1
|
Barathikannan K, Rambabu K, Ihtisham M, Sridhar K, Mazumder JA, Chelliah R, Oh DH, Banat F. Sustainable utilization of date palm byproducts: Bioactive potential and multifunctional applications in food and packaging. Food Chem 2025; 482:144216. [PMID: 40209379 DOI: 10.1016/j.foodchem.2025.144216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Fruit processing of date palm (Phoenix dactylifera L.) produces substantial byproducts. A variety of bioactive compounds exist in these byproduct streams, such as seeds, pomace, leaves, and pollen, including phenolic acids, flavonoids, tannins, carotenoids, tocopherols, tocotrienols, phytosterols, and phytoestrogens. The present review describes the sensory properties, nutritional profiles, and bioactive components of these byproducts, demonstrating their potential as functional foods, nutraceuticals, and active packaging. Emphasizing sustainable practices, this review examines both traditional and innovative extraction methods, prioritizing eco-friendly techniques that preserve bioactivity and align with sustainable goals. This review also addresses the safety, cytotoxicity, and regulatory aspects crucial for food applications. The use of biopolymers derived from date byproducts presents promising sustainable alternatives for food packaging, potentially improving food preservation and extending shelf life. This review explores how byproducts from date palms can enhance food chemistry, bioprocessing, and materials science within the context of sustainable food practices.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Krishnamoorthy Rambabu
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Muhammad Ihtisham
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Kandi Sridhar
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Jahirul Ahmed Mazumder
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788 Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Ismail WM, Zayed A, Ramadan NS, Sakna ST, Farag MA. GC-MS based nutritional and aroma profiling of date palm seeds collected from different Egyptian cultivars for valorization purposes. Sci Rep 2025; 15:16531. [PMID: 40360602 PMCID: PMC12075629 DOI: 10.1038/s41598-025-00171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Date palm (Phoenix dactylifera L.) is a globally edible fruit and a traditional dietary component in various cultures. The fruit's fleshy part is consumed for its nutritional value, while the seeds are discarded or valorized for oil production and as a coffee substitute. The current study aimed to investigate date seeds' metabolome, in addition to macro- and micro-elements composition within12 major Egyptian cultivars (cvs.) for the first time using gas chromatography coupled with mass spectrometry (GC-MS). Post-silylation GC-MS analysis and headspace coupled with solid-phase microextraction (HS-SPME) were used for nutrients and aroma profiling in roasted seeds, respectively. Furthermore, multivariate data analyses were employed for samples classification and markers identification via principal component analysis (PCA) and orthogonal projection to least square discriminant analysis (OPLS-DA). Models are further validated by permutation test. Moreover, absolute quantification of potential markers was attempted based on reference standards A total of 101 and 65 nutrient and aroma metabolites were annotated, respectively. Fatty acids/esters (38 peaks), sugars (18), organic acids (17), sugar alcohols (7), steroids/triterpenoids (5), alcohols and aldehydes (6), in addition to flavonoids (1) and phenolic acids (3) were identified as major components in GC-MS post-silylation platform. ''Khalas'' cv. seed appeared the most nutritive being enriched in sugars and fatty acids/esters. Moreover, date seed volatiles from different cvs. were dominated by fatty acids/esters (19 peaks), esters (6), and phenols/ethers (9). Anethole (peak 47) was the most abundant at 9.1-23.3% of seeds contributing to their unique aroma, especially ''Barhi'' a premium date cv. PCA score plot of primary metabolites' dataset revealed for 1-monopalmitin and monostearin as potential markers for ''Aref'' and ''Khalas''. Furthermore, ''Barhi'', ''Omeldehn'', and ''Lolo'' cvs. showed comparable aroma profile and in partial agreement with nutrient results. OPLS-DA model revealed that anethole, estragole, methyl esters of dodecanoic acid and octanoic acid were characteristic in case of ''Barhi'' cv. which are likely to impart a fine aroma and flavor. With regards to minerals, ''Zamli'', ''Barhi'', and ''Hasawi'' cvs. were most rich in calcium, copper, and selenium, respectively. This study offers new perspectives for the phytochemical makeup and valorization potentials of date palm seeds. Fatty acids/esters and sugars were the major components in date palm seeds found enriched in ''Khalas'' cv, while anethole, estragole, methyl esters of dodecanoic acid and octanoic acid were potential markers of ''Barhi'' cultivar. Such extensive profiling identified premium cvs. to be considered for food applications.
Collapse
Affiliation(s)
- Walaa M Ismail
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, P.B. 11562, Cairo, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Nehal S Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Sarah T Sakna
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, P.B. 11562, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, P.B. 11562, Cairo, Egypt.
- Faculty of Healthcare, Saxony Egypt University (SEU), Badr city, Egypt.
- College of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt.
| |
Collapse
|
3
|
Soliman MM, Nashed MS, Hassanen EI, Issa MY, Prince AM, Hussien AM, Tohamy AF. Ameliorative effects of date palm kernel extract against fenpropathrin induced male reproductive toxicity. Biol Res 2025; 58:27. [PMID: 40329351 PMCID: PMC12057013 DOI: 10.1186/s40659-025-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND The purpose of this work was to examine the fundamental mechanisms of reproductive toxicity in rat models following exposure to Fenpropathrin (FNP). Furthermore, our study explores the novel impacts of Date palm kernel extract (DPK) on these detrimental outcomes. METHODS Thirty male Wistar rats were used in the investigation. They were split into six groups: one group received corn oil as a control; two groups received DPK at 200 mg/kg and 400 mg/kg; a group received FNP at 4.7 mg/kg; and two combination groups received DPK and FNP at 200 mg/kg and 400 mg/kg, respectively for 60 days. RESULTS FNP caused oxidative stress, reduced sperm count, and impaired motility. FNP decreased the expression of the StAR gene and reduced serum testosterone levels. We assessed the histological alterations. In a dose-dependent way, the concurrent administration of DPK extract successfully decreased all the toxicological parameters. CONCLUSIONS When taken orally, DPK extract may protect against FNP-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Atef F, Abdelkawy MA, Eltanany BM, Pont L, Fayez AM, Abdelhameed MF, Benavente F, Younis IY, Otify AM. A comprehensive investigation of Clerodendrum Infortunatum Linn. using LC-QTOF-MS/MS metabolomics as a promising anti-alzheimer candidate. Sci Rep 2025; 15:859. [PMID: 39757300 PMCID: PMC11701085 DOI: 10.1038/s41598-024-82265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Alzheimer's disease (AD) poses a global health challenge, demanding innovative approaches for effective treatments. Clerodendrum infortunatum Linn. (Lamiaceae) is a shrub traditionally used as a medicinal plant to treat inflammation, skin diseases, and bronchitis. This study aims to identify the main bioactive metabolites in C. infortunatum using LC-QTOF-MS/MS and investigate its potential in protecting against cognitive decline in rats with scopolamine-induced AD disease. Metabolite profiling was performed on the methanol extract of the plant's aerial parts using LC-QTOF-MS/MS. The inhibitory activity of the acetylcholinesterase enzyme was measured in vitro. To evaluate the cognitive effects, the methanol extract was orally administered at three doses (100, 200, and 400 mg/kg) to scopolamine-induced AD rats, and their cognitive functions were assessed using the novel object recognition test. Additionally, acetylcholinesterase enzyme activity, as well as the levels of acetylcholine, dopamine, noradrenaline, glutathione, malondialdehyde, tumor necrosis factor-α, interleukin-1β, and amyloid-β in the rat hippocampus, were measured using ELISA, followed by histopathological evaluation. A total of 79 metabolites, spanning various chemical classes, such as organic acids, phenolic acids, phenylpropanoids and phenylethanoids, flavonoids, coumarins, other phenolics, and fatty acids and their derivatives, were identified. The results showed that the extract promoted enhanced cognitive functions in the novel object recognition test. Scopolamine administration significantly altered the acetylcholinesterase enzyme activity and biomarker levels in the rat's hippocampus. However, treatment with C. infortunatum at 200 and 400 mg/kg almost restored these neurotransmitter levels to normal, which was further confirmed by histopathological analysis. This study demonstrates the therapeutic potential of C. infortunatum in mitigating cognitive decline in AD, with its first metabolite profiling revealing a range of bioactive compounds. The extract improved cognitive function in scopolamine-induced AD rats, restored acetylcholinesterase activity, normalized neurotransmitter levels, and reduced oxidative stress and inflammation. These findings suggest that C. infortunatum is a promising candidate for the development of natural therapies targeting AD.
Collapse
Affiliation(s)
- Fatma Atef
- Boulaq El-dakrour general hospital, Giza, 12617, Egypt
| | - Mostafa A Abdelkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, 08007, Barcelona, Spain
| | - Ahmed M Fayez
- Department of Pharmacology, Faculty of Pharmacy, Hertfordshire University, Cairo, 11835, Egypt
| | | | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Asmaa M Otify
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Beteinakis S, Papachristodoulou A, Stathopoulos P, Mikros E, Halabalaki M. A multilevel LC-HRMS and NMR correlation workflow towards foodomics advancement: Application in table olives. Talanta 2024; 280:126641. [PMID: 39142126 DOI: 10.1016/j.talanta.2024.126641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Foodomics employs advanced analytical techniques to provide answers regarding food composition, authenticity control, marker identification and issues related to food quality and safety. Nuclear magnetic resonance (NMR) spectroscopy and chromatography hyphenated to mass spectrometry (MS) are the main analytical platforms used in this field. Nevertheless, they are rarely employed in an integrated manner, and even then, the contribution of each technique remains vague. Table olives (Olea europaea L.) are a food commodity of high economic and nutritional value with an increasing production tendency over the last two decades, which, however, suffers from extensive fraud incidents and quality determination uncertainties. Thus, the current attempt aims towards two axes with the first being the multilevel integration of LC-HRMS and NMR data of the same samples and table olives being the selected matrix. In more detail, UPLC-HRMS/MS-based analysis was compared at different stages within an untargeted metabolomics workflow with an NMR-based study and the complementarity of the two platforms was evaluated. Furthermore, statistical heterospectroscopy (SHY), rarely employed in foodomics, combining the spectroscopic with spectrometric datasets and aiming to increase the confidence level of annotated biomarkers was applied. Amongst these lines, the second parallel axis of this study was the detailed characterization of table olives' metabolome in search for quality markers considering the impact of geographical (from Northern to Southern Greece) and botanical origin (Kalamon, Konservolia, Chalkidikis cultivars), as well as processing parameters (Spanish, Greek). To that end, using deep dereplication tools including statistical methods, with SHY employed for the first time in table olives, different biomarkers, belonging to the classes of phenyl alcohols, phenylpropanoids, flavonoids, secoiridoids and triterpenoids were identified as responsible for the observed classifications. The current binary pipeline, focusing on biomarkers' identification confidence, could be suggested as a meaningful workflow not only in olive-based products, but also in food quality control and foodomics in general.
Collapse
Affiliation(s)
- Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Anastasia Papachristodoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Panagiotis Stathopoulos
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
6
|
Farag MA, Ragab NA, Maamoun MAI. Metabolites profiling of Sapota fruit pulp via a multiplex approach of gas and ultra performance liquid chromatography/mass spectroscopy in relation to its lipase inhibition effect. PeerJ 2024; 12:e17914. [PMID: 39221269 PMCID: PMC11366232 DOI: 10.7717/peerj.17914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background Sapota, Manilkara zapota L., are tasty, juicy, and nutrient-rich fruits, and likewise used for several medicinal uses. Methods The current study represents an integrated metabolites profiling of sapota fruits pulp via GC/MS and UPLC/MS, alongside assessment of antioxidant capacity, pancreatic lipase (PL), and α-glucosidase enzymes inhibitory effects. Results GC/MS analysis of silylated primary polar metabolites led to the identification of 68 compounds belonging to sugars (74%), sugar acids (18.27%), and sugar alcohols (7%) mediating the fruit sweetness. Headspace SPME-GC/MS analysis led to the detection of 17 volatile compounds belonging to nitrogenous compounds (72%), ethers (7.8%), terpenes (7.6%), and aldehydes (5.8%). Non-polar metabolites profiling by HR-UPLC/MS/MS-based Global Natural Products Social (GNPS) molecular networking led to the assignment of 31 peaks, with several novel sphingolipids and fatty acyl amides reported for the first time. Total phenolic content was estimated at 6.79 ± 0.12 mg gallic acid equivalent/gram extract (GAE/g extract), but no flavonoids were detected. The antioxidant capacities of fruit were at 1.62 ± 0.2, 1.49 ± 0.11, and 3.58 ± 0.14 mg Trolox equivalent/gram extract (TE/g extract) via DPPH, ABTS, and FRAP assays, respectively. In vitro enzyme inhibition assays revealed a considerable pancreatic lipase inhibition effect (IC50 = 2.2 ± 0.25 mg/mL), whereas no inhibitory effect towards α-glucosidase enzyme was detected. This study provides better insight into sapota fruit's flavor, nutritional, and secondary metabolites composition mediating for its sensory and health attributes.
Collapse
|
7
|
Coutinho ID, Facchinatto WM, Mertz-Henning LM, Viana AC, Marin SR, Santagneli SH, Nepomuceno AL, Colnago LA. NMR Fingerprinting of Conventional and Genetically Modified Soybean Plants with AtAREB1 Transcription Factors. ACS OMEGA 2024; 9:32651-32661. [PMID: 39100338 PMCID: PMC11292650 DOI: 10.1021/acsomega.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024]
Abstract
Drought stress impacts soybean yields and physiological processes. However, the insertion of the activated form of the AtAREB1 gene in the soybean cultivar BR16, which is sensitive to water deficit, improved the drought response of the genetically modified plants. Thus, in this study, we used 1H NMR in solution and solid-state NMR to investigate the response of genetically modified soybean overexpressing AtAREB1 under water deficiency conditions. We achieved that drought-tolerant soybean yields high content of amino acids isoleucine, leucine, threonine, valine, proline, glutamate, aspartate, asparagine, tyrosine, and phenylalanine after 12 days of drought stress conditions, as compared to drought-sensitive soybean under the same conditions. Specific target compounds, including sugars, organic acids, and phenolic compounds, were identified as involved in controlling sensitive soybean during the vegetative stage. Solid-state NMR was used to study the impact of drought stress on starch and cellulose contents in different soybean genotypes. The findings provide insights into the metabolic adjustments of soybean overexpressing AREB transcription factors in adapting to dry climates. This study presents NMR techniques for investigating the metabolome of transgenic soybean plants in response to the water deficit. The approach allowed for the identification of physiological and morphological changes in drought-resistant and drought-tolerant soybean tissues. The findings indicate that drought stress significantly alters micro- and macromolecular metabolism in soybean plants. Differential responses were observed among roots and leaves as well as drought-tolerant and drought-sensitive cultivars, highlighting the complex interplay between overexpressed transcription factors and drought stress in soybean plants.
Collapse
Affiliation(s)
- Isabel Duarte Coutinho
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| | - William Marcondes Facchinatto
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| | - Liliane Marcia Mertz-Henning
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Américo
José Carvalho Viana
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Silvana Regina
Rockenbach Marin
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Silvia Helena Santagneli
- Institute
of Chemistry, São Paulo State University
(UNESP), Avenue Francisco Degni 55, CEP 14800-060 Araraquara, São Paulo, Brazil
| | - Alexandre Lima Nepomuceno
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Luiz Alberto Colnago
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
El-Gendy ZA, Abdelazeem S, Abdel Jaleel GA, Ali ME, Mohamed A, Salah A, Raslan MA. Anti-inflammatory and anti-rheumatic effects of Phoenix dactylifera L. (date palm) seed by controlling cytokines and inhibiting JAK1/STAT3 pathway on CFA-induced arthritis rat and its phytochemical profiling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118138. [PMID: 38565410 DOI: 10.1016/j.jep.2024.118138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phoenix dactylifera L. (date palm) seed is widely used in Arabian traditional medicine to alleviate several health problems including inflammatory conditions. The herbal tea of date palm seed has been consumed by rheumatoid patients to relief their symptoms. AIM OF THE STUDY The purpose of this study was to investigate the claimed beneficial use of P. dactylifera L. (Sewy variety) seed (PDS) in the treatment of rheumatoid arthritis (RA) and its mechanism of action as well as to study its phytoconstituents. MATERIALS AND METHODS The anti-inflammatory and anti-oxidative properties of the non-polar and the polar extracts of PDS were studied using Complete Freund's adjuvant (CFA)-induced arthritis rat model. Paw edema, body weight, total nitrate/nitrite NOX content and cytokine markers were evaluated to monitor the progress of arthritis. Also, histological examination and thermal analysis were conducted. The phytoconstituent profiles of non-polar and polar extracts of PDS were investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The multiple reactions monitoring mode (MRM) of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to quantify phenolic phytoconstituents in both extracts. RESULTS According to the findings, the polar and non-polar PDS extracts kept body weight comparable to those of healthy individuals while considerably lowering paw swelling, edema, and neutrophil infiltration. It also reduced the levels of Nuclear Factor Kappa B (NF-κB), Tumor Necrosis Factor Alpha (TNF-α), Interleukin 22, Interleukin 23, Interferon (IFN), Interleukin 17, Interleukin 1β, Interleukin 6, Interleukin 36, Janus Kinase 1 (JAK1), and Signal Transducer and Activator of Transcription 3 (STAT3). They also reduced the degenerative alterations caused by RA. Thermal research gave additional support for these findings. 83 phytoconstituents were identified in the non-polar PDS extract and 86 phytoconstituents were identified in the polar PDS extract. 74 of the identified phytoconstituents were common in both extracts. 33 phytoconstituents were identified here from P. dactylifera for the first time as far as we know. In MRM-LC-ESI-MS/MS analysis, the major phenolics in both extracts were chlorogenic acid, naringenin, and vanillin. Catechin was only detected in the non-polar PDS extract. On the other hand, apigenin, kaempferol, and hesperetin were only detected in the polar PDS extract. Generally, the polar PDS extract showed higher concentrations of the identified phenolics than the non-polar extract. CONCLUSIONS The PDS extracts especially the non-polar extract showed significant anti-inflammatory and anti-oxidative properties in the CFA-induced arthritis rat model. PDS might be used to produce RA medicines.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Shimaa Abdelazeem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Gehad A Abdel Jaleel
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Asmaa Mohamed
- Department of Computer Science, High Institute for Management Sciences, Belqas, Egypt.
| | - Ahmad Salah
- Department of Information Technology, College of Computing and Information Sciences, University of Technology and Applied Sciences, Ibri, Sultanate of Oman; Department of Computer Science, Faculty of Computers and Informatics, Zagazig University, Egypt.
| | - Mona A Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
| |
Collapse
|
9
|
AbouZeid EM, Afifi AH, Hussei RA, Salama AA, Youssef FS, El-Ahmady SH, Ammar NM. Phoenix dactylifera L.: An Overview of Phytochemical Constituents and Impact on Women's Health. Chem Biodivers 2024; 21:e202400456. [PMID: 38687201 DOI: 10.1002/cbdv.202400456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Phoenix dactylifera L. (date palm) is the most significant member of the palm family (Arecaceae), particularly in the Middle East and Arab World. It is a valuable source of both primary and secondary metabolites including sugars, amino acids, phenolic acids, flavonoids, proanthocyanidins, carotenoids, phytosterols, terpenes and sphingolipids, besides vitamins and minerals. Besides, it possesses a wide array of pharmacologic activities viz. immunomodulatory, antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, anti-mutagenic and anti-cancer activities, in addition to its positive effects on male and female fertility. Further research is still required to deeply understand its clinical implications, especially concerning women's health. Moreover, there are other Phoenix species that still need to be investigated to learn more about their undiscovered phytochemical components and biological activities.
Collapse
Affiliation(s)
- Enaam M AbouZeid
- Department of Pharmacognosy, National Research Centre, Giza, 12622, Egypt
| | - Ahmed H Afifi
- Department of Pharmacognosy, National Research Centre, Giza, 12622, Egypt
| | - Rehab A Hussei
- Department of Pharmacognosy, National Research Centre, Giza, 12622, Egypt
| | - Abeer A Salama
- Department of Pharmacology, National Research Centre, Giza, 12622, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | |
Collapse
|
10
|
Almarfadi OM, Siddiqui NA, Shahat AA, Fantoukh OI, El Gamal AA, Raish M, Bari A, Iqbal M, Alqahtani AS. Isolation of a novel isoprenylated phenolic compound and neuroprotective evaluation of Dodonaea viscosa extract against cerebral ischaemia-reperfusion injury in rats. Saudi Pharm J 2024; 32:101898. [PMID: 38192384 PMCID: PMC10772285 DOI: 10.1016/j.jsps.2023.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-β-D-apiosyl-(1''' → 6'')- β-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.
Collapse
Affiliation(s)
- Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A. El Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Farag MA, Baky MH, Morgan I, Khalifa MR, Rennert R, Mohamed OG, El-Sayed MM, Porzel A, Wessjohann LA, Ramadan NS. Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking. RSC Adv 2023; 13:21471-21493. [PMID: 37485437 PMCID: PMC10359763 DOI: 10.1039/d3ra03141a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol d-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University Cairo 11562 Egypt +011-202-2362245
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo 11829 Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Mohamed R Khalifa
- Global Public Health Institute, American University in Cairo New Cairo Egypt
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Osama G Mohamed
- Pharmacognosy Department, College of Pharmacy, Cairo University Cairo 11562 Egypt +011-202-2362245
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Magdy M El-Sayed
- Dairy Science Department, National Research Centre Giza 12622 Egypt
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Nehal S Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
12
|
Saied DB, Farag MA. How does maturity stage affect seeds metabolome via UPLC/MS based molecular networking and chemometrics and in relation to antioxidant effect? A case study in 4 major cereals and legumes. Food Chem 2023; 426:136491. [PMID: 37307742 DOI: 10.1016/j.foodchem.2023.136491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
Legumes and cereals as staple food are typically consumed at mature stage, though also consumed at earlier stages. UPLC/MS based molecular networking and chemometrics were employed for the first time to address metabolome composition heterogeneity amongst seeds in the context of their maturity stages. The study included 4 major cereal and leguminous seeds of different species, and cultivars i.e., Triticum aestivum, Hordeum vulgare, Vicia faba and Cicer arietinum. 146 Metabolites from various classes were identified of which several are first time to be reported. Supervised OPLS model of all datasets revealed that sugars and oxylipids were dominant in mature and immature seeds, respectively. DPPH and FRAP assays were assessed for differential secondary metabolites' correlation. Results were attributed to flavonoids, oxylipids, and amino acids/peptides. Mature barley seeds possessed the strongest antioxidant activity among examined seeds. This study provides novel insights on seeds' maturation process in context to holistic metabolic changes.
Collapse
Affiliation(s)
- Doaa B Saied
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
13
|
Abbas EY, Ezzat MI, Ramadan NM, Eladl A, Hamed WHE, Abdel-Aziz MM, Teaima M, El Hefnawy HM, Abdel-Sattar E. Characterization and anti-aging effects of Opuntia ficus-indica (L.) Miller extracts in a D-galactose-induced skin aging model. Food Funct 2023; 14:3107-3125. [PMID: 36942614 DOI: 10.1039/d2fo03834j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Opuntia ficus-indica (L.) Miller (OFI), belonging to the family Cactaceae, is widely cultivated not only for its delicious fruits but also for its health-promoting effects, which enhance the role of OFI as a potential functional food. In this study, the in vitro collagenase and elastase enzyme inhibitory effects of extracts from different parts of OFI were evaluated. The most promising extracts were formulated as creams at two concentrations (3 and 5%) to investigate their effects on a D-galactose (D-gal)-induced skin-aging mouse model. The ethanolic extracts of the peel and cladodes exhibited the highest enzyme inhibitory effects. Cream made from the extract of OFI peel (OP) (5%) and cream from OFI cladodes extract (OC) (5%) significantly decreased the macroscopic aging of skin scores. Only a higher concentration (5%) of OC showed the normalization of superoxide dismutase (SOD) and malondialdehyde (MDA) skin levels and achieved significant improvements as compared to the vitamin E group. Both OC and OP (5%) showed complete restoration of the normal skin structure and nearly normal collagen fibres upon histopathological examination. The Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-ESI-TOF-MS) metabolite profiles revealed the presence of organic acids, phenolic acids, flavonoids, betalains, and fatty acids. Flavonoids were the predominant phytochemical class (23 and 22 compounds), followed by phenolic acids (14 and 17 compounds) in the ethanolic extracts from the peel and cladodes, respectively. The anti-skin-aging effects could be attributed to the synergism of different phytochemicals in both extracts. From these findings, the OFI peel and cladodes as agro-waste products are good candidates for anti-skin-aging phytocosmetics.
Collapse
Affiliation(s)
- Eman Yasser Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Marwa I Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Amira Eladl
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Walaa H E Hamed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, 11651, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hala Mohamed El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
14
|
Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC-MS, and UV-Vis in relation to antioxidant effects as analyzed using molecular networking and chemometrics. Food Chem 2023; 417:135866. [PMID: 36913868 DOI: 10.1016/j.foodchem.2023.135866] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Tomatoes show diverse phytochemical attributes that contribute to their nutritive and health values. This study comprehensively dissects primary and secondary metabolite profiles of seven tomato varieties. UHPLC-qTOF-MS assisted molecular networking was used to monitor 206 metabolites, 30 of which were first-time to be reported. Flavonoids, as valuable antioxidants, were enriched in light-colored tomatoes (golden sweet, sun gold, and yellow plum) versus high tomatoside A, an antihyperglycemic saponin, in cherry bomb and red plum varieties. UV-Vis analysis revealed similar results with a strong absorbance corresponding to rich phenolic content in light varieties. GC-MS unveiled monosaccharides as the main contributors to samples' segregation, found abundant in San Marzano tomato accounting for its sweet flavor. Fruits also demonstrated potential antioxidant activities in correlation to their flavonoids and phospholipids. This work provides a complete map of tomatoes' metabolome heterogeneity for future breeding programs and a comparative approach utilizing different metabolomic platforms for tomato analysis.
Collapse
|
15
|
Otify AM, Mohamed OG, El-Amier YA, Saber FR, Tripathi A, Younis IY. Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia species using UPLC-qTOF-MS/MS and Molecular Networking. Metabolomics 2023; 19:16. [PMID: 36892715 DOI: 10.1007/s11306-023-01980-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION Compared to synthetic herbicides, natural products with allelochemical properties can inhibit weed germination, aiding agricultural output with less phytotoxic residue in water and soil. OBJECTIVES To identify natural product extracts of three Cassia species; C. javanica, C. roxburghii, and C. fistula and to investigate the possible phytotoxic and allelopathic potential. METHODS Allelopathic activity of three Cassia species extracts was evaluated. To further investigate the active constituents, untergated metabolomics using UPLC-qTOF-MS/MS and ion-identity molecular networking (IIMN) approach was performed to identify and determine the distribution of metabolites in different Cassia species and plant parts. RESULTS We observed in our study that the plant extracts showed consistent allelopathic activity against seed germination (P < 0.05) and the inhibition of shoot and root development of Chenopodium murale in a dose-dependent manner. Our comprehensive study identified at least 127 compounds comprising flavonoids, coumarins, anthraquinones, phenolic acids, lipids, and fatty acid derivatives. We also report the inhibition of seed germination, shoot growth, and root growth when treated with enriched leaf and flower extracts of C. fistula, and C. javanica, and the leaf extract of C. roxburghii. CONCLUSION The present study recommends further evaluation of Cassia extracts as a potential source of allelopathic compounds in agricultural systems.
Collapse
Affiliation(s)
- Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yasser A El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
16
|
Alsukaibi AKD, Alenezi KM, Haque A, Ahmad I, Saeed M, Verma M, Ansari IA, Hsieh MF. Chemical, biological and in silico assessment of date ( P. dactylifera L.) fruits grown in Ha'il region. Front Chem 2023; 11:1138057. [PMID: 36936534 PMCID: PMC10022733 DOI: 10.3389/fchem.2023.1138057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Dates palm (Phoenix dactylifera L.) fruits are among the most widely used fruits in the Middle East and African nations. Numerous researchers confirmed the presence of phytochemicals in P. dactylifera L. fruit and its by-products with broad-ranging biological activities. Objectives: In the present work, phytochemical and biological assessments of two different cultivars of date fruit (Shishi M1 and Majdool M2 grown in the Ha'il region of Saudi Arabia) have been carried out. Methods: Date fruits were extracted and analyzed by gas chromatography-mass spectrometry (GS-MS),liquid chromatography-mass spectrometry (LC-MS) and Fourier-transform infrared spectroscopy (FT-IR)techniques. The lyophilized methanolic extracts were analyzed for their in-vitro antiproliferative andcytotoxicity against colon cancer (HCT116) cell line. To identify the possible constituents responsible for the bioactivity, in-silico molecular docking and molecular dynamics (MD) simulation studies were carried out. Results: Both cultivars exhibited in-vitro anticancer activity (IC50 = 591.3 μg/mL and 449.9 μg/mL for M1 and M2, respectively) against colon cancer HCT-116 cells. The computational analysis results indicated procyanidin B2 and luteolin-7-O-rutinoside as the active constituents. Conclusion: Based on these results, we conclude that these cultivars could be a valuable source for developing health promoter phytochemicals, leading to the development of the Ha'il region, Saudi Arabia.
Collapse
Affiliation(s)
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Hail, Saudi Arabia
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Ha’il, Hail, Saudi Arabia
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Hail, Saudi Arabia
| | - Mahima Verma
- Department of Biosciences, Integral University, Lucknow, India
| | | | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| |
Collapse
|
17
|
Pecio Ł, Otify AM, Saber FR, El-Amier YA, Shalaby ME, Kozachok S, Elmotayam AK, Świątek Ł, Skiba A, Skalicka-Woźniak K. Iphiona mucronata (Forssk.) Asch. & Schweinf. A Comprehensive Phytochemical Study via UPLC-Q-TOF-MS in the Context of the Embryo- and Cytotoxicity Profiles. Molecules 2022; 27:7529. [PMID: 36364367 PMCID: PMC9656354 DOI: 10.3390/molecules27217529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Iphiona mucronata (Family Asteraceae) is widely distributed in the Eastern desert of Egypt. It is a promising plant material for phytochemical analysis and pharmacologic studies, and so far, its specific metabolites and biological activity have not yet been thoroughly investigated. Herein, we report on the detailed phytochemical study using UPLC-Q-TOF-MS approach. This analysis allowed the putative annotation of 48 metabolites belonging to various phytochemical classes, including mostly sesquiterpenes, flavonoids, and phenolic acids. Further, zebrafish embryotoxicity has been carried out, where 100 µg/mL extract incubated for 72 h resulted in a slow touch response of the 10 examined larvae, which might be taken as a sign of a disturbed peripheral nervous system. Results of in vitro testing indicate moderate cytotoxicity towards VERO, FaDu, and HeLa cells with CC50 values between 91.6 and 101.7 µg/mL. However, selective antineoplastic activity in RKO cells with CC50 of 54.5 µg/mL was observed. To the best of our knowledge, this is the first comprehensive profile of I. mucronata secondary metabolites that provides chemical-based evidence for its biological effects. A further investigation should be carried out to precisely define the underlying mechanisms of toxicity.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Asmaa M. Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatema R. Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Moataz Essam Shalaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Amira K. Elmotayam
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
18
|
A Comparative Metabolomics Approach for Egyptian Mango Fruits Classification Based on UV and UPLC/MS and in Relation to Its Antioxidant Effect. Foods 2022; 11:foods11142127. [PMID: 35885370 PMCID: PMC9318453 DOI: 10.3390/foods11142127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Mango (Mangifera indica L.) is a tropical climacteric fruit that encompasses a myriad of metabolites mediating for its nutritive value, unique taste, flavor, and medicinal uses. Egypt is among the top mango producers worldwide, albeit little characterization has been made toward its fruits’ chemical composition. This study aims to assess metabolites difference via comparative profiling and fingerprinting of Egyptian mango in context to its cultivar (cv.) type and/or growth province. To achieve such goal, hyphenated chromatographic techniques (UPLC/MS) and UV spectroscopy were employed and coupled to multivariate data analysis for Egyptian mango fruits’ classification for the first time. UPLC/MS led to the detection of a total of 47 peaks identified based on their elution times and MS data, belonging to tannins as gallic acid esters, flavonoids, xanthones, phenolic acids and oxylipids. UV/Vis spectra of mango fruits showed similar absorption patterns mostly attributed to the phenolic metabolites, i.e., gallic acid derivatives and phenolic acids showing λmax at ca. 240 and 270 nm. Modeling of both UPLC/MS and UV data sets revealed that cv. effect predominated over geographical origin in fruits segregation. Awees (AS) cv. showed the richest phenolic content and in agreement for its recognition as a premium cv. of mango in Egypt. Results of total phenolic content (TPC) assay revealed that AS was the richest in TPC at 179.1 mg GAE/g extract, while Langara from Ismailia (LI) showed the strongest antioxidant effect at 0.41 mg TE/g extract. Partial least square modeling of UV fingerprint with antioxidant action annotated gallates as potential contributor to antioxidant effect though without identification of exact moieties based on UPLC/MS. The study is considered the first-time investigation of Egyptian mango to aid unravel phytoconstituents responsible for fruits benefits using a metabolomics approach.
Collapse
|
19
|
M. AbouZeid E, H. Afifi A, Salama A, A. Hussein R, S. Youssef F, El-Ahmady SH, Mohamed Ammar N. Comprehensive metabolite profiling of Phoenix rupicola pulp and seeds using UPLC-ESI-MS/MS and evaluation of their estrogenic activity in ovariectomized rat model. Food Res Int 2022; 157:111308. [DOI: 10.1016/j.foodres.2022.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/04/2022]
|
20
|
Khaksar G, Sirijan M, Suntichaikamolkul N, Sirikantaramas S. Metabolomics for Agricultural Waste Valorization: Shifting Toward a Sustainable Bioeconomy. FRONTIERS IN PLANT SCIENCE 2022; 13:938480. [PMID: 35832216 PMCID: PMC9273160 DOI: 10.3389/fpls.2022.938480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Agriculture has been considered as a fundamental industry for human survival since ancient times. Local and traditional agriculture are based on circular sustainability models, which produce practically no waste. However, owing to population growth and current market demands, modern agriculture is based on linear and large-scale production systems, generating tons of organic agricultural waste (OAW), such as rejected or inedible plant tissues (shells, peels, stalks, etc.). Generally, this waste accumulates in landfills and creates negative environmental impacts. The plant kingdom is rich in metabolic diversity, harboring over 200,000 structurally distinct metabolites that are naturally present in plants. Hence, OAW is considered to be a rich source of bioactive compounds, including phenolic compounds and secondary metabolites that exert a wide range of health benefits. Accordingly, OAW can be used as extraction material for the discovery and recovery of novel functional compounds that can be reinserted into the production system. This approach would alleviate the undesired environmental impacts of OAW accumulation in landfills, while providing added value to food, pharmaceutical, cosmetic, and nutraceutical products and introducing a circular economic model in the modern agricultural industry. In this regard, metabolomics-based approaches have gained increasing interest in the agri-food sector for a variety of applications, including the rediscovery of bioactive compounds, owing to advances in analytical instrumentation and data analytics platforms. This mini review summarizes the major aspects regarding the identification of novel bioactive compounds from agricultural waste, focusing on metabolomics as the main tool.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkon Sirijan
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Nithiwat Suntichaikamolkul
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
El-Gazar AA, Emad AM, Ragab GM, Rasheed DM. Mentha pulegium L. (Pennyroyal, Lamiaceae) Extracts Impose Abortion or Fetal-Mediated Toxicity in Pregnant Rats; Evidenced by the Modulation of Pregnancy Hormones, MiR-520, MiR-146a, TIMP-1 and MMP-9 Protein Expressions, Inflammatory State, Certain Related Signaling Pathways, and Metabolite Profiling via UPLC-ESI-TOF-MS. Toxins (Basel) 2022; 14:toxins14050347. [PMID: 35622593 PMCID: PMC9147109 DOI: 10.3390/toxins14050347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Pregnant women usually turn to natural products to relieve pregnancy-related ailments which might pose health risks. Mentha pulegium L. (MP, Lamiaceae) is a common insect repellent, and the present work validates its abortifacient capacity, targeting morphological anomalies, biological, and behavioral consequences, compared to misoprostol. The study also includes untargeted metabolite profiling of MP extract and fractions thereof viz. methylene chloride (MecH), ethyl acetate (EtOAc), butanol (But), and the remaining liquor (Rem. Aq.) by UPLC-ESI-MS-TOF, to unravel the constituents provoking abortion. Administration of MP extract/fractions, for three days starting from day 15th of gestation, affected fetal development by disrupting the uterine and placental tissues, or even caused pregnancy termination. These effects also entailed biochemical changes where they decreased progesterone and increased estradiol serum levels, modulated placental gene expressions of both MiR-(146a and 520), decreased uterine MMP-9, and up-regulated TIMP-1 protein expression, and empathized inflammatory responses (TNF-α, IL-1β). In addition, these alterations affected the brain's GFAP, BDNF, and 5-HT content and some of the behavioral parameters escorted by the open field test. All these incidences were also perceived in the misoprostol-treated group. A total of 128 metabolites were identified in the alcoholic extract of MP, including hydroxycinnamates, flavonoid conjugates, quinones, iridoids, and terpenes. MP extract was successful in terminating the pregnancy with minimal behavioral abnormalities and low toxicity margins.
Collapse
Affiliation(s)
- Amira A. El-Gazar
- Pharmacology and Toxicological Department, Faculty of Pharmacy, October 6 University, Sixth of October City 12585, Egypt;
| | - Ayat M. Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City 12585, Egypt;
| | - Ghada M. Ragab
- Pharmacology and Toxicological Department, Faculty of Pharmacy, Misr University for Science & Technology (MUST), Giza 12585, Egypt;
| | - Dalia M. Rasheed
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City 12585, Egypt;
- Correspondence: ; Tel.: +2-011-1673-8432
| |
Collapse
|
22
|
NMR Metabolome-Based Classification of Cymbopogon Species: a Prospect for Phyto-equivalency of its Different Accessions Using Chemometric Tools. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02257-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Cymbopogon species are widely distributed worldwide and known for their high essential oil content with potential commercial and medicinal benefits justifying for their inclusion in food and cosmetics. Most species received scant characterization regarding their full complement of bioactive constituents necessary to explain their medicinal activities. In this study, the metabolite profiles of 5 Cymbopogon species, C. citratus, C. flexuosus, C. procerus, C. martini, and C. nardus, were characterized via NMR-based metabolomics. The results of 13 shoot accessions revealed the identification and quantification of 23 primary and secondary metabolites belonging to various compound classes. Multivariate analyses were used for species classification, though found not successful in discrimination based on geographical origin. Nevertheless, C. citratus was found particularly enriched in neral, geranial, (E)-aconitic acid, isoorientin, and caffeic acid as the major characterizing metabolites compared to other species, while an unknown apigenin derivative appeared to discriminate C. martini. The high essential oil and phenolic content in C. citratus emphasizes its strong antioxidant activity, whereas (E)-aconitic acid accounts for its traditional use as insecticide. This study affords the first insight into metabolite compositional differences among Cymbopogon species. Moreover, antimicrobial, insecticidal, antidiabetic, and antioxidant compounds were identified that can be utilized as biomarkers for species authentication.
Collapse
|
23
|
Farag MA, Zayed A, Sallam IE, Abdelwareth A, Wessjohann LA. Metabolomics-Based Approach for Coffee Beverage Improvement in the Context of Processing, Brewing Methods, and Quality Attributes. Foods 2022; 11:foods11060864. [PMID: 35327289 PMCID: PMC8948666 DOI: 10.3390/foods11060864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Coffee is a worldwide beverage of increasing consumption, owing to its unique flavor and several health benefits. Metabolites of coffee are numerous and could be classified on various bases, of which some are endogenous to coffee seeds, i.e., alkaloids, diterpenes, sugars, and amino acids, while others are generated during coffee processing, for example during roasting and brewing, such as furans, pyrazines, and melanoidins. As a beverage, it provides various distinct flavors, i.e., sourness, bitterness, and an astringent taste attributed to the presence of carboxylic acids, alkaloids, and chlorogenic acids. To resolve such a complex chemical makeup and to relate chemical composition to coffee effects, large-scale metabolomics technologies are being increasingly reported in the literature for proof of coffee quality and efficacy. This review summarizes the applications of various mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolomics technologies in determining the impact of coffee breeding, origin, roasting, and brewing on coffee chemical composition, and considers this in relation to quality control (QC) determination, for example, by classifying defected and non-defected seeds or detecting the adulteration of raw materials. Resolving the coffee metabolome can aid future attempts to yield coffee seeds of desirable traits and best flavor types.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
- Correspondence: (M.A.F.); (L.A.W.)
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt;
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Ibrahim E. Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City 12566, Egypt;
| | - Amr Abdelwareth
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Ludger A. Wessjohann
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle, Germany
- Correspondence: (M.A.F.); (L.A.W.)
| |
Collapse
|
24
|
El-Hawary EA, Zayed A, Laub A, Modolo LV, Wessjohann L, Farag MA. How Does LC/MS Compare to UV in Coffee Authentication and Determination of Antioxidant Effects? Brazilian and Middle Eastern Coffee as Case Studies. Antioxidants (Basel) 2022; 11:131. [PMID: 35052637 PMCID: PMC8773014 DOI: 10.3390/antiox11010131] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Coffee is a popular beverage owing to its unique flavor and diverse health benefits. The current study aimed at investigating the antioxidant activity, in relation to the phytochemical composition, of authenticated Brazilian green and roasted Coffea arabica and C. robusta, along with 15 commercial specimens collected from the Middle East. Ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-HRMS) and UV spectrometry were employed for profiling and fingerprinting, respectively. With the aid of global natural product social molecular networking (GNPS), a total of 88 peaks were annotated as belonging to different chemical classes, of which 11 metabolites are reported for the first time in coffee seeds. Moreover, chemometric tools showed comparable results between both platforms, with more advantages for UV in the annotation of roasting products, suggesting that UV can serve as a discriminative tool. Additionally, antioxidant assays coupled with the UHPLC-ESI-HRMS dataset using partial least-squares discriminant analysis (PLS-DA) demonstrated that caffeoylquinic acid and caffeine were potential antioxidant markers in unroasted coffee versus dicaffeoyl quinolactone and melanoidins in roasted coffee. The study presents a multiplex metabolomics approach to the quality control of coffee, one of the most consumed beverages.
Collapse
Affiliation(s)
- Enas A. El-Hawary
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt;
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| | - Annegret Laub
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany;
| | - Luzia V. Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Ludger Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
25
|
Baky MH, Badawy MT, Bakr AF, Hegazi NM, Abdellatif A, Farag MA. Metabolome-based profiling of African baobab fruit ( Adansonia digitata L.) using a multiplex approach of MS and NMR techniques in relation to its biological activity. RSC Adv 2021; 11:39680-39695. [PMID: 35494142 PMCID: PMC9044842 DOI: 10.1039/d1ra08277a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Adansonia digitata L. also known as African baobab is one of the most important fruit-producing trees, widely distributed in the African continent. Baobab fruits are known to possess potential health benefits and nutritional value. This study aimed to holistically dissect the metabolome of A. digitata fruits using a novel comparative protocol using three different analytical platforms. Ultra high performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS/MS), and headspace solid-phase microextraction/gas chromatography coupled to mass spectrometry (HS-SPME/GC-MS) were respectively employed for phytonutrients and aroma profiling, whereas GC-MS post silylation provided an overview of nutrients i.e., sugars. UHPLC-HRMS/MS analysis allowed for the assignment of 77 metabolites, among which 50% are reported for the first time in the fruit. While GC-MS of silylated and aroma compounds led to the identification of 74 and 16 compounds, respectively. Finally, NMR-based metabolite fingerprinting permitted the quantification of the major metabolites for future standardization. In parallel, in vivo antidiabetic potential of the baobab fruit using a streptozotocin (STZ) induced diabetic rat model was assessed. Histopathological and immune-histochemical investigations revealed hepatoprotective and renoprotective effects of A. digitata fruit along with mitigation against diabetes complications. Moreover, the administration of A. digitata fruits (150 mg kg-1) twice a week lowered fasting blood glucose levels.
Collapse
Affiliation(s)
- Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo 11829 Egypt +01007906443
| | - Marwa T Badawy
- Biology Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Alaa F Bakr
- Pathology Department, Faculty of Veterinary Medicine, Cairo University Gamaa St. 12211 Giza Egypt
| | - Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre P. O. Box 12622 Cairo Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University Kasr El Aini St. P.B. 11562 Cairo Egypt +011-202-25320005 +011-202-2362245
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
26
|
Abou Zeid AH, El Hawary SS, Mohammed RS, Ashour WES, Ahmed KA, Sabry OM, Attia HN. Metabolite Profiling of Peltophorum africanumSond . & Saraca indicaL. Leaves viaHR-UPLC/PDA/ESI/MS Analysis and Assessment of their Anti-Diabetic Potential. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2021; 11:442-466. [DOI: 10.1080/22311866.2021.1943523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2025]
Affiliation(s)
- Aisha Hussein Abou Zeid
- *Department of Pharmacognosy, National Research Centre, 33-Elbohouth St, (Former El-Tahri St.), Dokki-Giza-Egypt P.O.12622, ID: 60014618
| | - Seham S. El Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, Cairo, 11562, Egypt
| | - Reda Sayed Mohammed
- *Department of Pharmacognosy, National Research Centre, 33-Elbohouth St, (Former El-Tahri St.), Dokki-Giza-Egypt P.O.12622, ID: 60014618
| | - Wedian El-Sayed Ashour
- *Department of Pharmacognosy, National Research Centre, 33-Elbohouth St, (Former El-Tahri St.), Dokki-Giza-Egypt P.O.12622, ID: 60014618
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omar M. Sabry
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, Cairo, 11562, Egypt
| | - Hanan Naeim Attia
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology group) National Research Centre, 33-Elbohouth St, (Former El-Tahri St.), Dokki-Giza-Egypt
| |
Collapse
|
27
|
Al-Tamimi A, Alfarhan A, Rajagopal R. Antimicrobial and anti-biofilm activities of polyphenols extracted from different Saudi Arabian date cultivars against human pathogens. J Infect Public Health 2021; 14:1783-1787. [PMID: 34756515 DOI: 10.1016/j.jiph.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Microbial diseases have emerged as a serious threat to the healthcare system globally and also in Saudi Arabia; various diseases are associated with higher mortality and increased spreading rates. Dietary sources are often entertained to improve the immune system of the body to fight against these infections. The date fruit (Phoenix dactylifera L) is one such functional food that is less explored for its actual potentials. METHODS The polyphenols isolated from the different cultivars of dates in Saudi Arabia (Ajwa, Safawi, Khalas, and Sukkary) was evaluated for their antibacterial, anti-fungal and anti-biofilm forming abilities. The anti-radical properties of the phenolic extract were conducted in terms of the scavenging of diphenyl-1-picrylhydrazyl radical, hydrogen peroxide radicals and ABTS radicals. The anti-inflammatory potential was analyzed in terms of lipoxygenase activity inhibition. RESULTS The phenolic compounds of different dates were spectrophotometrically estimated and cultivars such as Ajwa and Sukkary had the highest polyphenol content. It was also noteworthy that they exerted potent antibacterial activities against Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa as estimated by the least minimal inhibitory concentration (MIC) or minimal bactericidal concentration (MBC) values. Besides, these polyphenols reduced the biofilm formation by these bacterial pathogens; it is thus possible that the polyphenols from dates can be a promising antimicrobial agent against various pathogenic strains. Corroborating with these, the polyphenol extracts from different Saudi Arabian dates were found to inhibit the growth of mycelium in strains of Candida albicans and Aspergillus niger. Apart from these, the polyphenol isolates also exhibited significant anti-radical properties against different reactive radical systems. CONCLUSION Overall, the efficacy of phenolic compounds extracted from the dried date fruits are not only restricted to the functional food features; instead, these molecules are capable of preventing the growth of microbial pathogens of humans. Hence, it may emerge as potent antibacterial, anti-fungal and anti-biofilm forming candidates.
Collapse
Affiliation(s)
- Amal Al-Tamimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 87991, Riyadh 11652, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
28
|
Therapeutic Potential of Date Palm against Human Infertility: A Review. Metabolites 2021; 11:metabo11060408. [PMID: 34205817 PMCID: PMC8235103 DOI: 10.3390/metabo11060408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Male and female infertility is a global major health problem. Approximately 15% of couples of a reproductive age are unable to achieve the desired pregnancy within 12 months, despite daily unprotected sexual intercourse, and about 10% of infertilities have no specific reason worldwide. Currently, many researchers are interested to investigate the use of natural remedies for preventive and curative purposes of infertility. This review brings together some of the data on the nutritional characteristics of the date palm and its different parts on fertility outcomes and critically evaluates the past and recent literature relevant to the consumption of date fruit against infertility-related problems. Due to its antioxidant potential, dates are considered a functional treatment for reducing the risks of infertility. In males, the date palm has a potent effect on the reproductive parameters including hormonal levels and seminal vesicle parameters as well as sperm motility, count, and viability; whereas, in females, it shows a convincing effect on reproductive parameters including oogenesis process, strengthening of oocytes, regulation of hormones, strengthening of pregnancy, reduction of the need for labor augmentation, and postpartum hemorrhage prevention.
Collapse
|
29
|
Anti-Allergic, Anti-Inflammatory and Anti-Hyperglycemic Activity of Chasmanthe aethiopica Leaf Extract and Its Profiling Using LC/MS and GLC/MS. PLANTS 2021; 10:plants10061118. [PMID: 34073129 PMCID: PMC8226651 DOI: 10.3390/plants10061118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
This study aims to comprehensively explore the phytoconstituents as well as investigate the different biological activities of Chasmanthe aethiopica (Iridaceae) for the first time. Metabolic profiling of the leaf methanol extract of C. aethiopica (CAL) was carried out using HPLC-PDA-ESI-MS/MS. Twenty-nine compounds were annotated belonging to various phytochemical classes including organic acids, cinnamic acid derivatives, flavonoids, isoflavonoids, and fatty acids. Myricetin-3-O-rhamnoside was the major compound identified. GLC/MS analysis of the n-hexane fraction (CAL-A) resulted in the identification of 45 compounds with palmitic acid (16.08%) and methyl hexadecanoic acid ester (11.91%) representing the major constituents. CAL-A exhibited a potent anti-allergic activity as evidenced by its potent inhibition of β-hexosaminidase release triggered by A23187 and IgE by 72.7% and 48.7%, respectively. Results were comparable to that of dexamethasone (10 nM) in the A23187 degranulation assay showing 80.7% inhibition for β-hexosaminidase release. Both the n-hexane (CAL-A) and dichloromethane (CAL-B) fractions exhibited potent anti-inflammatory activity manifested by the significant inhibition of superoxide anion generation and prohibition of elastase release. CAL showed anti-hyperglycemic activity in vivo using streptozotocin-induced diabetic rat model by reducing fasting blood glucose levels (FBG) by 53.44% as compared with STZ-treated rats along with a substantial increase in serum insulin by 22.22%. Molecular modeling studies indicated that dicaffeoylquinic acid showed the highest fitting with free binding energies (∆G) of -47.24 and -60.50 Kcal/mol for human α-amylase and α-glucosidase, respectively confirming its anti-hyperglycemic activity. Thus, C. aethiopica leaf extract could serve as an effective antioxidant natural remedy combating inflammation, allergy, and hyperglycemia.
Collapse
|
30
|
Hegazi NM, El-Shamy S, Fahmy H, Farag MA. Pomegranate juice as a super-food: A comprehensive review of its extraction, analysis, and quality assessment approaches. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
El-Akad RH, Abou Zeid AH, El-Rafie HM, Kandil ZAA, Farag MA. Comparative metabolites profiling of Caryota mitis & Caryota urens via UPLC/MS and isolation of two novel in silico chemopreventive flavonoids. J Food Biochem 2021; 45:e13648. [PMID: 33559930 DOI: 10.1111/jfbc.13648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 01/12/2023]
Abstract
Caryota mitis and Caryota urens (F. Arecaceae) are well reported in Ayurvedic medicine and involved in several edible food products. Herein, the first comparative profiling of their leaf and fruit metabolites of both species via HR-UPLC/PDA/ESI-MS and multivariate data analyses is presented. A total of 142 metabolites were detected with seven reported for the first time in F. Arecaceae and a novel O-caffeoylshikimic acid conjugate. Screening of plants' leaf crude extracts via in vitro DCPIP kinetic assay revealed the induction of phase II cytoprotective enzyme NQO1 by 4.5- to 5-fold versus control, suggestive of potential chemopreventive activity. Two novel sulfated flavonols that is quercetin-3-O-sulfate-4'-O-rhamnosyl (1→6)-β-d-glucoside (F1) and kaempferol-3-O-sulfate-4'-O-rhamnosyl(1→6)-β-d-glucoside (F3) in addition to another five known flavonoids were isolated from C. mitis ethanol extract and identified via MS and NMR spectroscopic techniques. Among isolated compounds, F1 and F3 exhibited the highest docking score as KEAP-1 inhibitors and Nrf2 activators posing them as potential chemopreventive drug leads. PRACTICAL APPLICATIONS: The study extends the usages of this edible less explored Caryota species to a potential cancer chemopreventive action. Guided by the extensive chemical information presented herein, additional uses could be suggested for these plants with 142 identified metabolites including androst-en-diol that has aphrodisiac and muscle building effects. The presented multivariate data analyses could aid phytochemists in plants classification and mapping (chemotaxonomy) since several metabolites are reported herein for the first time either in family or genus.
Collapse
Affiliation(s)
| | | | | | | | - Mohamed Ali Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
32
|
Farag MA, Sharaf El-Din MG, Selim MA, Owis AI, Abouzid SF, Porzel A, Wessjohann LA, Otify A. Nuclear Magnetic Resonance Metabolomics Approach for the Analysis of Major Legume Sprouts Coupled to Chemometrics. Molecules 2021; 26:molecules26030761. [PMID: 33540661 PMCID: PMC7867271 DOI: 10.3390/molecules26030761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
Legume sprouts are a fresh nutritive source of phytochemicals of increasing attention worldwide owing to their many health benefits. Nuclear magnetic resonance (NMR) was utilized for the metabolite fingerprinting of 4 major legume sprouts, belonging to family Fabaceae, to be exploited for quality control purposes. Thirty-two metabolites were identified belonging to different classes, i.e., fatty acids, sugars, amino acids, nucleobases, organic acids, sterols, alkaloids, and isoflavonoids. Quantitative NMR was employed for assessing the major identified metabolite levels and multivariate data analysis was utilized to assess metabolome heterogeneity among sprout samples. Isoflavones were detected exclusively in Cicer sprouts, whereas Trigonella was characterized by 4-hydroxyisoleucine. Vicia sprouts were distinguished from other legume sprouts by the presence of L-Dopa versus acetate abundance in Lens. A common alkaloid in all sprouts was trigonelline, detected at 8–25 µg/mg, suggesting its potential role in legume seeds’ germination. Trigonelline was found at highest levels in Trigonella sprouts. The aromatic NMR region data (δ 11.0–5.0 ppm) provided a better classification power than the full range (δ 11.0–0.0 ppm) as sprout variations mostly originated from secondary metabolites, which can serve as chemotaxonomic markers.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt; (M.A.S.); (A.O.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence: (M.A.F.); (L.A.W.)
| | | | - Mohamed A. Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt; (M.A.S.); (A.O.)
- Pharmacognosy Department, Faculty of Pharmacy, Misr University for Science & Technology (MUST), 6th October City 12566, Egypt
| | - Asmaa I. Owis
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt; (A.I.O.); (S.F.A.)
| | - Sameh F. Abouzid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt; (A.I.O.); (S.F.A.)
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
- Correspondence: (M.A.F.); (L.A.W.)
| | - Asmaa Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt; (M.A.S.); (A.O.)
| |
Collapse
|