1
|
Wang W, Zhang K, Zhang K, Wu R, Tang Y, Li Y. Gut microbiota promotes cholesterol gallstone formation through the gut-metabolism-gene axis. Microb Pathog 2025; 203:107446. [PMID: 40118296 DOI: 10.1016/j.micpath.2025.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Gallstone disease, arising from the interplay between host metabolism and gut microbiota, represents a significant health concern. Dysbiosis of the gut microbiome and disruptions in circadian rhythm contribute to the pathogenesis of gallstones. This study conducted a comprehensive analysis of gut microbiota and metabolites derived from stool and serum samples of 28 patients with cholesterol gallstones (CGS) and 19 healthy controls, employing methodologies such as 16S rRNA sequencing, metaproteomics, metabolomics, and host genetic analysis. Additionally, a retrospective cohort study was utilized to assess the efficacy of probiotics or ursodeoxycholic acid (UDCA) in preventing CGS formation post-bariatric surgery. RESULTS In CGS patients, gut microbiota diversity shifted, with harmful bacteria rising and beneficial ones declining. The altered microbiota primarily affected amino acid, lipid, nucleotide, and carbohydrate metabolism. Metabolic abnormalities were noted in amino acids, glucose, lipids, and bile acids with decreased levels of ursodeoxycholic, glycosodeoxycholic, and glycolithocholic acids, and increased glycohyodeoxycholic and allocholic acids. Glutamine and alanine levels dropped, while phenylalanine and tyrosine rosed. Animal studies confirmed gene changes in gallbladder tissues related to bile acid, energy, glucose, and lipid metabolism. Importantly, UDCA and probiotics effectively reduced CGS risk post-bariatric surgery, especially when combined. CONCLUSIONS Multi-omics can clarify CGS pathology, by focusing on the gut-metabolism-gene axis, paving the way for future studies on CGS prevention and treatment through gut microbiota or metabolic interventions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China
| | - Kai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Shandong, 250033, China
| | - Kun Zhang
- Shanghai Biotree Biotech Co., Ltd., Shanghai, China
| | - Rui Wu
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Shandong, 250033, China
| | - Yu Tang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yuliang Li
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China.
| |
Collapse
|
2
|
Li D, Li C, Liu N, Liu H, Yu Z, Liu Q, Shu G, Lin J, Zhang W, Peng G, Zhao L, Tang H, Li H, Xu F, Fu H. Integrated metabolomics and intestinal microbiota analysis to reveal anti-post-weaning diarrhea mechanisms of Modified Yupingfeng Granule in Rex rabbits. Front Microbiol 2025; 16:1470731. [PMID: 40276219 PMCID: PMC12020438 DOI: 10.3389/fmicb.2025.1470731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Post-weaning Diarrhea (PWD) is a kind of physiological stress diarrhea in Rex rabbits after weaning, which can lead to death in severe cases. Traditional Chinese medicine (TCM) has been widely used in animal due to its advantages of natural origin, diverse functions, safety, reliability, economy and environmental protection. Modified Yupingfeng Granule (MYPFG) is an improved Yupingfeng prescription based on the famous traditional Chinese prescription Yupingfeng (YPF), which is combined with other TCM and has obvious synergistic and additive activity in order to obtain an excellent natural medicine for PWD. Methods In this study, 120 weaned Rex rabbits were randomly allocated to 4 treatment groups, including control (CON), low dose (LD), medium dose (MD), high dose (HD). Rabbits were fed a control diet or a different MYPFG proportions of diet for 30 days. The study combined 16S rRNA analysis of intestinal microbiota and cecal contents metabolomics to explore the MYPFG effect on weaned Rex rabbits. Results MYPFG increased average daily gain, villus length to crypt depth ratio and decreased the feed to meat ratio, diarrhea frequency, mortality rate, depth of crypt (p < 0.05). The intestinal microbiota test found that MYPFG could change the abundances of Patescibacteria, Sphingobium, Ruminococcus, and Oxalobacter. Metabolomics analysis found that effect may be related to its regulation of Glycine, serine and threonine metabolism, Arginine and proline metabolism. Nicotinate and nicotinamide metabolism. Discussion MYPFG could regulate intestinal microbiota and change the metabolic pathway of some amino acids to alleviate the PWD in Rex rabbits.
Collapse
Affiliation(s)
- Dongbo Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Liu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Hanzhong Liu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Zhiju Yu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Quanjin Liu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangneng Peng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haohuan Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Funeng Xu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Guo Y, Wang L, Huang JQ, Lu MW, Yang SH. Valorization of Pomegranate Peel: Mechanisms and Clinical Applications in Irritable Bowel Syndrome Management. Int J Mol Sci 2025; 26:3530. [PMID: 40332037 PMCID: PMC12026873 DOI: 10.3390/ijms26083530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Current disposal methods for pomegranate peel (PP) waste are inadequate, resulting in environmental pollution. Given PP's therapeutic potential in alleviating irritable bowel syndrome (IBS), elucidating its bioactive mechanisms is critical to guide its development into dietary supplements and promote sustainable recycling. In this study, bioinformatics and network analysis were employed to identify active compounds, key targets, and signaling pathways associated with PP's therapeutic effects. We identified 39 bioactive compounds (primarily polyphenols) and 106 key targets linked to IBS. Network analyses revealed that PP polyphenols mitigate oxidative stress and inflammation, modulate estrogen receptors to enhance gastrointestinal motility, and regulate ferroptosis. These findings underscore PP's potential as a therapeutic agent for IBS and provide a framework for repurposing food-processing byproducts.
Collapse
Affiliation(s)
- Yu Guo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China;
| | - Lu Wang
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain;
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China;
| | - Mu-Wen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510632, China
| | - Song-Hong Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| |
Collapse
|
4
|
Kirk D, Louca P, Attaye I, Zhang X, Wong KE, Michelotti GA, Falchi M, Valdes AM, Williams FMK, Menni C. Multifluid Metabolomics Identifies Novel Biomarkers for Irritable Bowel Syndrome. Metabolites 2025; 15:121. [PMID: 39997746 PMCID: PMC11857683 DOI: 10.3390/metabo15020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Irritable bowel syndrome (IBS) is a complex disorder affecting 10% of the global population, but the underlying mechanisms remain poorly understood. By integrating multifluid metabolomics, we aimed to identify metabolite markers of IBS in a large population-based cohort. Methods: We included individuals from TwinsUK with and without IBS, ascertained using the Rome III criteria, and analysed serum (232 cases, 1707 controls), urine (185 cases, 1341 controls), and stool (186 cases, 1284 controls) metabolites (Metabolon Inc.). Results: After adjusting for covariates, and multiple testing, 44 unique metabolites (25 novel) were associated with IBS, including lipids, amino acids, and xenobiotics. Androsterone sulphate, a sulfated steroid hormone precursor, was associated with lower odds of IBS in both urine (0.69 [95% confidence interval = 0.56-0.85], p = 2.34 × 10-4) and serum (0.75 [0.63-0.90], p = 1.54 × 10-3. Moreover, suberate (C8-DC) was associated with higher odds of IBS in serum (1.36 [1.15-1.61]; p = 1.84 × 10-4) and lower odds of IBS in stool (0.76 [0.63-0.91]; p = 2.30 × 10-3). On the contrary, 32 metabolites appeared to be fluid-specific, including indole, 13-HODE + 9-HODE, pterin, bilirubin (E,Z or Z,Z), and urolithin. The remaining 10 metabolites were associated with IBS in one fluid with suggestive evidence (p < 0.05) in another fluid. Finally, we identified androgenic signalling, dicarboxylates, haemoglobin, and porphyrin metabolism to be significantly over-represented in individuals with IBS compared to controls. Conclusions: Our results highlight the utility of a multi-fluid approach in IBS research, revealing distinct metabolic signatures across biofluids.
Collapse
Affiliation(s)
- Daniel Kirk
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Panayiotis Louca
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Ilias Attaye
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Xinyuan Zhang
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Kari E. Wong
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA; (K.E.W.); (G.A.M.)
| | - Gregory A. Michelotti
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA; (K.E.W.); (G.A.M.)
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Ana M. Valdes
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
- Inflammation, Recovery and Injury Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Frances M. K. Williams
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
5
|
Li Z, Ma Q, Deng Y, Rolls ET, Shen C, Li Y, Zhang W, Xiang S, Langley C, Sahakian BJ, Robbins TW, Yu JT, Feng J, Cheng W. Irritable Bowel Syndrome Is Associated With Brain Health by Neuroimaging, Behavioral, Biochemical, and Genetic Analyses. Biol Psychiatry 2024; 95:1122-1132. [PMID: 38199582 DOI: 10.1016/j.biopsych.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) interacts with psychopathology in a complex way; however, little is known about the underlying brain, biochemical, and genetic mechanisms. METHODS To clarify the phenotypic and genetic associations between IBS and brain health, we performed a comprehensive retrospective cohort study on a large population. Our study included 171,104 participants from the UK Biobank who underwent a thorough assessment of IBS, with the majority also providing neuroimaging, behavioral, biochemical, and genetic information. Multistage linked analyses were conducted, including phenome-wide association analysis, polygenic risk score calculation, and 2-sample Mendelian randomization analysis. RESULTS The phenome-wide association analysis showed that IBS was linked to brain health problems, including anxiety and depression, and poor cognitive performance. Significantly lower brain volumes associated with more severe IBS were found in key areas related to emotional regulation and higher-order cognition, including the medial orbitofrontal cortex/ventromedial prefrontal cortex, anterior insula, anterior and mid-cingulate cortices, dorsolateral prefrontal cortex, and hippocampus. Higher triglycerides, lower high-intensity lipoprotein, and lower platelets were also related (p < 1 × 10-10) to more severe IBS. Finally, Mendelian randomization analyses demonstrated potential causal relationships between IBS and brain health and indicated possible mediating effects of dyslipidemia and inflammation. CONCLUSIONS For the first time, this study provides a comprehensive understanding of the relationship between IBS and brain health phenotypes, integrating perspectives from neuroimaging, behavioral performance, biochemical factors, and genetics, which is of great significance for clinical applications to potentially address brain health impairments in patients with IBS.
Collapse
Affiliation(s)
- Zeyu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qing Ma
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yueting Deng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom; Oxford Centre for Computational Neuroscience, Oxford, United Kingdom.
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuzhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Christelle Langley
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Jin-Tai Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
6
|
Zhang X, Yan W, Chen X, Li X, Yu B, Zhang Y, Ding B, Hu J, Liu H, Nie Y, Liu F, Zheng Y, Lu Y, Wang J, Wang S. Long-term 4-nonylphenol exposure drives cervical cell malignancy through MAPK-mediated ferroptosis inhibition. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134371. [PMID: 38657513 DOI: 10.1016/j.jhazmat.2024.134371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
4-NP (4-nonylphenol), a prevalent environmental endocrine disruptor with estrogenic properties, is commonly detected in drinking water and food sources. It poses a significant risk of endocrine disruption, thereby influencing the onset and progression of diverse diseases, including tumorigenesis. However, its specific impact on cervical cancer remains to be fully elucidated. Our study focused on the biological effects of sustained exposure to low-dose 4-NP on human normal cervical epithelial cells (HcerEpic). After a continuous 30-week exposure to 4-NP, the treated cells exhibited a significant malignant transformation, whereas the solvent control group showed limited malignant phenotypes. Subsequent analyses of the metabolomic profiles of the transformed cells unveiled marked irregularities in glutathione metabolism and unsaturated fatty acid metabolism. Analyses of transcriptomic profiles revealed significant activation of the MAPK signaling pathway and suppression of ferroptosis processes in these cells. Furthermore, the expression of MT2A was significantly upregulated following 4-NP exposure. Knockdown of MT2A restored the aberrant activation of the MAPK signaling pathway, elevated antioxidant capacity, ferroptosis inhibition, and ultimately the development of malignant phenotypes that induced by 4-NP in the transformed cells. Mechanistically, MT2A increased cellular antioxidant capabilities and facilitated the removal of toxic iron ions by enhancing the phosphorylation of ERK1/2 and JNK MAPK pathways. The administration of activators and inhibitors of the MAPK pathway confirmed that the MAPK pathway mediated the 4-NP-induced suppression of ferroptosis and, ultimately, the malignant transformation of cervical epithelial cells. Overall, our findings elucidated a dynamic molecular transformation induced by prolonged exposure to 4-NP, and delineated comprehensive biological perspectives underlying 4-NP-induced cervical carcinogenesis. This offers novel theoretical underpinnings for the assessment of the carcinogenic risks associated with 4-NP.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, China
| | - Bingjia Yu
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, China
| | - Yan Zhang
- School of Medicine, Shihezi University, Xinjiang, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yun Zheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yiran Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Wang S, Kou GJ, Zhao XH, Huang G, Wang JX, Tian L, Zuo XL, Li YQ, Wang JY, Yu YB. Altered mucosal bacteria and metabolomics in patients with Peutz-Jeghers syndrome. Gut Pathog 2024; 16:25. [PMID: 38678229 PMCID: PMC11056063 DOI: 10.1186/s13099-024-00617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots, gastrointestinal polyps and increased susceptibility to cancers. Currently, most studies have investigated intestinal microbiota through fecal microbiota, and there are few reports about mucosa-associated microbiota. It remains valuable to search for the key intestinal microbiota or abnormal metabolic pathways linked to PJS. AIM This study aimed to assess the structure and composition of mucosa-associated microbiota in patients with PJS and to explore the potential influence of intestinal microbiota disorders and metabolite changes on PJS. METHODS The bacterial composition was analyzed in 13 PJS patients and 12 controls using 16S rRNA gene sequencing (Illumina MiSeq) for bacteria. Differential analyses of the intestinal microbiota were performed from the phylum to species level. Liquid chromatography-tandem mass spectrometry (LC‒MS) was used to detect the differentially abundant metabolites of PJS patients and controls to identify different metabolites and metabolic biomarkers of small intestinal mucosa samples. RESULTS High-throughput sequencing confirmed the special characteristics and biodiversity of the mucosa microflora in patients with PJS. They had lower bacterial biodiversity than controls. The abundance of intestinal mucosal microflora was significantly lower than that of fecal microflora. In addition, lipid metabolism, amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and other pathways were significantly different from those of controls, which were associated with the development of the enteric nervous system, intestinal inflammation and development of tumors. CONCLUSION This is the first report on the mucosa-associated microbiota and metabolite profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.
Collapse
Affiliation(s)
- Sui Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Guan-Jun Kou
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiao-Han Zhao
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jue-Xin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Lin Tian
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jia-Yong Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Pan J, Wu J, Zhang S, Wang K, Ji G, Zhou W, Dang Y. Targeted metabolomics revealed the mechanisms underlying the role of Liansu capsule in ameliorating functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117568. [PMID: 38092317 DOI: 10.1016/j.jep.2023.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liansu capsule could alleviate dyspeptic symptoms; however, the mechanisms underlying its role in treating functional dyspepsia (FD) remain unclear. AIM OF THE STUDY To elucidate the mechanism underlying the efficacy of Liansu capsule in alleviating FD symptoms. MATERIALS AND METHODS Thirty-six male mice were randomly divided into the following six groups: control, model, low-strength Liansu, moderate-strength Liansu, high-strength Liansu, and domperidone groups. Small intestine propulsion rate, gastric residual rate and histopathological analysis were performed to evaluate efficacy of Liansu capsule. Levels of interleukin-1β, interleukin-6, tumor necrosis factor α, phosphorylation of p65, ghrelin and gastrin were verified by real-time quantitative polymerase chain reaction and immunofluorescence assays. Targeted metabolomic analyses, western blotting and immunofluorescence assays were used to explore the mechanism of Liansu capsule in ameliorating FD. RESULTS The Liansu capsule significantly ameliorated the symptoms of FD, and markedly increased the levels of ghrelin and gastrin. Moreover, Liansu capsule significantly downregulated the levels of the proinflammatory cytokine interleukin-1β, interleukin-6, tumor necrosis factor α, and inhibited the phosphorylation of p65. Targeted metabolomic analyses showed that Liansu capsule significantly reduced the levels of deoxycholic acid and hyodeoxycholic acid, which were significantly elevated in the model group. Furthermore, these results showed that deoxycholic acid and hyodeoxycholic acid markedly promoted the levels of Takeda G-protein-coupled receptor 5 (TGR5), phosphorylated signal transducer and activator of transcription 3 (STAT3), and Kruppel-like factor 5 (KLF5) in vitro. whereas, Liansu capsule significantly reduced the levels of TGR5, phosphorylated STAT3, and KLF5. CONCLUSION Our findings indicated that Liansu capsule improved FD by regulating the deoxycholic acid/hyodeoxycholic acid-TGR5-STAT3-KLF5 axis. The findings reveal a novel mechanism underlying the role of Liansu capsule, which may be a promising therapeutic strategy for FD.
Collapse
Affiliation(s)
- Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Jiaxuan Wu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zeng Y, Liu H, Pei Z, Li R, Liu Z, Liao C. Evaluation of the causal effects of blood metabolites on irritable bowel syndrome: Mendelian randomization. BMC Gastroenterol 2024; 24:19. [PMID: 38182988 PMCID: PMC10768268 DOI: 10.1186/s12876-023-03111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by abdominal pain, discomfort, and changes in bowel habits. The mechanism underlying IBS remains unclear, and little evidence exists for clarifying the causal relationship between blood metabolites and IBS. METHODS We conducted a Mendelian randomization (MR) study using two samples. Exposure data for 7824 Europeans were extracted from a genome-wide association study (GWAS) on metabolite levels. The IBS GWAS data from the GWAS database were used for the initial analysis. The primary analysis of causal relationships was conducted using inverse-variance weighting (IVW) with MR-Egger and weighted medians as supplementary analyses. Sensitivity analyses were performed using a combination of the Cochran's Q test, MR-Egger intercept test, Mendelian randomization pleiotropy residual sum and outlier, and leave-one-out analysis. For significant associations, replication and meta-analyses were performed using additional independent IBS case GWAS data released by the FinnGen Consortium R9. To identify the metabolites, score regression, confounding analysis, and reverse MR were performed to further assess the causal relationships between the metabolites. RESULTS After rigorous screening, we identified four known metabolites to be associated with IBS (stearate, odds ratio [OR]: 0.74, 95% confidence interval [CI]: 0.59-0.92; arginine, OR: 1.36, 95% CI: 1.07-1.74; 1-palmitoylglycerol, OR:1.49, 95% CI: 1.07-2.07; 1-palmitoylglycerophosphoinositol, OR: 0.84, 95% CI: 0.71-0.99). CONCLUSIONS MR analysis revealed a causal relationship between the four metabolites and IBS, providing preliminary evidence for the pathogenesis of IBS. Our results provide novel insights into the potential biomarkers of IBS.
Collapse
Affiliation(s)
- Yu Zeng
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huabing Liu
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Zhihui Pei
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Rui Li
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Zuihui Liu
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Chuanwen Liao
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| |
Collapse
|
10
|
Xu M, Liu D, Tan Y, He J, Zhou B. A Mendelian randomization study on the effects of plasma lipids on irritable bowel syndrome and functional dyspepsia. Sci Rep 2024; 14:78. [PMID: 38167458 PMCID: PMC10761668 DOI: 10.1038/s41598-023-50459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Although functional gastrointestinal disorder (FGID) is a common clinical condition, its risk factors remain unclear. We performed a Mendelian randomization study to explore the association between plasma lipids and the risk of FGID. Instrumental variables closely related to six plasma lipids were obtained from the corresponding genome-wide association studies, and summary-level data on FGID, including irritable bowel syndrome (IBS) and functional dyspepsia (FD), were extracted from the FinnGen study. The primary inverse variance weighted method and other supplementary analyses were used to evaluate the causal relationship between diverse plasma lipids and FGID. For each increase in the standard deviation of triglyceride levels, there was a 12.0% increase in the risk of IBS rather than that of FD. Low- and high-density lipoprotein cholesterol, total cholesterol, apolipoprotein A, and apolipoprotein B levels were not associated with the risk of IBS or FD. Through this study, we identified the causal role of triglycerides in the pathogenesis of IBS, which could benefit further basic and clinical research.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Jian He
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bingyi Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410007, China.
- Research Center of Digestive Disease, Central South University, Changsha, China.
| |
Collapse
|
11
|
Karpe AV, Beale DJ, Tran CD. Intelligent Biological Networks: Improving Anti-Microbial Resistance Resilience through Nutritional Interventions to Understand Protozoal Gut Infections. Microorganisms 2023; 11:1800. [PMID: 37512972 PMCID: PMC10383877 DOI: 10.3390/microorganisms11071800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enteric protozoan pathogenic infections significantly contribute to the global burden of gastrointestinal illnesses. Their occurrence is considerable within remote and indigenous communities and regions due to reduced access to clean water and adequate sanitation. The robustness of these pathogens leads to a requirement of harsh treatment methods, such as medicinal drugs or antibiotics. However, in addition to protozoal infection itself, these treatments impact the gut microbiome and create dysbiosis. This often leads to opportunistic pathogen invasion, anti-microbial resistance, or functional gastrointestinal disorders, such as irritable bowel syndrome. Moreover, these impacts do not remain confined to the gut and are reflected across the gut-brain, gut-liver, and gut-lung axes, among others. Therefore, apart from medicinal treatment, nutritional supplementation is also a key aspect of providing recovery from this dysbiosis. Future proteins, prebiotics, probiotics, synbiotics, and food formulations offer a good solution to remedy this dysbiosis. Furthermore, nutritional supplementation also helps to build resilience against opportunistic pathogens and potential future infections and disorders that may arise due to the dysbiosis. Systems biology techniques have shown to be highly effective tools to understand the biochemistry of these processes. Systems biology techniques characterize the fundamental host-pathogen interaction biochemical pathways at various infection and recovery stages. This same mechanism also allows the impact of the abovementioned treatment methods of gut microbiome remediation to be tracked. This manuscript discusses system biology approaches, analytical techniques, and interaction and association networks, to understand (1) infection mechanisms and current global status; (2) cross-organ impacts of dysbiosis, particularly within the gut-liver and gut-lung axes; and (3) nutritional interventions. This study highlights the impact of anti-microbial resistance and multi-drug resistance from the perspective of protozoal infections. It also highlights the role of nutritional interventions to add resilience against the chronic problems caused by these phenomena.
Collapse
Affiliation(s)
- Avinash V Karpe
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Black Mountain Science and Innovation Park, Acton, ACT 2601, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Cuong D Tran
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Gate 13 Kintore Ave., Adelaide, SA 5000, Australia
| |
Collapse
|