofilm formation and antibiotic resistance in the majority of biofilm dispersal isolates. Cells dispersing from biofilms were genome sequenced to identify mutations accumulating in their genomes, and network analysis linked these mutations to their phenotypes. Transcriptomics of biofilms confirmed the network analysis results, revealing novel gene functions of relevance to both resistance and biofilm formation. This approach is a rapid and objective tool for investigating resistance dynamics of biofilms.
Collapse
Affiliation(s)
- Anahit Penesyan
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia.,2School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Stephanie S Nagy
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Staffan Kjelleberg
- 3Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551 Singapore.,4School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore.,5School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Michael R Gillings
- 6Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Ian T Paulsen
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
37
|
Megalios A, Daly R, Burgess K. MetaboCraft: building a Minecraft plugin for metabolomics. Bioinformatics 2019; 34:2693-2694. [PMID: 29608638 PMCID: PMC6061834 DOI: 10.1093/bioinformatics/bty102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/27/2018] [Indexed: 12/02/2022] Open
Abstract
Motivation The rapid advances in metabolomics pose a significant challenge in presentation and interpretation of results. Development of new, engaging visual aids is crucial to advancing our understanding of new findings. Results We have developed MetaboCraft, a Minecraft plugin which creates immersive visualizations of metabolic networks and pathways in a 3D environment and allows the results of user experiments to be viewed in this context, presenting a novel approach to exploring the metabolome. Availability and implementation https://github.com/argymeg/MetaboCraft/; https://hub.docker.com/r/ronandaly/metabocraft/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anargyros Megalios
- Glasgow Polyomics, University of Glasgow, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rónán Daly
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karl Burgess
- Glasgow Polyomics, University of Glasgow, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Tian S, Wang C, Yang L, Zhang Y, Tang T. Comparison of Five Extraction Methods for Intracellular Metabolites of Salmonella typhimurium. Curr Microbiol 2019; 76:1247-1255. [PMID: 31375861 DOI: 10.1007/s00284-019-01750-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 07/24/2019] [Indexed: 11/25/2022]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) causes food poisoning in human and animals. Its infection rate is the highest among all salmonella serotypes. Metabolomics is a potential way to study the pathogenesis of S. typhimurium via analysis of various small molecular substances. Due to the lack of a uniform protocol for the extraction of metabolites, we evaluated five commonly used extraction methods including cold methanol (CM), hot ethanol (HE), chloroform-methanol cocktail (CMC), perchloric acid (PCA), and alkali (AL) for their efficacy in extracting the intracellular metabolites of S. typhimurium. Samples were quenched in 60% methanol at - 40 °C, and then the five methods were used to extract the metabolites. After derivatization, all samples were analyzed on a gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). Our results suggest that CM and HE extraction methods provide the best compromise allowing identification of 98 and 95 metabolites in a single analysis. For targeted metabolome analysis, the optimal extraction method for alcohols and organic acids is HE. CMC preferentially extracted lipid metabolites. PCA is suitable for extraction of small molecular carbohydrates. The optimal extraction method for macromolecular carbohydrates is the CM method.
Collapse
Affiliation(s)
- Sicheng Tian
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Chuan Wang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Le Yang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Yunwen Zhang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Tian Tang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China.
| |
Collapse
|
39
|
Photodynamic therapy as an alternative to antibiotic therapy for the treatment of infected leg ulcers. Photodiagnosis Photodyn Ther 2018; 23:132-143. [DOI: 10.1016/j.pdpdt.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
|
40
|
Kiamco MM, Mohamed A, Reardon PN, Marean-Reardon CL, Aframehr WM, Call DR, Beyenal H, Renslow RS. Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress. Biotechnol Bioeng 2018; 115:1594-1603. [PMID: 29460278 PMCID: PMC5959008 DOI: 10.1002/bit.26572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023]
Abstract
Biofilms alter their metabolism in response to environmental stress. This study explores the effect of a hyperosmotic agent-antibiotic treatment on the metabolism of Staphylococcus aureus biofilms through the use of nuclear magnetic resonance (NMR) techniques. To determine the metabolic activity of S. aureus, we quantified the concentrations of metabolites in spent medium using high-resolution NMR spectroscopy. Biofilm porosity, thickness, biovolume, and relative diffusion coefficient depth profiles were obtained using NMR microimaging. Dissolved oxygen concentration was measured to determine the availability of oxygen within the biofilm. Under vancomycin-only treatment, the biofilm communities switched to fermentation under anaerobic condition, as evidenced by high concentrations of formate (7.4 ± 2.7 mM), acetate (13.1 ± 0.9 mM), and lactate (3.0 ± 0.8 mM), and there was no detectable dissolved oxygen in the biofilm. In addition, we observed the highest consumption of pyruvate (0.19 mM remaining from an initial 40 mM concentration), the sole carbon source, under the vancomycin-only treatment. On the other hand, relative effective diffusion coefficients increased from 0.73 ± 0.08 to 0.88 ± 0.08 under vancomycin-only treatment but decreased from 0.71 ± 0.04 to 0.60 ± 0.07 under maltodextrin-only and from 0.73 ± 0.06 to 0.56 ± 0.08 under combined treatments. There was an increase in biovolume, from 2.5 ± 1 mm3 to 7 ± 1 mm3 , under the vancomycin-only treatment, while the maltodextrin-only and combined treatments showed no significant change in biovolume over time. This indicated that physical biofilm growth was halted during maltodextrin-only and combined treatments.
Collapse
Affiliation(s)
- Mia M Kiamco
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Patrick N Reardon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Carrie L Marean-Reardon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Wrya M Aframehr
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Ryan S Renslow
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
41
|
Favre L, Ortalo-Magné A, Pichereaux C, Gargaros A, Burlet-Schiltz O, Cotelle V, Culioli G. Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8. BIOFOULING 2018; 34:132-148. [PMID: 29319346 DOI: 10.1080/08927014.2017.1413551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
A number of bacteria adopt various lifestyles such as planktonic free-living or sessile biofilm stages. This enables their survival and development in a wide range of contrasting environments. With the aim of highlighting specific metabolic shifts between these phenotypes and to improve the overall understanding of marine bacterial adhesion, a dual metabolomics/proteomics approach was applied to planktonic and biofilm cultures of the marine bacterium Pseudoalteromonas lipolytica TC8. The liquid chromatography mass spectrometry (LC-MS) based metabolomics study indicated that membrane lipid composition was highly affected by the culture mode: phosphatidylethanolamine (PEs) derivatives were over-produced in sessile cultures while ornithine lipids (OLs) were more specifically synthesized in planktonic samples. In parallel, differences between proteomes revealed that peptidases, oxidases, transcription factors, membrane proteins and the enzymes involved in histidine biosynthesis were over-expressed in biofilms while proteins involved in heme production, nutrient assimilation, cell division and arginine/ornithine biosynthesis were specifically up-regulated in free-living cells.
Collapse
Affiliation(s)
- Laurie Favre
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| | | | - Carole Pichereaux
- b Fédération de Recherche FR3450 , CNRS , Toulouse , France
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Audrey Gargaros
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Odile Burlet-Schiltz
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Valérie Cotelle
- d Laboratoire de Recherche en Sciences Végétales , Université de Toulouse, CNRS, UPS , Castanet-Tolosan , France
| | - Gérald Culioli
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| |
Collapse
|
42
|
Metabolomic analysis of low and high biofilm-forming Helicobacter pylori strains. Sci Rep 2018; 8:1409. [PMID: 29362474 PMCID: PMC5780479 DOI: 10.1038/s41598-018-19697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value < 0.005) between low and high biofilm-formers. These metabolites include major categories of lipids and metabolites involve in prostaglandin and folate metabolism. Our findings suggest that biofilm formation in H. pylori is complex and probably driven by the bacterium’ endogenous metabolism. Understanding the underlying metabolic differences between low and high biofilm-formers may enhance our current understanding of pathogenesis, extragastric survival and transmission of H. pylori infections.
Collapse
|
43
|
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2018; 41:276-301. [PMID: 28369412 DOI: 10.1093/femsre/fux010] [Citation(s) in RCA: 965] [Impact Index Per Article: 137.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Biofilms are surface-attached groups of microbial cells encased in an extracellular matrix that are significantly less susceptible to antimicrobial agents than non-adherent, planktonic cells. Biofilm-based infections are, as a result, extremely difficult to cure. A wide range of molecular mechanisms contribute to the high degree of recalcitrance that is characteristic of biofilm communities. These mechanisms include, among others, interaction of antimicrobials with biofilm matrix components, reduced growth rates and the various actions of specific genetic determinants of antibiotic resistance and tolerance. Alone, each of these mechanisms only partially accounts for the increased antimicrobial recalcitrance observed in biofilms. Acting in concert, however, these defences help to ensure the survival of biofilm cells in the face of even the most aggressive antimicrobial treatment regimens. This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms. Additionally, suggestions for future work in the field are provided.
Collapse
|
44
|
Burgess KEV, Borutzki Y, Rankin N, Daly R, Jourdan F. MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071:68-74. [PMID: 29030098 PMCID: PMC5726607 DOI: 10.1016/j.jchromb.2017.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 01/19/2023]
Abstract
An update to the ab-initio network construction tool MetaNetter has been produced. The tool creates networks of masses from high resolution mass spectrometry data. The new plugin provides both chemical transformation and adduct mapping. Tables mapping adduct and transform counts across samples can be generated. Retention time windows are supported for both adduct and transform network generation.
Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis.
Collapse
Affiliation(s)
- K E V Burgess
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Y Borutzki
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - N Rankin
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - R Daly
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - F Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
45
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
46
|
Yu Z, Miller HC, Puzon GJ, Clowers BH. Development of Untargeted Metabolomics Methods for the Rapid Detection of Pathogenic Naegleria fowleri. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4210-4219. [PMID: 28290675 DOI: 10.1021/acs.est.6b05969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite comparatively low levels of infection, primary amoebic meningoencephalitis (PAM) induced by Naegleria fowleri is extremely lethal, with mortality rates above 95%. As a thermophile, this organism is often found in moderate-to-warm climates and has the potential to colonize drinking water distribution systems (DWDSs). Current detection approaches require days to obtain results, whereas swift corrective action can maximize the benefit of public health. Presently, there is little information regarding the underlying in situ metabolism for this amoeba but the potential exists to exploit differentially expressed metabolic signatures as a rapid detection technique. This research outlines the biochemical profiles of selected pathogenic and nonpathogenic Naegleria in vitro using an untargeted metabolomics approach to identify a panel of diagnostically meaningful compounds that may enable rapid detection of viable pathogenic N. fowleri and augment results from traditional monitoring approaches.
Collapse
Affiliation(s)
- Zhihao Yu
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164, United States
| | - Haylea C Miller
- CSIRO Land and Water, Centre for Environment and Life Sciences , Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water, Centre for Environment and Life Sciences , Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Brian H Clowers
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164, United States
| |
Collapse
|
47
|
Tan CH, Lee KWK, Burmølle M, Kjelleberg S, Rice SA. All together now: experimental multispecies biofilm model systems. Environ Microbiol 2017; 19:42-53. [DOI: 10.1111/1462-2920.13594] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chuan Hao Tan
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
| | - Kai Wei Kelvin Lee
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
| | - Mette Burmølle
- Section of Microbiology, Department of BiologyUniversity of CopenhagenCopenhagen Denmark
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
- The School of Biological SciencesNanyang Technological University Singapore
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
- The School of Biological SciencesNanyang Technological University Singapore
| |
Collapse
|
48
|
Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C. Critical review on biofilm methods. Crit Rev Microbiol 2016; 43:313-351. [PMID: 27868469 DOI: 10.1080/1040841x.2016.1208146] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.
Collapse
Affiliation(s)
- Joana Azeredo
- a CEB ? Centre of Biological Engineering, LIBRO, Laboratórios de Biofilmes Rosário Oliveira, University of Minho Campus de Gualtar , Braga , Portugal
| | - Nuno F Azevedo
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Romain Briandet
- c Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| | - Nuno Cerca
- a CEB ? Centre of Biological Engineering, LIBRO, Laboratórios de Biofilmes Rosário Oliveira, University of Minho Campus de Gualtar , Braga , Portugal
| | - Tom Coenye
- d Laboratory of Pharmaceutical Microbiology , Ghent University , Ghent , Belgium
| | - Ana Rita Costa
- a CEB ? Centre of Biological Engineering, LIBRO, Laboratórios de Biofilmes Rosário Oliveira, University of Minho Campus de Gualtar , Braga , Portugal
| | - Mickaël Desvaux
- e INRA Centre Auvergne-Rhône-Alpes , UR454 Microbiologie , Saint-Genès Champanelle , France
| | - Giovanni Di Bonaventura
- f Department of Medical, Oral, and Biotechnological Sciences, and Center of Excellence on Aging and Translational Medicine (CeSI-MeT) , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Michel Hébraud
- e INRA Centre Auvergne-Rhône-Alpes , UR454 Microbiologie , Saint-Genès Champanelle , France
| | - Zoran Jaglic
- g Department of Food and Feed Safety, Laboratory of Food Bacteriology , Veterinary Research Institute , Brno , Czech Republic
| | - Miroslava Kačániová
- h Department of Microbiology, Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovakia
| | - Susanne Knøchel
- i Department of Food Science (FOOD) , University of Copenhagen , Frederiksberg C , Denmark
| | - Anália Lourenço
- j Department of Computer Science , University of Vigo , Ourense , Spain
| | - Filipe Mergulhão
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Rikke Louise Meyer
- k Aarhus University, Interdisciplinary Nanoscience Center (iNANO) , Aarhus , Denmark
| | - George Nychas
- l Agricultural University of Athens, Lab of Microbiology and Biotechnology of Foods , Athens , Greece
| | - Manuel Simões
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Odile Tresse
- m LUNAM Université, Oniris, SECALIM UMR1024 INRA , Université de Nantes , Nantes , France
| | - Claus Sternberg
- n Department of Biotechnology and Biomedicine , Technical University of Denmark , Lyngby, Denmark
| |
Collapse
|