1
|
Xu DD, Hou XY, Wang O, Wang D, Li DT, Qin SY, Lv B, Dai XM, Zhang ZJ, Wan JB, Xu FG. A four-component combination derived from Huang-Qin Decoction significantly enhances anticancer activity of irinotecan. Chin J Nat Med 2021; 19:364-375. [PMID: 33941341 DOI: 10.1016/s1875-5364(21)60034-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/30/2022]
Abstract
Huang-Qin Decoction (HQD) is a classic prescription for diarrhea in Chinese medicine treatment. Recent studies have demonstrated that HQD and its modified formulation PHY906 could ameliorate irinotecan (CPT-11) induced gastrointestinal (GI) toxicity and enhance its anticancer therapeutic efficacy. Nevertheless, which constituents in HQD are effective is still unclear so far. The study aims to screen out the key bioactive components combination from HQD that could enhance the anticancer effect of CPT-11. First, the potential bioactive constituents were obtained through system pharmacology strategy. Then the bioactivity of each constituent was investigated synthetically from the aspects of NCM460 cell migration, TNF-α release of THP-1-derived macrophage and MTT assay in HCT116 cell. The contribution of each constituent in HQD was evaluated using the bioactive index Ei, which taken the content and bioactivity into comprehensive consideration. And then, the most contributing constituents were selected out to form a key-component combination. At last, the bioefficacy of the key-component combination was validated in vitro and in vivo. As a result, a key-component combination (HB4) consisting of four compounds baicalin, baicalein, glycyrrhizic acid and wogonin was screened out. In vitro assessment indicated that HB4 could enhance the effect of CPT-11 on inhibiting cell proliferation and inducing apoptosis in HCT116. Furthermore, the in vivo study confirmed that HB4 and HQD have similar pharmacological activity and could both enhance the antitumor effect of CPT-11 in HCT116 xenograft model. Meanwhile, HB4 could also reduce the CPT-11 induced GI toxicity.
Collapse
Affiliation(s)
- Dou-Dou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Ying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Ou Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Ting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Si-Yuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Min Dai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Zun-Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Feng-Guo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Christensen TN, Langer SW, Villumsen KE, Johannesen HH, Löfgren J, Keller SH, Hansen AE, Kjaer A, Fischer BM. 18F-fluorothymidine (FLT)-PET and diffusion-weighted MRI for early response evaluation in patients with small cell lung cancer: a pilot study. Eur J Hybrid Imaging 2020; 4:2. [PMID: 34191195 PMCID: PMC8218141 DOI: 10.1186/s41824-019-0071-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is an aggressive cancer often presenting in an advanced stage and prognosis is poor. Early response evaluation may have impact on the treatment strategy. Aim We evaluated 18F-fluorothymidine-(FLT)-PET/diffusion-weighted-(DW)-MRI early after treatment start to describe biological changes during therapy, the potential of early response evaluation, and the added value of FLT-PET/DW-MRI. Methods Patients with SCLC referred for standard chemotherapy were eligible. FLT-PET/DW-MRI of the chest and brain was acquired within 14 days after treatment start. FLT-PET/DW-MRI was compared with pretreatment FDG-PET/CT. Standardized uptake value (SUV), apparent diffusion coefficient (ADC), and functional tumor volumes were measured. FDG-SUVpeak, FLT-SUVpeak, and ADCmedian; spatial distribution of aggressive areas; and voxel-by-voxel analyses were evaluated to compare the biological information derived from the three functional imaging modalities. FDG-SUVpeak, FLT-SUVpeak, and ADCmedian were also analyzed for ability to predict final treatment response. Results Twelve patients with SCLC completed FLT-PET/MRI 1–9 days after treatment start. In nine patients, pretreatment FDG-PET/CT was available for comparison. A total of 16 T-sites and 12 N-sites were identified. No brain metastases were detected. FDG-SUVpeak was 2.0–22.7 in T-sites and 5.5–17.3 in N-sites. FLT-SUVpeak was 0.6–11.5 in T-sites and 1.2–2.4 in N-sites. ADCmedian was 0.76–1.74 × 10− 3 mm2/s in T-sites and 0.88–2.09 × 10−3 mm2/s in N-sites. FLT-SUVpeak correlated with FDG-SUVpeak, and voxel-by-voxel correlation was positive, though the hottest regions were dissimilarly distributed in FLT-PET compared to FDG-PET. FLT-SUVpeak was not correlated with ADCmedian, and voxel-by-voxel analyses and spatial distribution of aggressive areas varied with no systematic relation. LT-SUVpeak was significantly lower in responding lesions than non-responding lesions (mean FLT-SUVpeak in T-sites: 1.5 vs. 5.7; p = 0.007, mean FLT-SUVpeak in N-sites: 1.6 vs. 2.2; p = 0.013). Conclusions FLT-PET and DW-MRI performed early after treatment start may add biological information in patients with SCLC. Proliferation early after treatment start measured by FLT-PET is a promising predictor for final treatment response that warrants further investigation. Trial registration Clinicaltrials.gov, NCT02995902. Registered 11 December 2014 - Retrospectively registered.
Collapse
Affiliation(s)
- Tine Nøhr Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark. .,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark.
| | - Seppo W Langer
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Engholm Villumsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Helle Hjorth Johannesen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Johan Löfgren
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Sune Høgild Keller
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Adam Espe Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,PET Centre, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| |
Collapse
|
3
|
Xu HL, Li M, Zhang RJ, Jiang HJ, Zhang MY, Li X, Wang YQ, Pan WB. Prediction of tumor biological characteristics in different colorectal cancer liver metastasis animal models using 18F-FDG and 18F-FLT. Hepatobiliary Pancreat Dis Int 2018; 17:140-148. [PMID: 29571649 DOI: 10.1016/j.hbpd.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Positron emission tomography (PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with cancer. The aim of this study was to evaluate the feasibility of 18F-fludeoxyglucose (18F-FDG) and 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET in predicting tumor biological characteristics of colorectal cancer liver metastasis. METHODS The uptake rate of 18F-FDG and 18F-FLT in SW480 and SW620 cells was measured via an in vitro cell uptake assay. The region of interest was drawn over the tumor and liver to calculate the maximum standardized uptake value ratio (tumor/liver) from PET images in liver metastasis model. The correlation between tracer uptake in liver metastases and VEGF, Ki67 and CD44 expression was evaluated by linear regression. RESULTS Compared to SW620 tumor-bearing mice, SW480 tumor-bearing mice presented a higher rate of liver metastases. The uptake rate of 18F-FDG in SW480 and SW620 cells was 6.07% ± 1.19% and 2.82% ± 0.15%, respectively (t = 4.69, P = 0.04); that of 18F-FLT was 24.81% ± 0.45% and 15.57% ± 0.66%, respectively (t = 19.99, P < 0.001). Micro-PET scan showed that all parameters of FLT were significantly higher in SW480 tumors than those in SW620 tumors. A moderate relationship was detected between metastases in the liver and 18F-FLT uptake in primary tumors (r = 0.73, P = 0.0019). 18F-FLT uptake was also positively correlated with the expression of CD44 in liver metastases (r = 0.81, P = 0.0049). CONCLUSIONS The uptake of 18F-FLT in metastatic tumor reflects different biological behaviors of colon cancer cells. 18F-FLT can be used to evaluate the metastatic potential of colorectal cancer in nude mice.
Collapse
Affiliation(s)
- Hai-Long Xu
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Man Li
- Endoscopy Center, the Third Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Rong-Jun Zhang
- Key Laboratory of Nuclear Medicine of the Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi 214063, China
| | - Hui-Jie Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Ming-Yu Zhang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xin Li
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi-Qiao Wang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wen-Bin Pan
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
4
|
Mogensen MB, Loft A, Aznar M, Axelsen T, Vainer B, Osterlind K, Kjaer A. FLT-PET for early response evaluation of colorectal cancer patients with liver metastases: a prospective study. EJNMMI Res 2017; 7:56. [PMID: 28695424 PMCID: PMC5503853 DOI: 10.1186/s13550-017-0302-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fluoro-L-thymidine (FLT) is a positron emission tomography/computed tomography (PET/CT) tracer which reflects proliferative activity in a cancer lesion. The main objective of this prospective explorative study was to evaluate whether FLT-PET can be used for the early evaluation of treatment response in colorectal cancer patients (CRC) with liver metastases. Patients with metastatic CRC having at least one measurable (>1 cm) liver metastasis receiving first-line chemotherapy were included. A FLT-PET/CT scan was performed at baseline and after the first treatment. The maximum and mean standardised uptake values (SUVmax, SUVmean) were measured. After three cycles of chemotherapy, treatment response was assessed by CT scan based on RECIST 1.1. RESULTS Thirty-nine consecutive patients were included of which 27 were evaluable. Dropout was mainly due to disease complications. Nineteen patients (70%) had a partial response, seven (26%) had stable disease and one (4%) had progressive disease. A total of 23 patients (85%) had a decrease in FLT uptake following the first treatment. The patient with progressive disease had the highest increase in FLT uptake in SUVmax. There was no correlation between the response according to RECIST and the early changes in FLT uptake measured as SUVmax (p = 0.24). CONCLUSIONS No correlation was found between early changes in FLT uptake after the first cycle of treatment and the response evaluated from subsequent CT scans. It seems unlikely that FLT-PET can be used on its own for the early response evaluation of metastatic CRC.
Collapse
Affiliation(s)
- Marie Benzon Mogensen
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Marianne Aznar
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Axelsen
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ben Vainer
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kell Osterlind
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Rapic S, Vangestel C, Verhaeghe J, Thomae D, Pauwels P, Van den Wyngaert T, Staelens S, Stroobants S. Evaluation of [ 18F]Fluorothymidine as a Biomarker for Early Therapy Response in a Mouse Model of Colorectal Cancer. Mol Imaging Biol 2017; 19:109-119. [PMID: 27324368 DOI: 10.1007/s11307-016-0974-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE In oncology, positron emission tomography imaging using dedicated tracers as biomarkers may assist in early evaluation of therapy efficacy. Using 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), we investigated the early effects of chemotherapeutic treatment on cancer cell proliferation in a BRAF-mutated colorectal cancer xenograft model. PROCEDURES Colo205 subcutaneously inoculated animals underwent 90-min dynamic imaging before and 24 h after treatment with vehicle (control), cetuximab (resistant) or irinotecan (sensitive). Total distribution volume was quantified from dynamic data, and standardized uptake values as well as tumor-to-blood ratios were calculated from static images averaged over the last 20 min. In vivo imaging data was correlated with ex vivo proliferation and thymidine metabolism proteins. RESULTS All imaging parameters showed a significant post-treatment decrease from [18F]FLT baseline uptake for the irinotecan group (p ≤ 0.001) as compared with the cetuximab and vehicle group and correlated strongly with each other (p ≤ 0.0001). In vivo data were in agreement with Ki67 staining, showing a significantly lower percentage of Ki67-positive cells in the irinotecan group as compared with other groups (p ≤ 0.0001). Tumor expression of thymidine kinase 1 phosphorylated on serine 13, thymidylate synthase, and thymidine phosphorylase remained unaffected, while thymidine kinase 1 expression was, surprisingly, significantly higher in irinotecan-treated animals (p ≤ 0.01). In contrast, tumor ATP levels were lowest in this group. CONCLUSIONS [18F]FLT positron emission tomography was found to be a suitable biomarker of early tumor response to anti-proliferative treatment, with static imaging not being inferior to full compartmental analysis in our xenograft model. The dynamics of thymidine kinase 1 protein expression and protein activity in low ATP environments merits further investigation.
Collapse
Affiliation(s)
- Sara Rapic
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - David Thomae
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium.
| |
Collapse
|
6
|
Wang X, He Y, Zhou W, Bai X, Wu Y, Wang X, Li XF. Mismatched intratumoral distribution of [ 18F] fluorodeoxyglucose and 3'-deoxy-3'-[ 18F] fluorothymidine in patients with lung cancer. Oncol Lett 2017; 14:5279-5284. [PMID: 29098026 PMCID: PMC5652252 DOI: 10.3892/ol.2017.6840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/14/2017] [Indexed: 11/25/2022] Open
Abstract
In a mouse model of human lung cancer, intratumoral distribution between 3′-deoxy-3′-[18F] fluorothymidine (18F-FLT) and [18F] fluorodeoxyglucose (18F-FDG) was mutually exclusive. 18F-FLT primarily accumulated in proliferating cancer cells, whereas 18F-FDG accumulated in hypoxic cancer cells. The aim of the present study was to evaluate these preclinical findings in patients with lung cancer. A total of 55 patients with solitary pulmonary lesion were included in the present study. Patients underwent 18F-FLT positron emission tomography-computed tomography (PET/CT) and 18F-FDG PET/CT scan with a 3-day interval. The final diagnosis was based on histological examination. Among the 55 cases, a total of 24 cases were confirmed as malignant lesions. Mismatched 18F-FLT- and 18F-FDG-accumulated regions were observed in 19 cases (79%) and matched in 5 (21%). Among the 31 benign lesions, 18F-FLT and 18F-FDG were mismatched in 12 cases (39%) and matched in 19 (61%). The difference in intratumoral distribution of 18F-FLT and 18F-FDG between malignant and benign lesions was statistically significant (P<0.05). The results of the present study indicate that a mismatch in intratumoral distribution of 18F-FLT and 18F-FDG may be a feature of patients with lung cancer. Increased 18F-FDG accumulation may serve as an indicator of tumor hypoxia, whereas regions with increased 18F-FLT uptake may be associated with an increased rate of cancer cell proliferation in patients with lung cancer.
Collapse
Affiliation(s)
- Xiangcheng Wang
- Department of Nuclear Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China.,Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yulin He
- Department of Nuclear Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Weina Zhou
- Department of Nuclear Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xia Bai
- Department of Nuclear Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yiwei Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xuemei Wang
- Department of Nuclear Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiao-Feng Li
- Department of Diagnostic Radiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,PET/CT/MRI Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, P.R. China
| |
Collapse
|
7
|
Schelhaas S, Heinzmann K, Bollineni VR, Kramer GM, Liu Y, Waterton JC, Aboagye EO, Shields AF, Soloviev D, Jacobs AH. Preclinical Applications of 3'-Deoxy-3'-[ 18F]Fluorothymidine in Oncology - A Systematic Review. Theranostics 2017; 7:40-50. [PMID: 28042315 PMCID: PMC5196884 DOI: 10.7150/thno.16676] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/16/2016] [Indexed: 11/05/2022] Open
Abstract
The positron emission tomography (PET) tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been proposed to measure cell proliferation non-invasively in vivo. Hence, it should provide valuable information for response assessment to tumor therapies. To date, [18F]FLT uptake has found limited use as a response biomarker in clinical trials in part because a better understanding is needed of the determinants of [18F]FLT uptake and therapy-induced changes of its retention in the tumor. In this systematic review of preclinical [18F]FLT studies, comprising 174 reports, we identify the factors governing [18F]FLT uptake in tumors, among which thymidine kinase 1 plays a primary role. The majority of publications (83 %) report that decreased [18F]FLT uptake reflects the effects of anticancer therapies. 144 times [18F]FLT uptake was related to changes in proliferation as determined by ex vivo analyses. Of these approaches, 77 % describe a positive relation, implying a good concordance of tracer accumulation and tumor biology. These preclinical data indicate that [18F]FLT uptake holds promise as an imaging biomarker for response assessment in clinical studies. Understanding of the parameters which influence cellular [18F]FLT uptake and retention as well as the mechanism of changes induced by therapy is essential for successful implementation of this PET tracer. Hence, our systematic review provides the background for the use of [18F]FLT in future clinical studies.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | | | - Vikram R Bollineni
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Gerbrand M Kramer
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Yan Liu
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, UK
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.; Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
8
|
Zheng J, Klinz SG, De Souza R, Fitzgerald J, Jaffray DA. Longitudinal tumor hypoxia imaging with [(18)F]FAZA-PET provides early prediction of nanoliposomal irinotecan (nal-IRI) treatment activity. EJNMMI Res 2015; 5:57. [PMID: 26481012 PMCID: PMC4610963 DOI: 10.1186/s13550-015-0135-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Background Non-invasive measurement of tumor hypoxia has demonstrated potential for the evaluation of disease progression, as well as prediction and assessment of treatment outcome. [18F]fluoroazomycin arabinoside (FAZA) positron emission tomography (PET) has been identified as a robust method for quantification of hypoxia both preclinically and clinically. The goal of this investigation was to evaluate the feasibility and value of repeated FAZA-PET imaging to quantify hypoxia in tumors that received multi-dose chemotherapy. Methods FAZA-PET imaging was conducted over a 21-day period in a mouse xenograft model of HT-29 human colorectal carcinoma, following multi-dose chemotherapy treatment with irinotecan (CPT-11) or nanoliposomal irinotecan (nal-IRI, MM-398). Results Tumors treated with 10 mg/kg nal-IRI maintained significantly lower levels of hypoxia and smaller hypoxic fractions compared to tumors that received 50 mg/kg CPT-11. Specifically, differences in FAZA uptake were detectable 9 days before any significant differences in tumor volume were observed between the treatment groups. Conclusions These findings highlight the potential use of FAZA-PET as an early marker of treatment response following multi-dose chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0135-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinzi Zheng
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, 101 College Street, Rm 7-302, Toronto, Ontario, M5G 1L7, Canada. .,Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | | | - Raquel De Souza
- Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - David A Jaffray
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, 101 College Street, Rm 7-302, Toronto, Ontario, M5G 1L7, Canada.,Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Lu R, Wu S, Zhang Y, Xia Y, Huelsmann EJ, Lacek AT, Nabatiyan A, Richards MH, Narasipura SD, Lutgen V, Chen H, Kaufman HL, Chen D, Al-Harthi L, Zloza A, Sun J. HIV infection accelerates gastrointestinal tumor outgrowth in NSG-HuPBL mice. AIDS Res Hum Retroviruses 2014; 30:677-84. [PMID: 24593860 DOI: 10.1089/aid.2013.0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HIV infection is a risk factor for the tumorigenesis including non-AIDS-defining cancers such as those of the gastrointestinal tract. However, the mechanisms underlying such cancer outgrowth are still unknown. Furthermore, combined HIV/cancer studies are difficult to evaluate using primate models or in the clinical patient setting. To understand the mechanisms of tumor outgrowth in the context of HIV infection, we adopted a humanized mouse model permissive to infection and cancer as well as an in vivo humanized mouse challenge with colon cancer in the context of HIV infection. Immunodeficient NOD SCID IL-2R(-/-) mice were immunologically reconstituted by adoptive transfer of 10(7) HIV-negative donor peripheral blood leukocytes and challenged with 10(6) HCT116 human colon cancer cells. A group of mice was treated with antiretroviral therapy. Tumor microenvironment and epithelial tissues in the context of HIV infection were analyzed using immunohistochemistry. We demonstrate that HIV-infected humanized mice develop significantly larger tumors than uninfected mice (p<0.05). Epithelial cell proliferation in HIV-infected mice is significantly enhanced in comparison to proliferation in uninfected mice (p<0.01). Moreover, the activation of β-catenin, an important step in intestinal epithelial cell proliferation and tumorigenesis, is elevated in the tumors of HIV-infected mice (p<0.0001). Importantly, antiretroviral therapy reverses these pathological processes independently of CD4(+) T cell return. These findings model the ability of HIV infection to result in tumor outgrowth that is evident in HIV-positive patients and lend insight into previously unrecognized mechanisms that may underlie this pathology.
Collapse
Affiliation(s)
- Rong Lu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Shaoping Wu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Yongguo Zhang
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York
| | - Erica J. Huelsmann
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Andrew T. Lacek
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Arman Nabatiyan
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Maureen H. Richards
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Srinivas D. Narasipura
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Victoria Lutgen
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Honglei Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Howard L. Kaufman
- Department of General Surgery, Rush University Cancer Center, Chicago, Illinois
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Lena Al-Harthi
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Andrew Zloza
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| | - Jun Sun
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
- Department of Microbiology/Immunology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
10
|
Schelhaas S, Wachsmuth L, Viel T, Honess DJ, Heinzmann K, Smith DM, Hermann S, Wagner S, Kuhlmann MT, Müller-Tidow C, Kopka K, Schober O, Schäfers M, Schneider R, Aboagye EO, Griffiths J, Faber C, Jacobs AH. Variability of Proliferation and Diffusion in Different Lung Cancer Models as Measured by 3'-Deoxy-3'-¹⁸F-Fluorothymidine PET and Diffusion-Weighted MR Imaging. J Nucl Med 2014; 55:983-8. [PMID: 24777288 DOI: 10.2967/jnumed.113.133348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/15/2014] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Molecular imaging allows the noninvasive assessment of cancer progression and response to therapy. The aim of this study was to investigate molecular and cellular determinants of 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET and diffusion-weighted (DW) MR imaging in lung carcinoma xenografts. METHODS Four lung cancer cell lines (A549, HTB56, EBC1, and H1975) were subcutaneously implanted in nude mice, and growth was followed by caliper measurements. Glucose uptake and tumor proliferation were determined by (18)F-FDG and (18)F-FLT PET, respectively. T2-weighted MR imaging was performed, and the apparent diffusion coefficient (ADC) was determined by DW MR imaging as an indicator of cell death. Imaging findings were correlated to histology with markers for tumor proliferation (Ki67, 5-bromo-2'-deoxyuridine [BrdU]) and cell death (caspase-3, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling). The expression of human equilibrative nucleoside transporter 1 (hENT1), thymidine kinase 1 (TK1), thymidylate synthase, and thymidine phosphorylase (TP) were analyzed by Western blot and immunohistochemistry. Thymidine levels were determined by liquid chromatography-mass spectrometry. RESULTS Xenografts varied with respect to in vivo growth rates. MR imaging and PET revealed intratumoral heterogeneities, which were confirmed by histology. (18)F-FLT uptake differed significantly between tumor lines, with A549 and H1975 demonstrating the highest radiotracer accumulation (A549, 8.5 ± 3.2; HTB56, 4.4 ± 0.7; EBC1, 4.4 ± 1.2; and H1975, 12.1 ± 3.5 maximal percentage injected dose per milliliter). In contrast, differences in (18)F-FDG uptake were only marginal. No clear relationship between (18)F-FLT accumulation and immunohistochemical markers for tumor proliferation (Ki67, BrdU) as well as hENT1, TK1, or TS expression was detected. However, TP was highly expressed in A549 and H1975 xenografts, which was accompanied by low tumor thymidine concentrations, suggesting that tumor thymidine levels influence (18)F-FLT uptake in the tumor models investigated. MR imaging revealed higher ADC values within proliferative regions of H1975 and A549 tumors than in HTB56 and EBC1. These ADC values were negatively correlated with cell density but not directly related to cell death. CONCLUSION A direct relationship of (18)F-FLT with proliferation or ADC with cell death might be complicated by the interplay of multiple processes at the cellular and physiologic levels in untreated tumors. This issue must be considered when using these imaging modalities in preclinical or clinical settings.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Thomas Viel
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Davina J Honess
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | - Kathrin Heinzmann
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | | | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University Hospital of Münster, Münster, Germany
| | - Klaus Kopka
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Otmar Schober
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom; and
| | - John Griffiths
- Cancer Research United Kingdom Cambridge Institute, Cambridge, United Kingdom
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
11
|
Cullinane C, Waldeck KL, Binns D, Bogatyreva E, Bradley DP, de Jong R, McArthur GA, Hicks RJ. Preclinical FLT-PET and FDG-PET imaging of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901. Nucl Med Biol 2014; 41:148-54. [DOI: 10.1016/j.nucmedbio.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/03/2023]
|
12
|
Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS One 2013; 8:e85126. [PMID: 24386456 PMCID: PMC3873431 DOI: 10.1371/journal.pone.0085126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel. Methods Invivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2. Results Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08). Conclusions Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.
Collapse
|
13
|
Combined Injection of (18)F-Fluorodeoxyglucose and 3'-Deoxy-3'-[(18)F]fluorothymidine PET Achieves More Complete Identification of Viable Lung Cancer Cells in Mice and Patients than Individual Radiopharmaceutical: A Proof-of-Concept Study. Transl Oncol 2013; 6:775-83. [PMID: 24466381 DOI: 10.1593/tlo.13577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The objective is to validate the combination of 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) and (18)F-fluorodeoxyglucose ((18)F-FDG) as a "novel" positron emission tomography (PET) tracer for better visualization of cancer cell components in solid cancers than individual radiopharmaceutical. METHODS Nude mice with subcutaneous xenografts of human non-small cell lung cancer A549 and HTB177 cells and patients with lung cancer were included. In ex vivo study, intratumoral radioactivity of (18)F-FDG, (18)F-FLT, and the cocktail of (18)F-FDG and (18)F-FLT detected by autoradiography was compared with hypoxia (by pimonidazole) and proliferation (by bromodeoxyuridine) in tumor section. In in vivo study, first, (18)F-FDG PET and (18)F-FLT PET were conducted in the same subjects (mice and patients) 10 to 14 hours apart. Second, PET scan was also performed 1 hour after one tracer injection; subsequently, the other was administered and followed the second PET scan in the mouse. Finally, (18)F-FDG and (18)F-FLT cocktail PET scan was also performed in the mouse. RESULTS When injected individually, (18)F-FDG highly accumulated in hypoxic zones and high (18)F-FLT in proliferative cancer cells. In case of cocktail injection, high radioactivity correlated with hypoxic regions and highly proliferative and normoxic regions. PET detected that intratumoral distribution of (18)F-FDG and (18)F-FLT was generally mismatched in both rodents and patients. Combination of (18)F-FLT and (18)F-FDG appeared to map more cancer tissue than single-tracer PET. CONCLUSIONS Combination of (18)F-FDG and (18)F-FLT PET imaging would give a more accurate representation of total viable tumor tissue than either tracer alone and would be a powerful imaging strategy for cancer management.
Collapse
|
14
|
Diagnostic performance of 18F-fluorothymidine PET/CT for primary colorectal cancer and its lymph node metastasis: comparison with 18F-fluorodeoxyglucose PET/CT. Eur J Nucl Med Mol Imaging 2013; 40:1223-32. [DOI: 10.1007/s00259-013-2424-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/02/2013] [Indexed: 01/04/2023]
|
15
|
Cawthorne C, Burrows N, Gieling RG, Morrow CJ, Forster D, Gregory J, Radigois M, Smigova A, Babur M, Simpson K, Hodgkinson C, Brown G, McMahon A, Dive C, Hiscock D, Wilson I, Williams KJ. [18F]-FLT positron emission tomography can be used to image the response of sensitive tumors to PI3-kinase inhibition with the novel agent GDC-0941. Mol Cancer Ther 2013; 12:819-28. [PMID: 23427298 PMCID: PMC3670082 DOI: 10.1158/1535-7163.mct-12-0905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is deregulated in a range of cancers, and several targeted inhibitors are entering the clinic. This study aimed to investigate whether the positron emission tomography tracer 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]-FLT) is suitable to mark the effect of the novel PI3K inhibitor GDC-0941, which has entered phase II clinical trial. CBA nude mice bearing U87 glioma and HCT116 colorectal xenografts were imaged at baseline with [(18)F]-FLT and at acute (18 hours) and chronic (186 hours) time points after twice-daily administration of GDC-0941 (50 mg/kg) or vehicle. Tumor uptake normalized to blood pool was calculated, and tissue was analyzed at sacrifice for PI3K pathway inhibition and thymidine kinase (TK1) expression. Uptake of [(18)F]-FLT was also assessed in tumors inducibly overexpressing a dominant-negative form of the PI3K p85 subunit p85α, as well as HCT116 liver metastases after GDC-0941 therapy. GDC-0941 treatment induced tumor stasis in U87 xenografts, whereas inhibition of HCT116 tumors was more variable. Tumor uptake of [(18)F]-FLT was significantly reduced following GDC-0941 dosing in responsive tumors at the acute time point and correlated with pharmacodynamic markers of PI3K signaling inhibition and significant reduction in TK1 expression in U87, but not HCT116, tumors. Reduction of PI3K signaling via expression of Δp85α significantly reduced tumor growth and [(18)F]-FLT uptake, as did treatment of HCT116 liver metastases with GDC-0941. These results indicate that [(18)F]-FLT is a strong candidate for the noninvasive measurement of GDC-0941 action.
Collapse
Affiliation(s)
- Christopher Cawthorne
- Wolfson Molecular Imaging Centre, School of Cancer and Enabling Sciences, The University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|