1
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. Small-molecule in cancer immunotherapy: Revolutionizing cancer treatment with transformative, game-changing breakthroughs. Biochim Biophys Acta Rev Cancer 2024; 1879:189170. [PMID: 39127244 DOI: 10.1016/j.bbcan.2024.189170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has revolutionized cancer management, with antibody-based treatments leading the charge due to their superior pharmacodynamics, including enhanced effectiveness and specificity. However, these therapies are hampered by limitations such as prolonged half-lives, poor tissue and tumor penetration, and minimal oral bioavailability. Additionally, their immunogenic nature can cause adverse effects. Consequently, the focus is shifting towards small-molecule-based immunotherapies, which potentially overcome these drawbacks. Emerging as a promising alternative, small molecules offer the benefits of therapeutic antibodies and immunomodulators, often yielding synergistic effects when combined. Recent advancements in small-molecule cancer immunotherapy are notable, featuring inhibitors, agonists, and degraders that act as immunomodulators. This article delves into the current landscape of small-molecule immunotherapy in cancer treatment, highlighting novel agents targeting key pathways such as Toll-like receptors (TLR), PD-1/PD-L1, chemokine receptors, and stimulators of interferon genes (STING). The review emphasizes newly discovered molecular entities and their modulatory roles in tumorigenesis, many of which have progressed to clinical trials, that aims to provide a comprehensive snapshot of the evolving frontier in cancer treatment, driven by small-molecule immunomodulators.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
2
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Patnaik SK, Ayyamperumal S, Jade D, Palathoti N, Akey KS, Jupudi S, Harrison MA, Ponnambalam S, Mj N, Mjn C. Virtual high throughput screening of natural peptides against ErbB1 and ErbB2 to identify potential inhibitors for cancer chemotherapy. J Biomol Struct Dyn 2024; 42:5551-5574. [PMID: 37387589 DOI: 10.1080/07391102.2023.2226744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Human epidermal growth factor receptors (EGFR), namely ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, the trans-membrane family of tyrosine kinase receptors, are overexpressed in many types of cancers. These receptors play an important role in cell proliferation, differentiation, invasion, metastasis and angiogenesis including unregulated activation of cancer cells. Overexpression of ErbB1 and ErbB2 that occurs in several types of cancers is associated with poor prognosis leading to resistance to ErbB1-directed therapies. In this connection, promising strategy to overcome the disadvantages of the existing chemotherapeutic drugs is the use of short peptides as anticancer agents. In the present study, we have performed virtual high throughput screening of natural peptides against ErbB1 and ErbB2 to identify potential dual inhibitors and identified five inhibitors based on their binding affinities, ADMET analysis, MD simulation studies and calculation of free energy of binding. These natural peptides could be further exploited for developing drugs for treating cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar Patnaik
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Selvaraj Ayyamperumal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Dhananjay Jade
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Nagarjuna Palathoti
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishna Swaroop Akey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | | | | | - Nanjan Mj
- JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Chandrasekar Mjn
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
- School of Life Sciences, JSS Academy of Higher Education & Research(Ooty Campus), Ooty, Tamil Nadu, India
| |
Collapse
|
4
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Molecular targeted treatment and drug delivery system for gastric cancer. J Cancer Res Clin Oncol 2021; 147:973-986. [PMID: 33550445 DOI: 10.1007/s00432-021-03520-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer is still a major cancer worldwide. The early diagnosis rate of gastric cancer in most high incidence countries is low. At present, the overall treatment effect of gastric cancer is poor, and the median overall survival remains low. Most of the patients with gastric cancer are in an advanced stage when diagnosed, and drug treatment has become the main means. Thus, new targeted drugs and therapeutic strategies are the hope of improving the therapeutic effect of gastric cancer. In this review, we summarize the new methods and advances of targeted therapy for gastric cancer, including novel molecular targeted therapeutic agents and drug delivery systems, with a major focus on the development of drug delivery systems (drug carriers and targeting peptides). Elaborating these new methods and advances will contribute to the management of gastric cancer.
Collapse
|
6
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
7
|
Yin J, Xin B, Hui X, Chai N, Yao L, Hu H, Xu B, Ma W, Zhang M, Wang J, Nie Y, Zhou G, Wang G, Chen L, Lu H, Wu K. 188Re-labeled GX1 dimer as a novel dual-functional probe targeting TGM2 for imaging and antiangiogenic therapy of gastric cancer. Eur J Pharm Biopharm 2020; 154:144-152. [PMID: 32682942 DOI: 10.1016/j.ejpb.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE The GX1 peptide (CGNSNPKSC) can specifically bind to TGM2 and possesses the ability to target the blood vessels of gastric cancer. This study intends to develop an integrated dual-functional probe with higher affinity, specificity and targeting and to characterize it in vivo and in vitro. METHODS The dimer and tetramer of GX1 were prepared using cross-linked PEG and labeled with 99mTc. The best targeting probe [PEG-(GX1)2] was selected by gamma camera imaging in nude mouse models of gastric cancer. 188Re-PEG-(GX1)2 was prepared and characterized through cell binding analysis and competitive inhibition experiments, gamma camera imaging, MTT analysis and flow cytometry, BLI, immunohistochemistry, HE staining and biochemical analysis. RESULTS PEG-(GX1)2 bound specifically to Co-HUVEC with higher affinity than GX1. 188Re-PEG-(GX1)2 had better ability to target gastric cancer in tumor-bearing nude mice and higher T/H ratios than 188Re-GX1. 188Re-PEG-(GX1)2 inhibited the growth of Co-HUVEC and induced apoptosis, and its effects were more robust than those of 188Re-GX1. BLI showed that 188Re-PEG-(GX1)2 inhibited tumor proliferation in vivo with a stronger effect than 188Re-GX1. Compared with 188Re-GX1, 188Re-PEG-(GX1)2 suppressed tumor angiogenesis and tumor cell proliferation and induced tumor cell apoptosis in vivo. The 188Re-PEG-(GX1)2 group did not cause visible changes in liver and kidney morphology and function in vivo. CONCLUSION The dimer of GX1 was synthesized by using cross-linked PEG, and then 188Re-PEG-(GX1)2 was prepared. This radiopharmaceutical played both diagnostic and therapeutic functions, and gamma camera imaging could be utilized to detect the distribution of drugs in vivo during treatment. Through a series of experiments in vitro and in vivo, the feasibility of the drug was confirmed, and these results laid the foundation for the subsequent development and application of GX1.
Collapse
Affiliation(s)
- Jipeng Yin
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China; Clinical Medical Research Center, The 75th Group Army Hospital of PLA, Dali 671003, China
| | - Bo Xin
- Department of Oncology, No. 960 Hospital of PLA, Taian 271001, China
| | - Xiaoli Hui
- First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Na Chai
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Liping Yao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Guangqing Zhou
- Clinical Medical Research Center, The 75th Group Army Hospital of PLA, Dali 671003, China
| | - Guanliang Wang
- Clinical Medical Research Center, The 75th Group Army Hospital of PLA, Dali 671003, China
| | - Liusheng Chen
- Clinical Medical Research Center, The 75th Group Army Hospital of PLA, Dali 671003, China.
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China.
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Jian Y, Zhao M, Cao J, Fan T, Bu W, Yang Y, Li W, Zhang W, Qiao Y, Wang J, Wen A. A Gastric Cancer Peptide GX1-Modified Nano-Lipid Carriers Encapsulating Paclitaxel: Design and Evaluation of Anti-Tumor Activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2355-2370. [PMID: 32606603 PMCID: PMC7297341 DOI: 10.2147/dddt.s233023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Aim The aim of this study was to develop a GX1-modified nanostructured lipid carrier (NLCs) and to evaluate its ability to improve the anti-gastric cancer tumor effects of paclitaxel (PTX). Main Methods The GX1-modified NLCs were synthesized and loaded with PTX (GX1-PTX-NLCs) by emulsion solvent evaporation technique. The anti-tumor activity and pharmacodynamics were then evaluated by in vitro cell studies and animal experiments. Key Findings The GX1-modified NLCs were successfully synthesized and confirmed by 1H NMR and MALDI-TOF-MS. PTX-loaded NLCs produced particles with average size distribution less than or equal to 222 nm and good drug loading and entrapment efficiency. In vitro studies demonstrated that GX1-PTX-NLCs had a more obvious inhibitory effect on Co-HUVEC cells than PTX and unmodified PTX-NLCs. The cellular uptake results also showed that GX1-PTX-NLCs were largely concentrated in Co-HUVEC cells, and the uptake rates of GX1-PTX-NLCs in Co-HUVEC were higher than those of the free drug and the PTX-NLC. In vivo studies demonstrated that GX1-PTX-NLCs possess strong anti-tumor effect and showed higher tumor growth inhibition and lower toxicity in nude mice. Significance These results suggest that GX1-modified NLCs enhanced the anti-tumor activity of PTX and reduced its toxicity effectively. GX1-PTX-NLCs may be considered as a potent drug delivery system for therapy of gastric cancer.
Collapse
Affiliation(s)
- Yufan Jian
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,College of Pharmacy, Shannxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,College of Pharmacy, Shannxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Wei Bu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yang Yang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Weiwei Li
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,College of Pharmacy, Shannxi University of Chinese Medicine, Xianyang 712046, People's Republic of China
| |
Collapse
|
9
|
Li Y, Zhang J, Gu J, Hu K, Huang S, Conti PS, Wu H, Chen K. Radiofluorinated GPC3-Binding Peptides for PET Imaging of Hepatocellular Carcinoma. Mol Imaging Biol 2020; 22:134-143. [PMID: 31044341 PMCID: PMC7007182 DOI: 10.1007/s11307-019-01356-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) remains one of the most challenging diseases worldwide. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed on the membrane of HCC cells. The purpose of this study was to develop a target-specific radiofluorinated peptide for positron emission tomography (PET) imaging of GPC3 expression in hepatocellular carcinoma. PROCEDURES New GPC3-binding peptides (GP2076 and GP2633) were radiolabeled with F-18 using Al[18F]F labeling approach, and the resulting PET probes were subsequently subject to biological evaluations. A highly hydrophilic linker was incorporated into GP2633 with an aim of reducing the probe uptake in liver and increasing tumor-to-liver (T/L) contrast. Both GP2076 and GP2633 were radiolabeled using Al[18F]F chelation approach. The binding affinity, octanol/water partition coefficient, cellular uptake and efflux, and stability of both F-18 labeled peptides were tested. Tumor targeting efficacy and biodistribution of Al[18F]F-GP2076 and Al[18F]F-GP2633 were determined by PET imaging in HCC-bearing mice. Immunohistochemistry analyses were performed to compare the findings from PET scans. RESULTS Al[18F]F-GP2076 and Al[18F]F-GP2633 were rapidly radiosynthesized within 20 min in excellent radiochemical purity (> 97 %). Al[18F]F-GP2633 was determined to be more hydrophilic than Al[18F]F-GP2076 in terms of octanol/water partition coefficient. Both Al[18F]F-GP2076 and Al[18F]F-GP2633 demonstrated good in vitro and in vivo stability and binding specificity to GPC3-positive HepG2 cells. For PET imaging, Al[18F]F-GP2633 exhibited enhanced uptake in HepG2 tumor (%ID/g 3.37 ± 0.35 vs. 2.13 ± 0.55, P = 0.031) and reduced accumulation in liver (%ID/g 1.70 ± 0.26 vs. 3.70 ± 0.98, P = 0.027) at 60 min post-injection (pi) as compared to Al[18F]F-GP2076, resulting in significantly improved tumor-to-liver (T/L) contrast (ratio 2.00 ± 0.18 vs. 0.59 ± 0.14, P = 0.0004). Higher uptake of Al[18F]F-GP2633 in GPC3-positive HepG2 tumor was observed as compared to GPC3-negative McA-RH7777 tumor (%ID/g 3.37 ± 0.35 vs. 1.64 ± 0.03, P = 0.001) at 60 min pi, confirming GPC3-specific accumulation of Al[18F]F-GP2633 in HepG2 tumor. CONCLUSION The results demonstrated that Al[18F]F-GP2633 is a promising probe for PET imaging of GPC3 expression in HCC. Convenient preparation, excellent GPC3 specificity in HCC, and favorable excretion profile of Al[18F]F-GP2633 warrant further investigation for clinical translation. PET imaging with a GPC3-specific probe would provide clinicians with vital diagnostic information that could have a significant impact on the management of HCC patients.
Collapse
Affiliation(s)
- Youcai Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
- PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jun Zhang
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA, 90033, USA
- Department of Nuclear Medicine, Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Jiamei Gu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Shun Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA, 90033, USA
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, China.
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA, 90033, USA.
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
10
|
Thomas G, Boudon J, Maurizi L, Moreau M, Walker P, Severin I, Oudot A, Goze C, Poty S, Vrigneaud JM, Demoisson F, Denat F, Brunotte F, Millot N. Innovative Magnetic Nanoparticles for PET/MRI Bimodal Imaging. ACS OMEGA 2019; 4:2637-2648. [PMID: 31459499 PMCID: PMC6648431 DOI: 10.1021/acsomega.8b03283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
Superparamagnetic iron oxide nanoparticles were developed as positron emission tomography (PET) and magnetic resonance imaging (MRI) bimodal imaging agents. These nanoparticles (NPs), with a specific nanoflower morphology, were first synthesized and simultaneously functionalized with 3,4-dihydroxy-l-phenylalanine (LDOPA) under continuous hydrothermal conditions. The resulting NPs exhibited a low hydrodynamic size of 90 ± 2 nm. The functional groups of LDOPA (-NH2 and -COOH) were successfully used for the grafting of molecules of interest in a second step. The nanostructures were modified by poly(ethylene glycol) (PEG) and a new macrocyclic chelator MANOTA for further 64Cu radiolabeling for PET imaging. The functionalized NPs showed promising bimodal (PET and MRI) imaging capability with high r 2 and r 2* (T 2 and T 2* relaxivities) values and good stability. They were mainly uptaken from liver and kidneys. No cytotoxicity effect was observed. These NPs appear as a good candidate for bimodal tracers in PET/MRI.
Collapse
Affiliation(s)
- Guillaume Thomas
- ICB
UMR 6303 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Julien Boudon
- ICB
UMR 6303 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Lionel Maurizi
- ICB
UMR 6303 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mathieu Moreau
- ICMUB
UMR 6302 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Paul Walker
- Département
de Spectroscopie par Résonance Magnétique, CHU Dijon, 21000 Dijon, France
| | - Isabelle Severin
- UBFC-AgrosupDijon-INSERM
U 1231, 1 Esplanade Erasme, 21000 Dijon, France
| | - Alexandra Oudot
- Plateforme
d’Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Christine Goze
- ICMUB
UMR 6302 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Sophie Poty
- ICMUB
UMR 6302 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marc Vrigneaud
- Plateforme
d’Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Fréderic Demoisson
- ICB
UMR 6303 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Franck Denat
- ICMUB
UMR 6302 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - François Brunotte
- Plateforme
d’Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Nadine Millot
- ICB
UMR 6303 CNRS-Université Bourgogne Franche-Comté, 21000 Dijon, France
- E-mail:
| |
Collapse
|
11
|
Zhang E, Xing R, Liu S, Li K, Qin Y, Yu H, Li P. Vascular targeted chitosan-derived nanoparticles as docetaxel carriers for gastric cancer therapy. Int J Biol Macromol 2018; 126:662-672. [PMID: 30599159 DOI: 10.1016/j.ijbiomac.2018.12.262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 11/19/2022]
Abstract
A gastric cancer angiogenesis marker peptide, GX1, is promising to be a desirable ligand for anti-angiogenesis targeted drug of gastric cancer treatment. In this study, GX1 was utilized to fabricate a multifunctional vascular targeting docetaxel (DCT)-loaded nanoparticle with N-deoxycholic acid glycol chitosan (DGC) as the carrier and GX1-PEG-deoxycholic acid (GPD) conjugate as the targeting ligand. The mean size of obtained GX1-DGC-DCT was 150.9 nm with a narrow size distribution and their shape was spherical with smooth surface texture. The in vitro drug release test revealed a sustained release manner and an acid pH could accelerate the release compared with the neutral pH. Furthermore, GX1-DGC-DCT showed stronger cytotoxicity against co-cultured gastric cancer cells and human umbilical vein endothelial cells (co-HUVEC) than DCT within 100 μM. In addition, GX1 efficiently enhanced the cellular uptake of nanoparticles in co-HUVEC cells as confirmed by confocal fluorescence scanning microscopy. Moreover, in vivo delivery of GX1-DGC-DCT was demonstrated to inhibit tumor growth in SGC791 tumor-bearing mice with tumor inhibition rate (TIR) of 67.05% and no weight loss of mice was observed. The anti-tumor effects were further confirmed by H&E and TUNEL analysis. Therefore, this new drug delivery system represents a potential strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Enhui Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Song Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kecheng Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yukun Qin
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
12
|
Peng L, Shang W, Guo P, He K, Wang H, Han Z, Jiang H, Tian J, Wang K, Xu W. Phage Display-Derived Peptide-Based Dual-Modality Imaging Probe for Bladder Cancer Diagnosis and Resection Postinstillation: A Preclinical Study. Mol Cancer Ther 2018; 17:2100-2111. [PMID: 30082470 DOI: 10.1158/1535-7163.mct-18-0212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/09/2018] [Accepted: 08/02/2018] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a common human malignancy. Conventional ultrasound and white-light cystoscopy are often used for bladder cancer diagnosis and resection, but insufficient specificity results in a high bladder cancer recurrence rate. New strategies for the diagnosis and resection of bladder cancer are needed. In this study, we developed a highly specific peptide-based probe for bladder cancer photoacoustic imaging (PAI) diagnosis and near-infrared (NIR)-imaging-guided resection after instillation. A bladder cancer-specific peptide (PLSWT7) was selected by in vivo phage-display technology and labeled with IRDye800CW to synthesize a bladder cancer-specific dual-modality imaging (DMI) probe (PLSWT7-DMI). The feasibility of PLSWT7-DMI-based dual-modality PAI-NIR imaging was assessed in vitro, in mouse models, and ex vivo human bladders. An air-pouch bladder cancer (APBC) model suitable for probe instillation was established to evaluate the probe-based bladder cancer PAI diagnosis and NIR-imaging-guided resection. Human bladders were used to assess whether the PLSWT7-DMI-based DMI strategy is a translatable approach for bladder cancer detection and resection. The probe exhibited excellent selectivity and specificity both in vitro and in vivo Postinstillation of the probe, tumors <3 mm were detectable by PAI, and NIR-imaging-guided tumor resection decreased the bladder cancer recurrence rate by 90% and increased the survival in the mouse model. Additionally, ex vivo NIR imaging of human bladders indicated that PLSWT7-DMI-based imaging would potentially allow precise resection of bladder cancer in clinical settings. This PLSWT7-DMI-based DMI strategy was a translatable approach for bladder cancer diagnosis and resection and could potentially lower the bladder cancer recurrence rate. Mol Cancer Ther; 17(10); 2100-11. ©2018 AACR.
Collapse
Affiliation(s)
- Li Peng
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, Heilongjiang, P.R. China
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Pengyu Guo
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, Heilongjiang, P.R. China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongzhi Wang
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, Heilongjiang, P.R. China
| | - Ziyu Han
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jiang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China.
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beihang University, Beijing, P.R. China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China.
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wanhai Xu
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China.
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
13
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
14
|
Jin Z, Wang P, Chen J, He L, Xiao L, Yong K, Deng S, Zhou L. A Tumor-Specific Tissue-Penetrating Peptide Enhances the Efficacy of Chemotherapy Drugs in Gastric Cancer. Yonsei Med J 2018; 59:595-601. [PMID: 29869457 PMCID: PMC5990678 DOI: 10.3349/ymj.2018.59.5.595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE C-end rule (CendR) peptides are found to enhance the penetration of chemotherapeutic agents into tumor cells, while GX1 is a peptide that homes to gastric cancer (GC) vasculature. This study aimed to synthesize a novel peptide GX1-RPAKPAR (GXC) and to explore the effect of GXC on sensitizing GC cells to chemotherapeutic agents. MATERIALS AND METHODS Intracellular Adriamycin concentration analysis was applied to conform whether GXC peptide increases the penetration of chemotherapeutic agents into GC cells in vitro. The effect of GXC peptide on sensitizing GC cells to chemotherapeutics was validated by apoptosis assay and in vitro/vivo drug sensitivity assay. The specificity of GXC to GC tissue was validated by ex vivo fluorescence imaging. RESULTS In vitro, administration of GXC significantly increased Adriamycin concentrations inside SGC-7901 cells, and enhanced the efficacy of chemotherapeutic agents by decreasing the IC₅₀ value. In vivo, FITC-GXC specifically accumulated in GC tissue. Moreover, systemic co-injection with GXC peptide and Adriamycin statistically improved the therapeutic efficacy in SGC-7901 xenograft models, surprisingly, without obviously increasing side effects. CONCLUSION These results demonstrated that co-administration of the novel peptide GXC with chemotherapeutic agents may be a potential way to enhance the efficacy of anticancer drugs in GC treatment.
Collapse
Affiliation(s)
- Zhian Jin
- The Second Outpatient Department of Chengdu Army Region Authority, Chengdu, China
| | - Pujie Wang
- Department of Gastroenterology, the 520th Hospital of People's Liberation Army, Mianyang, China
| | - Jie Chen
- The Second Outpatient Department of Chengdu Army Region Authority, Chengdu, China
| | - Li He
- Sichuan Province Administration of Traditional Chinese Medicine, Chengdu, China
| | - Lijia Xiao
- The Second Outpatient Department of Chengdu Army Region Authority, Chengdu, China
| | - Kaisen Yong
- The Second Outpatient Department of Chengdu Army Region Authority, Chengdu, China
| | - Shenglin Deng
- The Second Outpatient Department of Chengdu Army Region Authority, Chengdu, China
| | - Lin Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
15
|
Lei Z, Chai N, Tian M, Zhang Y, Wang G, Liu J, Tian Z, Yi X, Chen D, Li X, Yu P, Hu H, Xu B, Jian C, Bian Z, Guo H, Wang J, Peng S, Nie Y, Huang N, Hu S, Wu K. Novel peptide GX1 inhibits angiogenesis by specifically binding to transglutaminase-2 in the tumorous endothelial cells of gastric cancer. Cell Death Dis 2018; 9:579. [PMID: 29785022 PMCID: PMC5962530 DOI: 10.1038/s41419-018-0594-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 12/28/2022]
Abstract
The clinical application of GX1, an optimal gastric cancer (GC) targeting peptide, is greatly limited because its receptor in the GC vasculature is unknown. In this study, we screened the candidate receptor of GX1, transglutaminase-2(TGM2), by co-immunoprecipitation (co-IP) combined with mass spectrometry. We found that TGM2 was up-regulated in GC vascular endothelial cells and that GX1 receptor expression was suppressed correspondingly after TGM2 downregulation. A highly consistent co-localization of GX1 receptor and TGM2 was detected at both the cellular and tissue levels. High TGM2 expression was evident in GC tissues from patients with poor prognosis. After TGM2 downregulation, the GX1-mediated inhibition of proliferation and migration and the induction of the apoptosis of GC vascular endothelial cells were weakened or even reversed. Finally, we observed that GX1 could inhibit the GTP-binding activity of TGM2 by reducing its intracellular distribution and downregulating its downstream molecular targets (nuclear factor-kappa B, NF-κB; hypoxia-inducible factor 1-α, HIF1α) in GC vascular endothelial cells. Our study confirms that peptide GX1 can inhibit angiogenesis by directly binding to TGM2, subsequently reducing the GTP-binding activity of TGM2 and thereby suppressing its downstream pathway(NF-κB/HIF1α). Our conclusions suggest that GX1/TGM2 may provide a new target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhijie Lei
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Na Chai
- Department of Radiology, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Miaomiao Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Ying Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Guodong Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Jian Liu
- Department of Radiology, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Zuhong Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Xiaofang Yi
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Di Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Xiaowei Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Pengfei Yu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Hao Hu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Bing Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Chao Jian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Jinpeng Wang
- Department of Orthopedics, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Shiming Peng
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Niu Huang
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China.
| | - Sijun Hu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| |
Collapse
|
16
|
Wang X, Zhang J, Wu H, Li Y, Conti PS, Chen K. PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide. Amino Acids 2018; 50:897-907. [PMID: 29691700 DOI: 10.1007/s00726-018-2566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays a vital role in the progress of malignant disease and elevated Hsp90 expression has been reported in pancreatic cancer. In this study, we radiolabeled a dimeric Sansalvamide A derivative (Di-San A1) with 64Cu, and evaluated the feasibility of using 64Cu-Di-San A1 for PET imaging of Hsp90 expression in a mouse model of pancreatic cancer. A macrocyclic chelator NOTA (1,4,7-triazacyclononane-1,4,7-trisacetic acid) was conjugated to Di-San A1. 64Cu-Di-San A1 was successfully prepared in a radiochemical yield > 97% with a radiochemical purity > 98%. 64Cu-Di-San A1 is stable in PBS and mouse serum with > 92% of parent probe intact after 4 h incubation. The cell binding and uptake revealed that 64Cu-Di-San A1 binds to Hsp90-positive PL45 pancreatic cancer cells, and the binding can be effectively blocked by an Hsp90 inhibitor (17AAG). For microPET study, 64Cu-Di-San A1 shows good in vivo performance in terms of tumor uptake in nude mice bearing PL45 tumors. The Hsp90-specific tumor activity accumulation of 64Cu-Di-San A1 was further demonstrated by significant reduction of PL45 tumor uptake with a pre-injected blocking dose of 17AAG. The ex vivo PET imaging and biodistribution results were consistent with the quantitative analysis of PET imaging, demonstrating good tumor-to-muscle ratio (5.35 ± 0.46) of 64Cu-Di-San A1 at 4 h post-injection in PL45 tumor mouse xenografts. 64Cu-Di-San A1 allows PET imaging of Hsp90 expression in PL45 tumors, which may provide a non-invasive method to quantitatively characterize Hsp90 expression in pancreatic cancer.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.,Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jun Zhang
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hubing Wu
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China. .,General Surgery Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
17
|
Ma W, Fu F, Zhu J, Huang R, Zhu Y, Liu Z, Wang J, Conti PS, Shi X, Chen K. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. NANOSCALE 2018; 10:6113-6124. [PMID: 29547220 PMCID: PMC7473786 DOI: 10.1039/c7nr09269e] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.
Collapse
Affiliation(s)
- Wenhui Ma
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. and Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fanfan Fu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Rui Huang
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Yizhou Zhu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Zhenwei Liu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China. and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
18
|
Selection and identification of novel peptides specifically targeting human cervical cancer. Amino Acids 2018; 50:577-592. [DOI: 10.1007/s00726-018-2539-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/30/2022]
|
19
|
Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy. Biomaterials 2017; 144:188-198. [DOI: 10.1016/j.biomaterials.2017.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
|
20
|
Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces 2017; 158:507-517. [PMID: 28738290 DOI: 10.1016/j.colsurfb.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications.
Collapse
Affiliation(s)
- Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
21
|
Lu L, Qi H, Zhu J, Sun WX, Zhang B, Tang CY, Cheng Q. Vascular-homing peptides for cancer therapy. Biomed Pharmacother 2017; 92:187-195. [PMID: 28544932 DOI: 10.1016/j.biopha.2017.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
In the past 30 years, a variety of phage libraries have been extensively utilized to identify and develop tumor homing peptides (THPs). THPs specifically bind to tumor cells or elements of the tumor microenvironment while no or low affinity to normal cells. In this regard, the efficacy of therapeutic agents in cancer therapy can be enhanced by targeting strategies based on coupling with THPs that recognize receptors expressed by tumor cells or tumor vasculature. Especially, vascular-homing peptides, targeting tumor vasculature, have their receptors expressed on or around the blood vessel including pro-angiogenic factors, metalloproteinase, integrins, fibrin-fibronectin complexes, etc. This review briefly summarizes recent studies on identification and therapeutic applications of vascular-homing peptides targeting common angiogenic markers or with unknown vascular targets in some certain types of cancers. These newly discovered vascular-homing peptides are promising candidates which could provide novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China.
| | - Huan Qi
- School of Life Science and Engineering, Southwest University of Science and Technology, PR China
| | - Jie Zhu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Wen Xia Sun
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Bin Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Chun Yan Tang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China
| | - Qiang Cheng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China.
| |
Collapse
|
22
|
Wu D, Wang J, Wang H, Ji A, Li Y. Protective roles of bioactive peptides during ischemia-reperfusion injury: From bench to bedside. Life Sci 2017; 180:83-92. [PMID: 28527782 DOI: 10.1016/j.lfs.2017.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion (I/R) is a well-known pathological condition which may lead to disability and mortality. I/R injury remains an unresolved and complicated situation in a number of clinical conditions, such as cardiac arrest with successful reanimation, as well as ischemic events in brain and heart. Peptides have many attractive advantages which make them suitable candidate drugs in treating I/R injury, such as low toxicity and immunogenicity, good solubility property, distinct tissue distribution pattern, and favorable pharmacokinetic profile. An increasing number of studies indicate that peptides could protect against I/R injury in many different organs and tissues. Peptides also face several therapeutic challenges that limit their clinical application. In this review, we present the mechanisms of action of peptides in reducing I/R injury, as well as further discuss modification strategies to improve the functional properties of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Honggang Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
23
|
Abstract
Molecular imaging allows for the visualization of changes at the cellular level in diseases such as cancer. A successful molecular imaging agent must rely on disease-selective targets and ligands that specifically interact with those targets. Unfortunately, the translation of novel target-specific ligands into the clinic has been frustratingly slow with limitations including the complex design and screening approaches for ligand identification, as well as their subsequent optimization into useful imaging agents. This review focuses on combinatorial library approaches towards addressing these two challenges, with particular focus on phage display and one-bead one-compound (OBOC) libraries. Both of these peptide-based techniques have proven successful in identifying new ligands for cancer-specific targets and some of the success stories will be highlighted. New developments in screening methodology and sequencing technology have pushed the bounds of phage display and OBOC even further, allowing for even faster and more robust discovery of novel ligands. The combination of multiple high-throughput technologies will not only allow for more accurate identification, but also faster affinity maturation, while overall streamlining the process of translating novel ligands into clinical imaging agents.
Collapse
|
24
|
de Oliveira EA, Lazovic J, Guo L, Soto H, Faintuch BL, Akhtari M, Pope W. Evaluation of Magnetonanoparticles Conjugated with New Angiogenesis Peptides in Intracranial Glioma Tumors by MRI. Appl Biochem Biotechnol 2017; 183:265-279. [PMID: 28281182 DOI: 10.1007/s12010-017-2443-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/20/2017] [Indexed: 01/12/2023]
Abstract
Angiogenesis plays a critical role in progression of malignant gliomas. The development of glioma-specific labeling molecules that can aid detection and visualization of angiogenesis can help surgical planning and improve treatment outcome. The aim of this study was to evaluate if two peptides (GX1 and RGD-GX1) linked to angiogenesis can be used as an MR-imaging markers of angiogenesis. MR imaging was performed in U87 glioblastoma-bearing NOD-SCID mice at different time points between 15 and 120 min post-injection to visualize particle distribution. GX1 and RGD-GX1 exhibited the highest accumulation in U87 glioblastoma at 120 min post i.v. administration. GX1-conjugated agents lead to higher decrease in transverse relaxation time (T 2) (i.e., stronger contrast enhancement) than RGD-GX1-conjugated agents in U87 glioblastoma tumor model. In addition, we tested if U87-IDH1R132 mutated cell line had different pattern of GX1 or RGD-GX1 particle accumulation. Responses in U87-IDH1WT followed a similar pattern with GX1 contrast agents; however, lower contrast enhancement was observed with RGD-GX1 agents. The specific binding of these peptides to human glioblastoma xenograft in the brain was confirmed by magnetic resonance imaging. The contrast enhancement following injection of magnetonanoparticles conjugated to GX1 peptide matched well with CD31 staining and iron staining.
Collapse
Affiliation(s)
- Erica Aparecida de Oliveira
- Radiopharmacy Center, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes 2242, São Paulo, SP, 05508-000, Brazil. .,School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580 Bloco 17, São Paulo, SP, 05508-900, Brazil.
| | - Jelena Lazovic
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lea Guo
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Horacio Soto
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bluma Linkowski Faintuch
- Radiopharmacy Center, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes 2242, São Paulo, SP, 05508-000, Brazil
| | - Massoud Akhtari
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen school of Medicine, University of California, Los Angeles, CA, USA
| | - Whitney Pope
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Shen JM, Li XX, Fan LL, Zhou X, Han JM, Jia MK, Wu LF, Zhang XX, Chen J. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe 3O 4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma. Int J Nanomedicine 2017; 12:1183-1200. [PMID: 28243083 PMCID: PMC5315215 DOI: 10.2147/ijn.s126887] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel nanoscale molecular probe is formulated in order to reduce toxicity and side effects of antitumor drug doxorubicin (DOX) in normal tissues and to enhance the detection sensitivity during early imaging diagnosis. The mechanism involves a specific targeting of Arg-Gly-Asp peptide (RGD)-GX1 heterogeneous dimer peptide-conjugated dendrigraft poly-l-lysine (DGL)-magnetic nanoparticle (MNP) composite by αvβ3-integrin/vasculature endothelium receptor-mediated synergetic effect. The physicochemical properties of the nanoprobe were characterized by using transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering (DLS), and vibrating sample magnetometer. The average diameter of the resulting MNP-DGL-RGD-GX1-DOX nanoparticles (NPs) was ~150-160 nm by DLS under simulate physiological medium. In the present experimental system, the loading amount of DOX on NPs accounted for 414.4 mg/g for MNP-DGL-RGD-GX1-DOX. The results of cytotoxicity, flow cytometry, and cellular uptake consistently indicated that the MNP-DGL-RGD-GX1-DOX NPs were inclined to target HepG2 cells in selected three kinds of cells. In vitro exploration of molecular mechanism revealed that cell apoptosis was associated with the overexpression of Fas protein and the significant activation of caspase-3. In vivo magnetic resonance imaging and biodistribution study showed that the MNP-DGL-RGD-GX1-DOX formulation had high affinity to the tumor tissue, leading to more aggregation of NPs in the tumor. In vivo antitumor efficacy research verified that MNP-DGL-RGD-GX1-DOX NPs possessed significant antitumor activity and the tumor inhibitory rate reached 78.5%. These results suggested that NPs could be promising in application to early diagnosis and therapy in hepatocellular carcinoma as a specific nanoprobe.
Collapse
Affiliation(s)
| | | | - Lin-Lan Fan
- School of Basic Medical Sciences, Lanzhou University
| | - Xing Zhou
- The People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
26
|
Yin J, Hui X, Yao L, Li M, Hu H, Zhang J, Xin B, He M, Wang J, Nie Y, Wu K. Evaluation of Tc-99 m Labeled Dimeric GX1 Peptides for Imaging of Colorectal Cancer Vasculature. Mol Imaging Biol 2016; 17:661-70. [PMID: 25847184 DOI: 10.1007/s11307-015-0838-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to evaluate the potential of PEGylated dimeric GX1 peptide as a radiotracer for imaging of colorectal cancer vasculature in a LoVo tumor xenografted mouse model. PROCEDURES The [(99m)Tc]PEG-(GX1)2 peptide was synthesized and identified. Confocal immunofluorescence analysis, receptor binding assay, and competitive inhibition assay were performed to evaluate the binding specificity and the receptor binding affinity of PEG-(GX1)2 to Co-human umbilical vein endothelial cells (HUVECs). Single photon emission computed tomography imaging and biodistribution were performed to evaluate the targeting ability of PEG-(GX1)2 to colorectal cancer. RESULTS The studies in vitro suggested that PEG-(GX1)2 co-localized with Factor VIII in the perinuclear cytoplasm of Co-HUVECs and bound specifically to Co-HUVECs with a high affinity. The studies in vivo demonstrated that the targeting efficacy of PEG-(GX1)2 was superior to GX1. CONCLUSIONS PEGylation improved the affinity and the targeting ability of the GX1 peptide. PEG-(GX1)2 is a more promising probe for imaging of colorectal vasculature than GX1.
Collapse
Affiliation(s)
- Jipeng Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoli Hui
- First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liping Yao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Hu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Xin
- The 88th Hospital of PLA, Taian, China
| | - Minglei He
- School of Life Science, Dalian Nationalities University, Dalian, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
27
|
Dai Y, Yin J, Huang Y, Chen X, Wang G, Liu Y, Zhang X, Nie Y, Wu K, Liang J. In vivo quantifying molecular specificity of Cy5.5-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2016; 7:1149-59. [PMID: 27446643 PMCID: PMC4929628 DOI: 10.1364/boe.7.001149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 05/13/2023]
Abstract
We quantified molecular specificity of Cy5.5-GX1 in vivo with dynamic fluorescence imaging to better understand its kinetic properties. According to whether or not free GX1 was injected and when it was injected, twelve of BGC-823 xenografted mice were randomly divided into three groups and underwent a 60 minute dynamic fluorescence scanning. Combined with a principal-component analysis, the binding potential (Bp) of the probe was determined by both Logan graphical analysis with reference tissue model (GARTM) and Lammertsma simplified reference tissue model (SRTM). The sum of the pharmacokinetic rate constants (SKRC) was quantified by the Gurfinkel exponential model (GEXPM). Cy5.5-GX1 specifically targeted tumor both in vitro and in vivo. We obtained similar quantification results of Bp (GARTM Bp = 0.582 ± 0.2655, SRTM Bp = 0.618 ± 0.2923), and obtained a good linear relation between the Bp value and the SKRC value. Our results indicate that the SKRC value is more suitable for an early-stage kinetic data analysis, and the Bp value depicts kinetic characteristics under the equilibrium state. Dynamic fluorescence imaging in conjunction with various kinetic models are optimal tools to quantify molecular specificity of the Cy5.5-GX1 probe in vivo.
Collapse
Affiliation(s)
- Yunpeng Dai
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China;
| | - Guodong Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yajun Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China;
| |
Collapse
|
28
|
de Oliveira ÉA, Faintuch BL, Targino RC, Moro AM, Martinez RCR, Pagano RL, Fonoff ET, Carneiro CDG, Garcez AT, Faria DDP, Buchpiguel CA. Evaluation of GX1 and RGD-GX1 peptides as new radiotracers for angiogenesis evaluation in experimental glioma models. Amino Acids 2015; 48:821-831. [PMID: 26592499 DOI: 10.1007/s00726-015-2130-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023]
Abstract
Gliomas are the most common type among all central nervous system tumors. The aggressiveness of gliomas is correlated with the level of angiogenesis and is often associated with prognosis. The aim of this study is to evaluate the novel GX1 peptide and the heterodimer RGD-GX1 radiolabeled with technetium-99m, for angiogenesis detection in glioma models. Radiolabeling and radiochemical controls were assessed for both radioconjugates. In vitro binding studies in glioma tumor cells were performed, as well as biodistribution in SCID mice bearing tumor cells, in order to evaluate the biological behavior and tumor uptake of the radiocomplexes. Blocking and imaging studies were also conducted. MicroSPECT/CT images were acquired in animals with experimentally implanted intracranial tumor. Open field activity was performed to evaluate behavior, as well as perfusion and histology analysis. The radiochemical purity of both radiotracers was greater than 96 %. In vitro binding studies revealed rather similar binding profi le for each molecule. The highest binding was for RGD-GX1 peptide at 120 min in U87MG cells (1.14 ± 0.35 %). Tumor uptake was also favorable for RGD-GX1 peptide in U87MG cells, reaching 2.96 ± 0.70 % at 1 h p.i. with 47 % of blocking. Imaging studies also indicated better visualization for RGD-GX1 peptide in U87MG cells. Behavior evaluation pointed brain damage and histology studies confirmed actual tumor in the uptake site. The results with the angiogenesis seeking molecule (99m)Tc-HYNIC-E-[c(RGDfk)-c(GX1)] were successful, and better than with (99m)Tc-HYNIC-PEG4-c(GX1). Future studies targeting angiogenesis in other glioma and nonglioma tumor models are recommended.
Collapse
Affiliation(s)
- Érica Aparecida de Oliveira
- Radiopharmacy Center, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, Brazil. .,School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580 Bloco 17, São Paulo, 05508-900, Brazil.
| | - Bluma Linkowski Faintuch
- Radiopharmacy Center, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, Brazil
| | - Roselaine Campos Targino
- Laboratory of Biopharmacology in Animal Cells, Butantan Institute, Av. Vital Brasil, 1500, Sao Paulo, 05503-900, Brazil
| | - Ana Maria Moro
- Laboratory of Biopharmacology in Animal Cells, Butantan Institute, Av. Vital Brasil, 1500, Sao Paulo, 05503-900, Brazil
| | - Raquel Chacon Ruiz Martinez
- Laboratory of Neuromodulation and Experimental Pain, Teaching and Research Institute, Hospital Sírio-Libanês, Rua Professor Daher Cutait, 69, Sao Paulo, 01308-060, Brazil
| | - Rosana Lima Pagano
- Laboratory of Neuromodulation and Experimental Pain, Teaching and Research Institute, Hospital Sírio-Libanês, Rua Professor Daher Cutait, 69, Sao Paulo, 01308-060, Brazil
| | - Erich Talamoni Fonoff
- Laboratory of Neuromodulation and Experimental Pain, Teaching and Research Institute, Hospital Sírio-Libanês, Rua Professor Daher Cutait, 69, Sao Paulo, 01308-060, Brazil.,Division of Functional Neurosurgery, Institute of Psychiatry of Hospital das Clinicas and Department of Neurology, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, São Paulo, 01060-970, Brazil
| | - Camila de Godoi Carneiro
- Nuclear Medicine Laboratory (LIM 43), Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, s/nº-Rua 1, Sao Paulo, 05403-900, Brazil
| | - Alexandre Teles Garcez
- Nuclear Medicine Laboratory (LIM 43), Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, s/nº-Rua 1, Sao Paulo, 05403-900, Brazil
| | - Daniele de Paula Faria
- Nuclear Medicine Laboratory (LIM 43), Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, s/nº-Rua 1, Sao Paulo, 05403-900, Brazil
| | - Carlos Alberto Buchpiguel
- Nuclear Medicine Laboratory (LIM 43), Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, s/nº-Rua 1, Sao Paulo, 05403-900, Brazil
| |
Collapse
|
29
|
Du Y, Zhang Q, Jing L, Liang X, Chi C, Li Y, Yang X, Dai Z, Tian J. GX1-conjugated poly(lactic acid) nanoparticles encapsulating Endostar for improved in vivo anticolorectal cancer treatment. Int J Nanomedicine 2015; 10:3791-802. [PMID: 26060399 PMCID: PMC4454195 DOI: 10.2147/ijn.s82029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis plays a key role in tumor growth and metastasis; thus, targeting tumor-associated angiogenesis is an important goal in cancer therapy. However, the efficient delivery of drugs to tumors remains a key issue in antiangiogenesis therapy. GX1, a peptide identified by phage-display technology, is a novel tumor vasculature endothelium-specific ligand and possesses great potential as a targeted vector and antiangiogenic agent in the diagnosis and treatment of human cancers. Endostar, a novel recombinant human endostatin, has been shown to inhibit tumor angiogenesis. In this study, we developed a theranostic agent composed of GX1-conjugated poly(lactic acid) nanoparticles encapsulating Endostar (GPENs) and labeled with the near-infrared dye IRDye 800CW to improve colorectal tumor targeting and treatment efficacy in vivo. The in vivo fluorescence molecular imaging data showed that GPENs (IRDye 800CW) more specifically targeted tumors than free IRDye 800CW in colorectal tumor-bearing mice. Moreover, the antitumor efficacy was evaluated by bioluminescence imaging and immunohistology, revealing that GPENs possessed improved antitumor efficacy on subcutaneous colorectal xenografts compared to other treatment groups. Thus, our study showed that GPENs, a novel GX1 peptide guided form of nanoscale Endostar, can be used as a theranostic agent to facilitate more efficient targeted therapy and enable real-time monitoring of therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Yang Du
- Key laboratory of Molecular Imaging, The state Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qian Zhang
- Key laboratory of Molecular Imaging, The state Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lijia Jing
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing People’s Republic of China
| | - Xiaolong Liang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing People’s Republic of China
| | - Chongwei Chi
- Key laboratory of Molecular Imaging, The state Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yaqian Li
- Key laboratory of Molecular Imaging, The state Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xin Yang
- Key laboratory of Molecular Imaging, The state Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing People’s Republic of China
| | - Jie Tian
- Key laboratory of Molecular Imaging, The state Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Smith MR, Khera E, Wen F. Engineering Novel and Improved Biocatalysts by Cell Surface Display. Ind Eng Chem Res 2015; 54:4021-4032. [PMID: 29056821 PMCID: PMC5647830 DOI: 10.1021/ie504071f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biocatalysts, especially enzymes, have the ability to catalyze reactions with high product selectivity, utilize a broad range of substrates, and maintain activity at low temperature and pressure. Therefore, they represent a renewable, environmentally friendly alternative to conventional catalysts. Most current industrial-scale chemical production processes using biocatalysts employ soluble enzymes or whole cells expressing intracellular enzymes. Cell surface display systems differ by presenting heterologous enzymes extracellularly, overcoming some of the limitations associated with enzyme purification and substrate transport. Additionally, coupled with directed evolution, cell surface display is a powerful platform for engineering enzymes with enhanced properties. In this review, we will introduce the molecular and cellular principles of cell surface display and discuss how it has been applied to engineer enzymes with improved properties as well as to develop surface-engineered microbes as whole-cell biocatalysts.
Collapse
Affiliation(s)
- Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eshita Khera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Oliveira EA, Faintuch BL. Radiolabeling and biological evaluation of the GX1 and RGD-GX1 peptide sequence for angiogenesis targeting. Nucl Med Biol 2014; 42:123-30. [PMID: 25311749 DOI: 10.1016/j.nucmedbio.2014.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Aiming to develop a novel (99m)Tc-labeled imaging agent, for angiogenesis and tumor receptors, two peptides obtained from phage display library, namely GX1 and the heterodimer RGD-GX1, were synthesized in a cyclic conformation. They were radiolabeled with (99m)Tc, employing the HYNIC chelator, for radiochemical evaluation and biological properties. METHODS Radiolabeling, radiochemical control, plasma protein binding, and partition coefficient were assessed for both radioconjugates. Biodistribution in healthy Balb/c mice was carried out, in order to evaluate the biological behaviour of the radiocomplexes. RESULTS The conjugates displayed a rather similar pharmacokinetic profile. They were prepared with high radiochemical purity (>96%), and both were hydrophilic (log P of -2.25 and -2.51 respectively). Preferential renal excretion was observed. Kidney uptake (42.31±5.35 %ID/g) for (99m)Tc-HYNIC-E-[c(RGDfk)-c(GX1)], 1h post-injection was about three times higher than the uptake of (99m)Tc-HYNIC-PEG4-c(GX1) (11.92±4.77%ID/g). Total blood, bone and muscle values revealed a slightly slower clearance for the RGD-GX1 radiocomplex. CONCLUSION The high radiochemical purity achieved, and the similar in vivo profile observed for both radioconjugates, make them potential candidates for radiopharmaceuticals for tumor imaging. Further investigations of binding affinity, and uptake of GX1 and RGD-GX1 peptides in tumor models, are warranted.
Collapse
Affiliation(s)
- E A Oliveira
- Radiopharmacy, Institute of Energy and Nuclear Research, Sao Paulo, SP, Brazil, Av. Prof. Lineu Prestes, 2242 05508-000 São Paulo, SP, Brazil.
| | - B L Faintuch
- Radiopharmacy, Institute of Energy and Nuclear Research, Sao Paulo, SP, Brazil, Av. Prof. Lineu Prestes, 2242 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
32
|
68Ga-labeled cyclic NGR peptide for microPET imaging of CD13 receptor expression. Molecules 2014; 19:11600-12. [PMID: 25100253 PMCID: PMC6271277 DOI: 10.3390/molecules190811600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
Peptides containing the asparagines-glycine-arginine (NGR) motif have been identified as specific ligands binding to CD13/aminopeptidase N (APN) receptor, a tumor neovascular biomarker. In this study, we synthesized a novel NGR-containing peptide (NOTA-G3-NGR), and labeled NOTA-G3-NGR with 68Ga (t1/2 = 67.7 min). The resulting 68Ga-NOTA-G3-NGR peptide was subject to in vitro and in vivo characterization. The microPET imaging results revealed that the 68Ga-NOTA-G3-NGR peptide exhibits rapid and specific tumor uptake, and high tumor-to-background contrast in a subcutaneous HT-1080 fibrosarcoma mouse model. We concluded that the 68Ga-NOTA-G3-NGR peptide has potential in the diagnosis of CD13-targeted tumor angiogenesis.
Collapse
|
33
|
Biodistribution and SPECT imaging study of (99m)Tc labeling NGR peptide in nude mice bearing human HepG2 hepatoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:618096. [PMID: 24977153 PMCID: PMC4052532 DOI: 10.1155/2014/618096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/28/2022]
Abstract
A peptide containing Asn-Gly-Arg(NGR) sequence was synthesized and directly labeled with 99mTc. Its radiochemical characteristics, biodistribution, and SPECT imaging were evaluated in nude mice bearing human HepG2 hepatoma. Nude mice bearing HepG2 were randomly divided into 5 groups with 5 mice in each group and injected with ~7.4 MBq 99mTc-NGR. The SPECT images were acquired in 1, 4, 8, and 12 h postinjection via caudal vein. The metabolism of tracers was determined in major organs at different time points, which demonstrated rapid, significant tumor uptake and slow tumor washout. The control group mice were blocked by coinjecting unlabelled NGR (20 mg/kg). Tumor uptake was (2.52 ± 0.83%) ID/g at 1 h, with the highest uptake of (3.26 ± 0.63%) ID/g at 8 h. In comparison, the uptake of the blocked control group was (1.65 ± 0.61%) ID/g at 1 h after injection. The SPECT static images and the tumor/muscle (T/NT) value were obtained. The highest T/NT value was 7.58 ± 1.92 at 8 h. The xenografted tumor became visible at 1 h and the clearest image of the tumor was observed at 8 h. In conclusion, 99mTc-NGR can be efficiently prepared and it exhibited good properties for the potential SPECT imaging agent of tumor.
Collapse
|
34
|
Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 2014; 351:13-22. [PMID: 24836189 DOI: 10.1016/j.canlet.2014.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/31/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Conventional cancer therapies mainly focus on mass cell killing without high specificity and often cause severe side effects and toxicities. Peptides are a novel class of anticancer agents that could specifically target cancer cells with lower toxicity to normal tissues, which will offer new opportunities for cancer prevention and treatment. Anticancer peptides face several therapeutic challenges. In this review, we present the sources and mechanisms of anticancer peptides and further discuss modification strategies to improve the anticancer effects of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- College of Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Yanfeng Gao
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanming Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lixiang Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanfang Ma
- College of Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Yanzhang Li
- College of Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
35
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
36
|
Hu H, Yin J, Wang M, Liang C, Song H, Wang J, Nie Y, Liang J, Wu K. GX1 targeting delivery of rmhTNFα evaluated using multimodality imaging. Int J Pharm 2013; 461:181-91. [PMID: 24269209 DOI: 10.1016/j.ijpharm.2013.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/18/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
GX1 is a tumor targeting peptide. In this study, we evaluated the antitumor efficacy of a GX1-derived fusion toxin, GX1-rmhTNFα, and investigated its targeting efficiency and pharmacokinetics in vivo using multimodality imaging. Flow cytometry revealed a greater level of cell apoptosis induced by GX1-rmhTNFα (27.1%) compared with rmhTNFα or a saline control (13.7% and 4.7%, respectively). SPECT (single-photon emission computed tomography) demonstrated high accumulation of GX1-rmhTNFα in tumor site. Biodistribution studies indicated GX1-rmhTNFα was cleared by the liver and kidney, and the drug may not cross the blood-brain barrier. In addition, bioluminescence imaging (BLI) showed that GX1-rmhTNFα caused a satisfactory delay in tumor growth in both subcutaneous and orthotopic cancer models. Contrast-enhanced ultrasound (CEUS) and CD31 staining revealed a loss in blood perfusion and vasculature. TUNEL and Ki67 staining validated the in vivo results. Biochemical analyses revealed limited renal and hepatic toxicity of GX1-rmhTNFα. This study demonstrated that GX1-rmhTNFα is a safe and potent anticancer agent that may have great potential for the targeted therapy of gastric cancer.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Min Wang
- Department of Gastroenterology, Xi'an Children's Hospital, China
| | - Cong Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Hongping Song
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China.
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China.
| |
Collapse
|
37
|
Development of a new positron emission tomography tracer for targeting tumor angiogenesis: synthesis, small animal imaging, and radiation dosimetry. Molecules 2013; 18:5594-610. [PMID: 23676470 PMCID: PMC6270467 DOI: 10.3390/molecules18055594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET). To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c.) Lewis lung carcinoma (LLC) mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.
Collapse
|
38
|
Ma W, Kang F, Wang Z, Yang W, Li G, Ma X, Li G, Chen K, Zhang Y, Wang J. (99m)Tc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids 2013; 44:1337-45. [PMID: 23456486 DOI: 10.1007/s00726-013-1469-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/11/2013] [Indexed: 01/15/2023]
Abstract
CD13 receptor plays a critical role in tumor angiogenesis and metastasis. We therefore aimed to develop (99m)Tc-labeled monomeric and dimeric NGR-containing peptides, namely, NGR1 and NGR2, for SPECT imaging of CD13 expression in HepG2 hepatoma xenografts. Both NGR-containing monomer and dimer were synthesized and labeled with (99m)Tc. In vivo receptor specificity was demonstrated by successful blocking of tumor uptake of (99m)Tc-NGR dimer in the presence of 20 mg/kg NGR2 peptide. Western blot and immunofluorescence staining confirmed the CD13 expression in HepG2 cells. The NGR dimer showed higher binding affinity and cell uptake in vitro than the NGR-containing monomer, presumably due to a multivalency effect. (99m)Tc-Labeled monomeric and dimeric NGR-containing peptides were subjected to SPECT imaging and biodistribution studies. SPECT scans were performed in HepG2 tumor-bearing mice at 1, 4, 12, and 24 h post-injection of ~7.4 MBq tracers. The metabolism of tracers was determined in major organs at different time points after injection which demonstrated rapid, significant tumor uptake and slow tumor washout for both traces. Predominant clearance from renal and hepatic system was also observed in (99m)Tc-NGR1 and (99m)Tc-NGR2. In conclusion, monomeric and dimeric NGR peptide were developed and labeled with (99m)Tc successfully, while the high integrin avidity and long retention in tumor make (99m)Tc-NGR dimer a promising agent for tumor angiogenesis imaging.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang H, Ma C, Li R, Guo Y, He Y, Wang X, Chen Y, Hou Y. Selection and characterization of colorectal cancer cell-specific peptides. Biotechnol Lett 2013; 35:671-7. [DOI: 10.1007/s10529-013-1145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023]
|
40
|
Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, Hughes LD, Park R, Conti PS. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm 2012. [PMID: 23190134 DOI: 10.1021/mp3005676] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The NGR-containing peptides have been shown to bind specifically to CD13/aminopeptidase N (APN) receptor, one of the attractive tumor vasculature biomarkers. In this study, we evaluated (64)Cu-labeled monomeric and dimeric NGR peptides for microPET imaging of CD13 receptor expression in vivo. Western blot analysis and immunofluorescence staining were performed to identify CD13-positive and CD13-negative cell lines. NGR-containing peptides were conjugated with 1,4,7,10-tetraazadodecane-N,N',N″,N‴-tetraacetic acid (DOTA) and labeled with (64)Cu (t(1/2) = 12.7 h) in ammonium acetate buffer. The resulting monomeric ((64)Cu-DOTA-NGR1) and dimeric ((64)Cu-DOTA-NGR2) peptides were then subjected to in vitro stability, cell uptake and efflux, small animal micorPET, and biodistribution studies. In vitro studies demonstrated that CD13 receptors are overexpressed in human fibrosarcoma HT-1080 cells and negative in human colon adenocarcinoma HT-29 cells. The binding affinity of (64)Cu-DOTA-NGR2 to HT-1080 cells was measured to be within low nanomolar range and about 2-fold higher than that of (64)Cu-DOTA-NGR1. For small animal microPET studies, (64)Cu-DOTA-NGR2 displayed more favorable in vivo performance in terms of higher tumor uptake and slower tumor washout in CD13-positive HT-1080 tumor xenografts as compared to (64)Cu-DOTA-NGR1. As expected, significantly lower tumor uptake and poorer tumor/normal organ contrast were observed for both (64)Cu-DOTA-NGR1 and (64)Cu-DOTA-NGR2 in CD13-negative HT-29 tumor xenografts in comparison with those in the HT-1080 tumor xenografts. The CD13-specific tumor activity accumulation of both (64)Cu-DOTA-NGR1 and (64)Cu-DOTA-NGR2 was further demonstrated by significant reduction of tumor uptake in HT-1080 tumor xenografts with a coinjected blocking dose of cyclic NGR peptide [c(CNGRC)]. The biodistribution results were consistent with the quantitative analysis of microPET imaging. We concluded that both (64)Cu-DOTA-NGR1 and (64)Cu-DOTA-NGR2 have good and specific tumor uptake in CD13-positive HT-1080 tumor xenografts. (64)Cu-DOTA-NGR2 showed higher tumor uptake and better tumor retention than (64)Cu-DOTA-NGR1, presumably due to bivalency effect and increase in apparent molecular size. (64)Cu-DOTA-NGR2 is a promising PET probe for noninvasive detection of CD13 receptor expression in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen K, Wang X, Lin WY, Shen CKF, Yap LP, Hughes LD, Conti PS. Strain-Promoted Catalyst-Free Click Chemistry for Rapid Construction of (64)Cu-Labeled PET Imaging Probes. ACS Med Chem Lett 2012; 3:1019-23. [PMID: 24900423 DOI: 10.1021/ml300236m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022] Open
Abstract
A rapid, efficient, and catalyst-free click chemistry method for the construction of (64)Cu-labeled PET imaging probes was reported based on the strain-promoted aza-dibenzocyclooctyne ligation. This new method was exemplified in the synthesis of (64)Cu-labeled RGD peptide for PET imaging of tumor integrin αvβ3 expression in vivo. The catalyst-free click chemistry reaction proceeded with a fast rate and eliminated the contamination problem of the catalyst Cu(I) ions interfering with the (64)Cu radiolabeling procedure under the conventional Cu-catalyzed 1,3-dipolar cycloaddition condition. The new strategy is simple and robust, and the resultant (64)Cu-labeled RGD probe was obtained in an excellent yield and high specific activity. PET imaging and biodistribution studies revealed significant, specific uptake of the "click" (64)Cu-labeled RGD probe in integrin αvβ3-positive U87MG xenografts with little uptake in nontarget tissues. This new approach is versatile, which warrants a wide range of applications for highly diverse radiometalated bioconjugates for radioimaging and radiotherapy.
Collapse
Affiliation(s)
- Kai Chen
- Molecular
Imaging Center, Department
of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
United States
| | - Xinlu Wang
- Molecular
Imaging Center, Department
of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
United States
- Department of Nuclear Medicine
and PET-CT Center, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Wei-Yu Lin
- Department
of Molecular and
Medical Pharmacology, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Clifton K.-F. Shen
- Department
of Molecular and
Medical Pharmacology, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Li-Peng Yap
- Molecular
Imaging Center, Department
of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
United States
| | - Lindsey D. Hughes
- Molecular
Imaging Center, Department
of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
United States
| | - Peter S. Conti
- Molecular
Imaging Center, Department
of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
United States
| |
Collapse
|