1
|
Motta-Ribeiro GC, Winkler T, Costa ELV, de Prost N, Tucci MR, Vidal Melo MF. Worsening of lung perfusion to tissue density distributions during early acute lung injury. J Appl Physiol (1985) 2023; 135:239-250. [PMID: 37289955 PMCID: PMC10393328 DOI: 10.1152/japplphysiol.00028.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Lung perfusion magnitude and distribution are essential for oxygenation and, potentially, lung inflammation and protection during acute respiratory distress syndrome (ARDS). Yet, perfusion patterns and their relationship to inflammation are unknown pre-ARDS. We aimed to assess perfusion/density ratios and spatial perfusion-density distributions and associate these to lung inflammation, during early lung injury in large animals at different physiological conditions caused by different systemic inflammation and positive end-expiratory pressure (PEEP) levels. Sheep were protectively ventilated (16-24 h) and imaged for lung density, pulmonary capillary perfusion (13Nitrogen-saline), and inflammation (18F-fluorodeoxyglucose) using positron emission and computed tomography. We studied four conditions: permissive atelectasis (PEEP = 0 cmH2O); and ARDSNet low-stretch PEEP-setting strategy with supine moderate or mild endotoxemia, and prone mild endotoxemia. Perfusion/density heterogeneity increased pre-ARDS in all groups. Perfusion redistribution to density depended on ventilation strategy and endotoxemia level, producing more atelectasis in mild than moderate endotoxemia (P = 0.010) with the oxygenation-based PEEP-setting strategy. The spatial distribution of 18F-fluorodeoxyglucose uptake was related to local Q/D (P < 0.001 for Q/D group interaction). Moderate endotoxemia yielded markedly low/zero perfusion in normal-low density lung, with 13Nitrogen-saline perfusion indicating nondependent capillary obliteration. Prone animals' perfusion was remarkably homogeneously distributed with density. Lung perfusion redistributes heterogeneously to density during pre-ARDS protective ventilation in animals. This is associated with increased inflammation, nondependent capillary obliteration, and lung derecruitment susceptibility depending on endotoxemia level and ventilation strategy.NEW & NOTEWORTHY Perfusion redistribution does not follow lung density redistribution in the first 16-24 h of systemic endotoxemia and protective tidal volume mechanical ventilation. The same oxygenation-based positive end-expiratory pressure (PEEP)-setting strategy can lead at different endotoxemia levels to different perfusion redistributions, PEEP values, and lung aerations, worsening lung biomechanical conditions. During early acute lung injury, regional perfusion-to-tissue density ratio is associated with increased neutrophilic inflammation, and susceptibility to nondependent capillary occlusion and lung derecruitment, potentially marking and/or driving lung injury.
Collapse
Affiliation(s)
- Gabriel C Motta-Ribeiro
- Biomedical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tilo Winkler
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eduardo L V Costa
- Divisão de Pneumologia, Faculdade de Medicina, Instituto do Coração (Incor), Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa do Hospital Sírio Libanês, São Paulo, Brazil
| | - Nicolas de Prost
- Hôpitaux Universitaires Henri Mondor and Université Paris Est Créteil and INSERM - Unité U955, Créteil, France
| | - Mauro R Tucci
- Divisão de Pneumologia, Faculdade de Medicina, Instituto do Coração (Incor), Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos F Vidal Melo
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
2
|
Musch G. Molecular imaging of inflammation with PET in acute and ventilator-induced lung injury. Front Physiol 2023; 14:1177717. [PMID: 37457026 PMCID: PMC10338917 DOI: 10.3389/fphys.2023.1177717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
This review focuses on methods to image acute lung inflammation with Positron Emission Tomography (PET). Four approaches are discussed that differ for biologic function of the PET reporter probe, radiotracer employed, and the specific aspect of the inflammatory response that is targeted. 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) is an enzyme substrate whose uptake is used to measure the metabolic activation of inflammatory cells during acute lung injury in the noncancerous lung. H2 15O and radiolabeled plasma proteins are inert molecules with the same physical characteristics as their nonradioactive counterparts and are used to measure edema and vascular permeability. Tagged enzyme or receptor inhibitors are used to probe expression of these targets induced by inflammatory stimuli. Lastly, cell-specific tracers are being developed to differentiate the cell types that contribute to the inflammatory response. Taken together, these methods cast PET imaging as a versatile and quantitative tool to measure inflammation in vivo noninvasively during acute and ventilator-induced lung injury.
Collapse
|
3
|
Xu D, Yang F, Chen J, Zhu T, Wang F, Xiao Y, Liang Z, Bi L, Huang G, Jiang Z, Shan H, Li D. Novel STING-targeted PET radiotracer for alert and therapeutic evaluation of acute lung injury. Acta Pharm Sin B 2022; 13:2124-2137. [DOI: 10.1016/j.apsb.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
|
4
|
Mao Y, Ma Z, Xu C, Lv Z, Dong W, Liu X. Pathogenesis of ventilator-induced lung injury: metabolomics analysis of the lung and plasma. Metabolomics 2022; 18:66. [PMID: 35925420 DOI: 10.1007/s11306-022-01914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Nowadays,the mechanical ventilation (MV) aims to rest the respiratory muscles while providing adequate gas exchange, and it has been a part of basic life support during general anesthesia as well as in critically ill patients with and without respiratory failure. However, MV itself has the potential to cause or worsen lung injury, which is also known as ventilator-induced lung injury (VILI). Thus, the early diagnosis of VILI is of great importance for the prevention and treatment of VILI. OBJECTIVE This study aimed to investigate the metabolomes in the lung and plasma of mice receiving mechanical ventilation (MV). METHODS Healthy mice were randomly assigned into control group; (2) high volume tidal (HV) group (30 ml/kg); (3) low volume tidal (LV) group (6 ml/kg). After ventilation for 4 h, mice were sacrificed and the lung tissue and plasma were collected. The lung and plasma were processed for the metabolomics analysis. We also performed histopathological examination on the lung tissue. RESULTS We detected moderate inflammatory damage with alveolar septal thickening in the HV group compared with the normal and LV groups.The metabolomics analysis results showed MV altered the metabolism which was characterized by the dysregulation of γ-amino butyric acid (GABA) system and urea cycle (desregulations in plasma and lung guanidinosuccinic acid, argininosuccinic acid, succinic acid semialdehyde and lung GABA ), Disturbance of citric acid cycle (CAC) (increased plasma glutamine and lung phosphoenol pyruvate) and redox imbalance (desregulations in plasma and/or lung ascorbic acid, chenodeoxycholic acid, uric acid, oleic acid, stearidonic acid, palmitoleic acid and docosahexaenoic acid). Moreover, the lung and plasma metabolomes were also significantly different between LV and HV groups. CONCLUSIONS Some lung and plasma metabolites related to the GABA system and urea cycle, citric acid cycle and redox balance were significantly altered, and they may be employed for the evaluation of VILI and serve as targets in the treatment of VILI.
Collapse
Affiliation(s)
- Yanfei Mao
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Zhixin Ma
- Translational Medical Institute, Shanghai University, Shanghai, 200444, China
| | - Chufan Xu
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Zhou Lv
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Wenwen Dong
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Xinru Liu
- Translational Medical Institute, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Imaging the acute respiratory distress syndrome: past, present and future. Intensive Care Med 2022; 48:995-1008. [PMID: 35833958 PMCID: PMC9281340 DOI: 10.1007/s00134-022-06809-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.
Collapse
|
6
|
Gulhane AV, Chen DL. Overview of positron emission tomography in functional imaging of the lungs for diffuse lung diseases. Br J Radiol 2022; 95:20210824. [PMID: 34752146 PMCID: PMC9153708 DOI: 10.1259/bjr.20210824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography (PET) is a quantitative molecular imaging modality increasingly used to study pulmonary disease processes and drug effects on those processes. The wide range of drugs and other entities that can be radiolabeled to study molecularly targeted processes is a major strength of PET, thus providing a noninvasive approach for obtaining molecular phenotyping information. The use of PET to monitor disease progression and treatment outcomes in DLD has been limited in clinical practice, with most of such applications occurring in the context of research investigations under clinical trials. Given the high costs and failure rates for lung drug development efforts, molecular imaging lung biomarkers are needed not only to aid these efforts but also to improve clinical characterization of these diseases beyond canonical anatomic classifications based on computed tomography. The purpose of this review article is to provide an overview of PET applications in characterizing lung disease, focusing on novel tracers that are in clinical development for DLD molecular phenotyping, and briefly address considerations for accurately quantifying lung PET signals.
Collapse
Affiliation(s)
- Avanti V Gulhane
- Department of Radiology, University of Washington School of Medicine, Seattle, United States
| | - Delphine L Chen
- Department of Radiology, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
7
|
Nakahashi S, Imai H, Shimojo N, Magata Y, Einama T, Hayakawa M, Wada T, Morimoto Y, Gando S. Effects of the Prone Position on Regional Neutrophilic Lung Inflammation According to 18F-FDG Pet in an Experimental Ventilator-Induced Lung Injury Model. Shock 2022; 57:298-308. [PMID: 34107528 DOI: 10.1097/shk.0000000000001818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Ventilator-induced lung injury (VILI) can be life-threatening and it is important to prevent the development of VILI. It remains unclear whether the prone position affects neutrophilic inflammation in the lung regions in vivo, which plays a crucial role in the pathogenesis of VILI. This study aimed to assess the relationship between the use of the prone position and the development of VILI-associated regional neutrophilic lung inflammation. Regional neutrophilic lung inflammation and lung aeration during low tidal volume mechanical ventilation were assessed using in vivo 2-deoxy-2-[(18)F] fluoro-D-glucose (18F-FDG) positron emission tomography and computed tomography in acutely experimentally injured rabbit lungs (lung injury induced by lung lavage and excessive ventilation). Direct comparisons were made among three groups: control, supine, and prone positions. After approximately 7 h, tissue-normalized 18F-FDG uptake differed significantly between the supine and prone positions (SUP: 0.038 ± 0.014 vs. PP: 0.029 ± 0.008, P = 0.038), especially in the ventral region (SUP: 0.052 ± 0.013 vs. PP: 0.026 ± 0.007, P = 0.003). The use of the prone position reduced lung inhomogeneities, which was demonstrated by the correction of the disproportionate rate of voxel gas over the given lung region. The progression of neutrophilic inflammation was affected by the interaction between the total strain (for aeration) and the inhomogeneity. The prone position is effective in slowing down the progression of VILI-associated neutrophilic inflammation. Under low-tidal-volume ventilation, the main drivers of its effect may be homogenization of lung tissue and that of mechanical forces.
Collapse
Affiliation(s)
- Susumu Nakahashi
- Department of Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Hiroshi Imai
- Department of Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Institute for Medical Photonics Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Mineji Hayakawa
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yuji Morimoto
- Division of Anesthesia and Perioperative Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
8
|
Musch G. New Frontiers in Functional and Molecular Imaging of the Acutely Injured Lung: Pathophysiological Insights and Research Applications. Front Physiol 2021; 12:762688. [PMID: 34955883 PMCID: PMC8696200 DOI: 10.3389/fphys.2021.762688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
This review focuses on the advances in the understanding of the pathophysiology of ventilator-induced and acute lung injury that have been afforded by technological development of imaging methods over the last decades. Examples of such advances include the establishment of regional lung mechanical strain as a determinant of ventilator-induced lung injury, the relationship between alveolar recruitment and overdistension, the regional vs. diffuse nature of pulmonary involvement in acute respiratory distress syndrome (ARDS), the identification of the physiological determinants of the response to recruitment interventions, and the pathophysiological significance of metabolic alterations in the acutely injured lung. Taken together, these advances portray multimodality imaging as the next frontier to both advance knowledge of the pathophysiology of these conditions and to tailor treatment to the individual patient's condition.
Collapse
Affiliation(s)
- Guido Musch
- Department of Anesthesiology and Perioperative Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
9
|
Scharffenberg M, Wittenstein J, Ran X, Zhang Y, Braune A, Theilen R, Maiello L, Benzi G, Bluth T, Kiss T, Pelosi P, Rocco PRM, Schultz MJ, Kotzerke J, Gama de Abreu M, Huhle R. Mechanical Power Correlates With Lung Inflammation Assessed by Positron-Emission Tomography in Experimental Acute Lung Injury in Pigs. Front Physiol 2021; 12:717266. [PMID: 34880770 PMCID: PMC8645956 DOI: 10.3389/fphys.2021.717266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Mechanical ventilation (MV) may initiate or worsen lung injury, so-called ventilator-induced lung injury (VILI). Although different mechanisms of VILI have been identified, research mainly focused on single ventilator parameters. The mechanical power (MP) summarizes the potentially damaging effects of different parameters in one single variable and has been shown to be associated with lung damage. However, to date, the association of MP with pulmonary neutrophilic inflammation, as assessed by positron-emission tomography (PET), has not been prospectively investigated in a model of clinically relevant ventilation settings yet. We hypothesized that the degree of neutrophilic inflammation correlates with MP. Methods: Eight female juvenile pigs were anesthetized and mechanically ventilated. Lung injury was induced by repetitive lung lavages followed by initial PET and computed tomography (CT) scans. Animals were then ventilated according to the acute respiratory distress syndrome (ARDS) network recommendations, using the lowest combinations of positive end-expiratory pressure and inspiratory oxygen fraction that allowed adequate oxygenation. Ventilator settings were checked and adjusted hourly. Physiological measurements were conducted every 6 h. Lung imaging was repeated 24 h after first PET/CT before animals were killed. Pulmonary neutrophilic inflammation was assessed by normalized uptake rate of 2-deoxy-2-[18F]fluoro-D-glucose (KiS), and its difference between the two PET/CT was calculated (ΔKiS). Lung aeration was assessed by lung CT scan. MP was calculated from the recorded pressure-volume curve. Statistics included the Wilcoxon tests and non-parametric Spearman correlation. Results: Normalized 18F-FDG uptake rate increased significantly from first to second PET/CT (p = 0.012). ΔKiS significantly correlated with median MP (ρ = 0.738, p = 0.037) and its elastic and resistive components, but neither with median peak, plateau, end-expiratory, driving, and transpulmonary driving pressures, nor respiratory rate (RR), elastance, or resistance. Lung mass and volume significantly decreased, whereas relative mass of hyper-aerated lung compartment increased after 24 h (p = 0.012, p = 0.036, and p = 0.025, respectively). Resistance and PaCO2 were significantly higher (p = 0.012 and p = 0.017, respectively), whereas RR, end-expiratory pressure, and MP were lower at 18 h compared to start of intervention. Conclusions: In this model of experimental acute lung injury in pigs, pulmonary neutrophilic inflammation evaluated by PET/CT increased after 24 h of MV, and correlated with MP.
Collapse
Affiliation(s)
- Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Xi Ran
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingying Zhang
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Anja Braune
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Raphael Theilen
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lorenzo Maiello
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giulia Benzi
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Clinical and Biological Sciences, Service of Anesthesia and Intensive Care, Ospedale di Circolo e Fondazione Macchi, University of Insubria, Varese, Italy
| | - Thomas Bluth
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Anaesthesiology, Intensive-, Pain- and Palliative Care Medicine, Radebeul Hospital, Academic Hospital of the Technische Universität Dresden, Radebeul, Germany
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus J. Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
11
|
Chen DL, Agapov E, Wu K, Engle JT, Solingapuram Sai KK, Arentson E, Spayd KJ, Moreland KT, Toth K, Byers DE, Pierce RA, Atkinson JJ, Laforest R, Gelman AE, Holtzman MJ. Selective Imaging of Lung Macrophages Using [ 11C]PBR28-Based Positron Emission Tomography. Mol Imaging Biol 2021; 23:905-913. [PMID: 34137002 DOI: 10.1007/s11307-021-01617-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE We tested whether the translocator protein (TSPO)-targeted positron emission tomography (PET) tracer, N-acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28), could distinguish macrophage dominant from neutrophilic inflammation better than 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mouse models of lung inflammation and assessed TSPO association with macrophages in lung tissue from the mouse models and in patients with chronic obstructive pulmonary disease (COPD). PROCEDURES MicroPET imaging quantified [11C]PBR28 and [18F]FDG lung uptake in wild-type (Wt) C57BL/6J or heterozygous transgenic monocyte-deficient Wt/opT mice at 49 days after Sendai virus (SeV) infection, during macrophage-dominant inflammation, and in Wt mice at 3 days after SeV infection or 24 h after endotoxin instillation during neutrophilic inflammation. Immunohistochemical staining for TSPO in macrophages and neutrophils was performed using Mac3 and Ly6G for cell identification in mouse lung sections and CD68 and neutrophil elastase (NE) in human lung sections taken from explanted lungs from patients with COPD undergoing lung transplantation and donor lungs rejected for transplantation. Differences in tracer uptake among SeV-infected, endotoxin-treated, and uninfected/untreated control mice and in TSPO staining between neutrophils and macrophage populations in human lung sections were tested using analysis of variance. RESULTS In Wt mice, [11C]PBR28 uptake (% injected dose/ml lung tissue) increased significantly with macrophage-dominant inflammation at 49 days (D49) after SeV infection compared to controls (p = <0.001) but not at 3 days (D49) after SeV infection (p = 0.167). [11C]PBR28 uptake was unchanged at 24 h after endotoxin instillation (p = 0.958). [18F]FDG uptake increased to a similar degree in D3 and D49 SeV-infected and endotoxin-treated Wt mice compared to controls with no significant difference in the degree of increase among the tested conditions. [11C]PBR28 but not [18F]FDG lung uptake at D49 post-SeV infection was attenuated in Wt/opT mice compared to Wt mice. TSPO localized predominantly to macrophages in mouse lung tissue by immunostaining, and TSPO staining intensity was significantly higher in CD68+ cells compared to neutrophils in the human lung sections. CONCLUSIONS PET imaging with [11C]PBR28 can specifically detect macrophages versus neutrophils during lung inflammation and may be a useful biomarker of macrophage accumulation in lung disease.
Collapse
Affiliation(s)
- Delphine L Chen
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Radiology, University of Washington, Seattle Cancer Care Alliance, 1144 Eastlake Ave E, # LG2-200, Seattle, WA, 98109, USA.
| | - Eugene Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacquelyn T Engle
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Elizabeth Arentson
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine J Spayd
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kirby T Moreland
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelsey Toth
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard A Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Laforest
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Hinoshita T, Ribeiro GM, Winkler T, de Prost N, Tucci MR, Costa ELV, Wellman TJ, Hashimoto S, Zeng C, Carvalho AR, Melo MFV. Inflammatory Activity in Atelectatic and Normally Aerated Regions During Early Acute Lung Injury. Acad Radiol 2020; 27:1679-1690. [PMID: 32173290 DOI: 10.1016/j.acra.2019.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES Pulmonary atelectasis presumably promotes and facilitates lung injury. However, data are limited on its direct and remote relation to inflammation. We aimed to assess regional 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) kinetics representative of inflammation in atelectatic and normally aerated regions in models of early lung injury. MATERIALS AND METHODS We studied supine sheep in four groups: Permissive Atelectasis (n = 6)-16 hours protective tidal volume (VT) and zero positive end-expiratory pressure; Mild (n = 5) and Moderate Endotoxemia (n = 6)- 20-24 hours protective ventilation and intravenous lipopolysaccharide (Mild = 2.5 and Moderate = 10.0 ng/kg/min), and Surfactant Depletion (n = 6)-saline lung lavage and 4 hours high VT. Measurements performed immediately after anesthesia induction served as controls (n = 8). Atelectasis was defined as regions of gas fraction <0.1 in transmission or computed tomography scans. 18F-FDG kinetics measured with positron emission tomography were analyzed with a three-compartment model. RESULTS 18F-FDG net uptake rate in atelectatic tissue was larger during Moderate Endotoxemia (0.0092 ± 0.0019/min) than controls (0.0051 ± 0.0014/min, p = 0.01). 18F-FDG phosphorylation rate in atelectatic tissue was larger in both endotoxemia groups (0.0287 ± 0.0075/min) than controls (0.0198 ± 0.0039/min, p = 0.05) while the 18F-FDG volume of distribution was not significantly different among groups. Additionally, normally aerated regions showed larger 18F-FDG uptake during Permissive Atelectasis (0.0031 ± 0.0005/min, p < 0.01), Mild (0.0028 ± 0.0006/min, p = 0.04), and Moderate Endotoxemia (0.0039 ± 0.0005/min, p < 0.01) than controls (0.0020 ± 0.0003/min). CONCLUSION Atelectatic regions present increased metabolic activation during moderate endotoxemia mostly due to increased 18F-FDG phosphorylation, indicative of increased cellular metabolic activation. Increased 18F-FDG uptake in normally aerated regions during permissive atelectasis suggests an injurious remote effect of atelectasis even with protective tidal volumes.
Collapse
Affiliation(s)
- Takuga Hinoshita
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA; Tokyo Medical and Dental University, Department of Intensive Care Medicine, Tokyo, Japan.
| | | | - Tilo Winkler
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA
| | - Nicolas de Prost
- Hôpital Henri Mondor, Medical Intensive Care Unit, Créteil, France
| | - Mauro R Tucci
- Hospital das Clínicas, Faculdade de Medicina, São Paulo, Brasil
| | | | | | - Soshi Hashimoto
- Kyoto Okamoto Memorial Hospital, Department of Anesthesiology, Kyoto, Japan
| | - Congli Zeng
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA; The First Affiliated Hospital, Department of Anesthesiology and Intensive Care, Zhejiang Sheng, China
| | - Alysson R Carvalho
- Carlos Chagas Filho Institute of Biophysics, Laboratory of Respiration Physiology, Rio de Janeiro, Brazil
| | - Marcos Francisco Vidal Melo
- Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St. Boston, MA
| |
Collapse
|
13
|
Dos Santos Rocha A, Fodor GH, Kassai M, Degrugilliers L, Bayat S, Petak F, Habre W. Physiologically variable ventilation reduces regional lung inflammation in a pediatric model of acute respiratory distress syndrome. Respir Res 2020; 21:288. [PMID: 33129315 PMCID: PMC7602830 DOI: 10.1186/s12931-020-01559-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Benefits of variable mechanical ventilation based on the physiological breathing pattern have been observed both in healthy and injured lungs. These benefits have not been characterized in pediatric models and the effect of this ventilation mode on regional distribution of lung inflammation also remains controversial. Here, we compare structural, molecular and functional outcomes reflecting regional inflammation between PVV and conventional pressure-controlled ventilation (PCV) in a pediatric model of healthy lungs and acute respiratory distress syndrome (ARDS). METHODS New-Zealand White rabbit pups (n = 36, 670 ± 20 g [half-width 95% confidence interval]), with healthy lungs or after induction of ARDS, were randomized to five hours of mechanical ventilation with PCV or PVV. Regional lung aeration, inflammation and perfusion were assessed using x-ray computed tomography, positron-emission tomography and single-photon emission computed tomography, respectively. Ventilation parameters, blood gases and respiratory tissue elastance were recorded hourly. RESULTS Mechanical ventilation worsened respiratory elastance in healthy and ARDS animals ventilated with PCV (11 ± 8%, 6 ± 3%, p < 0.04), however, this trend was improved by PVV (1 ± 4%, - 6 ± 2%). Animals receiving PVV presented reduced inflammation as assessed by lung normalized [18F]fluorodeoxyglucose uptake in healthy (1.49 ± 0.62 standardized uptake value, SUV) and ARDS animals (1.86 ± 0.47 SUV) compared to PCV (2.33 ± 0.775 and 2.28 ± 0.3 SUV, respectively, p < 0.05), particularly in the well and poorly aerated lung zones. No benefit of PVV could be detected on regional blood perfusion or blood gas parameters. CONCLUSIONS Variable ventilation based on a physiological respiratory pattern, compared to conventional pressure-controlled ventilation, reduced global and regional inflammation in both healthy and injured lungs of juvenile rabbits.
Collapse
Affiliation(s)
- Andre Dos Santos Rocha
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.
| | - Gergely H Fodor
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.,Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Miklos Kassai
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| | - Loic Degrugilliers
- Department of Pediatric Intensive Care, Amiens University Hospital, Amiens, France
| | - Sam Bayat
- Inserm UA7 STROBE Laboratory &, Department of Clinical Physiology, Sleep and Exercise, Grenoble University Hospital, Boulevard de La Chantourne, 38700, Grenoble, La Tronche, France
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Walid Habre
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| |
Collapse
|
14
|
Wittenstein J, Scharffenberg M, Braune A, Huhle R, Bluth T, Herzog M, Güldner A, Ball L, Simonassi F, Zeidler-Rentzsch I, Vidal Melo MF, Koch T, Rocco PRM, Pelosi P, Kotzerke J, Gama de Abreu M, Kiss T. Effects of variable versus nonvariable controlled mechanical ventilation on pulmonary inflammation in experimental acute respiratory distress syndrome in pigs. Br J Anaesth 2020; 124:430-439. [PMID: 32033744 PMCID: PMC8016484 DOI: 10.1016/j.bja.2019.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mechanical ventilation with variable tidal volumes (VT) may improve lung function and reduce ventilator-induced lung injury in experimental acute respiratory distress syndrome (ARDS). However, previous investigations were limited to less than 6 h, and control groups did not follow clinical standards. We hypothesised that 24 h of mechanical ventilation with variable VT reduces pulmonary inflammation (as reflected by neutrophil infiltration), compared with standard protective, nonvariable ventilation. METHODS Experimental ARDS was induced in 14 anaesthetised pigs with saline lung lavage followed by injurious mechanical ventilation. Pigs (n=7 per group) were randomly assigned to using variable VT or nonvariable VT modes of mechanical ventilation for 24 h. In both groups, ventilator settings including positive end-expiratory pressure and oxygen inspiratory fraction were adjusted according to the ARDS Network protocol. Pulmonary inflammation (primary endpoint) and perfusion were assessed by positron emission tomography using 2-deoxy-2-[18F]fluoro-d-glucose and 68Gallium (68Ga)-labelled microspheres, respectively. Gas exchange, respiratory mechanics, and haemodynamics were quantified. Lung aeration was determined using CT. RESULTS The specific global uptake rate of 18F-FDG increased to a similar extent regardless of mode of mechanical ventilation (median uptake for variable VT=0.016 min-1 [inter-quartile range, 0.012-0.029] compared with median uptake for nonvariable VT=0.037 min-1 [0.008-0.053]; P=0.406). Gas exchange, respiratory mechanics, haemodynamics, and lung aeration and perfusion were similar in both variable and nonvariable VT ventilatory modes. CONCLUSION In a porcine model of ARDS, 24 h of mechanical ventilation with variable VT did not attenuate pulmonary inflammation compared with standard protective mechanical ventilation with nonvariable VT.
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anja Braune
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Bluth
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz Herzog
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Güldner
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Francesca Simonassi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Ines Zeidler-Rentzsch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Orthodontics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Effects of Positive End-Expiratory Pressure and Spontaneous Breathing Activity on Regional Lung Inflammation in Experimental Acute Respiratory Distress Syndrome. Crit Care Med 2020; 47:e358-e365. [PMID: 30676338 DOI: 10.1097/ccm.0000000000003649] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To determine the impact of positive end-expiratory pressure during mechanical ventilation with and without spontaneous breathing activity on regional lung inflammation in experimental nonsevere acute respiratory distress syndrome. DESIGN Laboratory investigation. SETTING University hospital research facility. SUBJECTS Twenty-four pigs (28.1-58.2 kg). INTERVENTIONS In anesthetized animals, intrapleural pressure sensors were placed thoracoscopically in ventral, dorsal, and caudal regions of the left hemithorax. Lung injury was induced with saline lung lavage followed by injurious ventilation in supine position. During airway pressure release ventilation with low tidal volumes, positive end-expiratory pressure was set 4 cm H2O above the level to reach a positive transpulmonary pressure in caudal regions at end-expiration (best-positive end-expiratory pressure). Animals were randomly assigned to one of four groups (n = 6/group; 12 hr): 1) no spontaneous breathing activity and positive end-expiratory pressure = best-positive end-expiratory pressure - 4 cm H2O, 2) no spontaneous breathing activity and positive end-expiratory pressure = best-positive end-expiratory pressure + 4 cm H2O, 3) spontaneous breathing activity and positive end-expiratory pressure = best-positive end-expiratory pressure + 4 cm H2O, 4) spontaneous breathing activity and positive end-expiratory pressure = best-positive end-expiratory pressure - 4 cm H2O. MEASUREMENTS AND MAIN RESULTS Global lung inflammation assessed by specific [F]fluorodeoxyglucose uptake rate (median [25-75% percentiles], min) was decreased with higher compared with lower positive end-expiratory pressure both without spontaneous breathing activity (0.029 [0.027-0.030] vs 0.044 [0.041-0.065]; p = 0.004) and with spontaneous breathing activity (0.032 [0.028-0.043] vs 0.057 [0.042-0.075]; p = 0.016). Spontaneous breathing activity did not increase global lung inflammation. Lung inflammation in dorsal regions correlated with transpulmonary driving pressure from spontaneous breathing at lower (r = 0.850; p = 0.032) but not higher positive end-expiratory pressure (r = 0.018; p = 0.972). Higher positive end-expiratory pressure resulted in a more homogeneous distribution of aeration and regional transpulmonary pressures at end-expiration along the ventral-dorsal gradient, as well as a shift of the perfusion center toward dependent zones in the presence of spontaneous breathing activity. CONCLUSIONS In experimental mild-to-moderate acute respiratory distress syndrome, positive end-expiratory pressure levels that stabilize dependent lung regions reduce global lung inflammation during mechanical ventilation, independent from spontaneous breathing activity.
Collapse
|
16
|
Looking closer at acute respiratory distress syndrome: the role of advanced imaging techniques. Curr Opin Crit Care 2018; 23:30-37. [PMID: 27906709 DOI: 10.1097/mcc.0000000000000380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Advanced imaging techniques have provided invaluable insights in understanding of acute respiratory distress syndrome (ARDS) and the effect of therapeutic strategies, thanks to the possibility of gaining regional information and moving from simple 'anatomical' information to in-vivo functional imaging. RECENT FINDINGS Computed tomography (CT) led to the understanding of several ARDS mechanisms and interaction with mechanical ventilation. It is nowadays frequently part of routine diagnostic workup, often leading to treatment changes. Moreover, CT is a reference for novel techniques both in clinical and preclinical studies. Bedside transthoracic lung ultrasound allows semiquantitative regional analysis of lung aeration, identifies ARDS lung morphology and response to therapeutic maneuvers. Electrical impedance tomography is a radiation-free, functional, bedside, imaging modality which allows a real-time monitoring of regional ventilation. Finally, positron emission tomography (PET) is a functional imaging technique that allows to trace physiologic processes, by administration of a radioactive molecule. PET with FDG has been applied to patients with ARDS, thanks to its ability to track the inflammatory cells activity. SUMMARY Progresses in lung imaging are key to individualize therapy, diagnosis, and pathophysiological mechanism at play in any patient at any specified time, helping to move toward personalized medicine for ARDS.
Collapse
|
17
|
Fibrosis imaging: Current concepts and future directions. Adv Drug Deliv Rev 2017; 121:9-26. [PMID: 29108860 DOI: 10.1016/j.addr.2017.10.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis plays an important role in many different pathologies. It results from tissue injury, chronic inflammation, autoimmune reactions and genetic alterations, and it is characterized by the excessive deposition of extracellular matrix components. Biopsies are routinely employed for fibrosis diagnosis, but they suffer from several drawbacks, including their invasive nature, sampling variability and limited spatial information. To overcome these limitations, multiple different imaging tools and technologies have been evaluated over the years, including X-ray imaging, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT). These modalities can provide anatomical, functional and molecular imaging information which is useful for fibrosis diagnosis and staging, and they may also hold potential for the longitudinal assessment of therapy responses. Here, we summarize the use of non-invasive imaging techniques for monitoring fibrosis in systemic autoimmune diseases, in parenchymal organs (such as liver, kidney, lung and heart), and in desmoplastic cancers. We also discuss how imaging biomarkers can be integrated in (pre-) clinical research to individualize and improve anti-fibrotic therapies.
Collapse
|
18
|
Comparative Effects of Volutrauma and Atelectrauma on Lung Inflammation in Experimental Acute Respiratory Distress Syndrome. Crit Care Med 2017; 44:e854-65. [PMID: 27035236 DOI: 10.1097/ccm.0000000000001721] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. DESIGN Laboratory investigation. SETTING University-hospital research facility. SUBJECTS Ten pigs (five per group; 34.7-49.9 kg) INTERVENTIONS : Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and CO2 was partially removed extracorporeally. MEASUREMENTS AND MAIN RESULTS Regional lung aeration, specific [F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014-0.025] vs 0.013 min [0.010-0.014 min]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014-0.025] vs 0.011 min [0.010-0.016 min]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and increased normally as well as hyperaerated lung compartments and tidal hyperaeration. Atelectrauma yielded higher poorly and nonaerated lung compartments, and tidal recruitment. Driving pressure increased in atelectrauma. CONCLUSIONS In this model of acute respiratory distress syndrome, volutrauma promoted higher lung inflammation than atelectrauma at comparable low tidal volume and lower driving pressure, suggesting that static stress and strain are major determinants of ventilator-induced lung injury.
Collapse
|
19
|
Rodrigues RS, Bozza FA, Hanrahan CJ, Wang LM, Wu Q, Hoffman JM, Zimmerman GA, Morton KA. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nucl Med Biol 2017; 48:52-62. [PMID: 28237630 PMCID: PMC5380510 DOI: 10.1016/j.nucmedbio.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/10/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18F-fluoro-2-deoxyglucose (18F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14C-2DG uptake in activated neutrophils. METHODS Lung uptake of 18F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24h following the intraperitoneal injection of 10mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. RESULTS Significant uptake of 18F-FDG occurred by 2h following LPS, and progressively increased to 24h. Lung uptake of 18F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. CONCLUSION Systemic endotoxin-induced ALI results in very early and progressive uptake of 18F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: 18F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14C-2DG uptake in activated neutrophils. 18F-FDG PET may provide a potential mechanism for early diagnosis and therapeutic assessment of ALI/ARDS.
Collapse
Affiliation(s)
- Rosana S Rodrigues
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christopher J Hanrahan
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Li-Ming Wang
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qi Wu
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John M Hoffman
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Guy A Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, Fisk M, Groves AM, Gunn RN, Holman BF, Hutton BF, Lee S, MacNee W, Mohan D, Parr D, Subramanian D, Tal-Singer R, Thielemans K, van Beek EJR, Vass L, Wellen JW, Wilkinson I, Wilson FJ. Quantification of Lung PET Images: Challenges and Opportunities. J Nucl Med 2017; 58:201-207. [PMID: 28082432 DOI: 10.2967/jnumed.116.184796] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Collapse
Affiliation(s)
- Delphine L Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Cheriyan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gourab Choudhury
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Martin Connell
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Fisk
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Roger N Gunn
- Imanova Ltd., London, United Kingdom.,Department of Medicine, Imperial College London, London, United Kingdom
| | - Beverley F Holman
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Sarah Lee
- Medical Image Analysis Consultant, London, United Kingdom
| | - William MacNee
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Divya Mohan
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - David Parr
- University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | | | - Ruth Tal-Singer
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Edwin J R van Beek
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Vass
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy W Wellen
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts; and
| | - Ian Wilkinson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Frederick J Wilson
- Experimental Medicine Imaging, GlaxoSmithKline, Stevenage, United Kingdom
| |
Collapse
|
21
|
Abstract
Lung inflammatory diseases contribute significantly to the socioeconomic burden of disease. Yet very few new, effective therapies for respiratory disease have been approved for use. A major contributing factor is the lack of biomarkers that can accurately quantify the lung inflammatory burden and can be used to understand the contribution of lung inflammation to loss in lung function. Molecular imaging approaches can detect and quantify the recruitment and activation of specific immune cells in lung inflammation. We review the clinical techniques used to image lung inflammation, provide an overview of clinical and emerging PET techniques for quantifying lung inflammation, and discuss potential clinical applications.
Collapse
Affiliation(s)
| | - Delphine L Chen
- Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
22
|
Wellman TJ, de Prost N, Tucci M, Winkler T, Baron RM, Filipczak P, Raby B, Chu JH, Harris RS, Musch G, Dos Reis Falcao LF, Capelozzi V, Venegas JG, Vidal Melo MF. Lung Metabolic Activation as an Early Biomarker of Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity. Anesthesiology 2016; 125:992-1004. [PMID: 27611185 PMCID: PMC5096592 DOI: 10.1097/aln.0000000000001334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. The authors aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS and to assess gene expression in differentially activated regions. METHODS The authors produced ARDS in sheep with intravenous lipopolysaccharide (10 ng ⋅ kg ⋅ h) and mechanical ventilation for 20 h. Using positron emission tomography, the authors assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with NN-saline, and aeration using transmission scans. Species-specific microarray technology was used to assess regional gene expression. RESULTS Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histologic injury, suggesting its predictive value for severity of disease progression. Local time courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than nondependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. CONCLUSIONS Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets.
Collapse
Affiliation(s)
- Tyler J Wellman
- From the Departments of Anesthesia, Critical Care and Pain Medicine (T.J.W., M.T., T.W., G.M., L.F.d.R.F., J.G.V., M.F.V.M.) and Medicine (Pulmonary and Critical Care; R.S.H.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Medical Intensive Care Unit, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France (N.d.P.); Department of Medicine (Pulmonary and Critical Care) (R.M.B., P.F.) and Channing Laboratory (B.R., J.-h.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Laboratory of Histomorphometry and Lung Genomics, University of Sao Paulo, Sao Paulo, Brazil (V.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
PET imaging approaches for inflammatory lung diseases: Current concepts and future directions. Eur J Radiol 2016; 86:371-376. [PMID: 27663638 DOI: 10.1016/j.ejrad.2016.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 11/21/2022]
Abstract
Inflammatory lung disease is one of the most common clinical scenarios, and yet, it is often poorly understood. Inflammatory lung disorders, such as chronic obstructive pulmonary diseases, which are causing significant mortality and morbidity, have limited therapeutic options. Recently, new treatments have become available for pulmonary fibrosis. This review article will describe the new insights that are starting to be gained from positron emission tomography (PET) methods, by targeting molecular processes using dedicated radiotracers. Ultimately, this should aid in deriving better pathophysiological classification of these disorders, which will ultimately result in better evaluation of novel therapies.
Collapse
|
24
|
Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The "baby lung" became an adult. Intensive Care Med 2016; 42:663-673. [PMID: 26781952 DOI: 10.1007/s00134-015-4200-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
The baby lung was originally defined as the fraction of lung parenchyma that, in acute respiratory distress syndrome (ARDS), still maintains normal inflation. Its size obviously depends on ARDS severity and relates to the compliance of the respiratory system. CO2 clearance and blood oxygenation primarily occur within the baby lung. While the specific compliance suggests the intrinsic mechanical characteristics to be nearly normal, evidence from positron emission tomography suggests that at least a part of the well-aerated baby lung is inflamed. The baby lung is more a functional concept than an anatomical one; in fact, in the prone position, the baby lung "shifts" from the ventral lung regions toward the dorsal lung regions while usually increasing its size. This change is associated with better gas exchange, more homogeneously distributed trans-pulmonary forces, and a survival advantage. Positive end expiratory pressure also increases the baby lung size, both allowing better inflation of already open units and adding new pulmonary units. Viewed as surrogates of stress and strain, tidal volume and plateau pressures are better tailored to baby lung size than to ideal body weight. Although less information is available for the baby lung during spontaneous breathing efforts, the general principles regulating the safety of ventilation are also applicable under these conditions.
Collapse
Affiliation(s)
- Luciano Gattinoni
- Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy.
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - John J Marini
- Department of Medicine, University of Minnesota, Minneapolis, Saint Paul, MN, USA
| | - Antonio Pesenti
- Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care Medicine, Georg-August University of Göttingen, Göttingen, Germany
| | - Jordi Mancebo
- Servicio de Medicina Intensiva, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Insitute, Critical Care Department, St. Michael's Hospital, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, Toronto, ON, Canada
| |
Collapse
|
25
|
Wellman TJ, Winkler T, Vidal Melo MF. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary ¹⁸F-FDG Kinetics, Vascular Transit Times, and Perfusion. Ann Biomed Eng 2015; 43:2722-34. [PMID: 25940652 DOI: 10.1007/s10439-015-1327-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
¹⁸F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary ¹⁸F-FDG kinetics do not account for delays in ¹⁸F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of ¹⁸F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic ¹⁸F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n = 6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. ¹³NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of ¹⁸F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0 to 13.6 s, averaging 6.4 ± 2.9 s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on ¹³NN-PET (R² = 0.92, p < 0.001). By incorporating local vascular transports delays, this model of pulmonary ¹⁸F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation.
Collapse
Affiliation(s)
- Tyler J Wellman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
de Prost N, Sasanelli M, Deux JF, Habibi A, Razazi K, Galactéros F, Meignan M, Maître B, Brun-Buisson C, Itti E, Dessap AM. Positron Emission Tomography With 18F-Fluorodeoxyglucose in Patients With Sickle Cell Acute Chest Syndrome. Medicine (Baltimore) 2015; 94:e821. [PMID: 25950690 PMCID: PMC4602525 DOI: 10.1097/md.0000000000000821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The acute chest syndrome (ACS) is the main cause of mortality among adult patients with sickle cell disease (SCD). Its pathophysiology is still unclear. Using positron emission tomography (PET) with F-fluorodeoxyglucose [18F-fluorodeoxyglucose (F-FDG)], we explored the relationship between regional lung density and lung metabolism, as a reflection of lung neutrophilic infiltration during ACS.Patients were prospectively enrolled in a single-center study. Dual modality chest PET/computed tomography (CT) scans were performed, with F-FDG emission scans for quantification of regional F-FDG uptake and CT scans with radiocontrast agent to check for pulmonary artery thrombosis. Regional lung F-FDG uptake was quantified in ACS patients and in SCD patients without ACS (SCD non-ACS controls). Maximal (SUVmax) and mean (SUVmean) standardized uptake values were computed.Seventeen patients with ACS (mean age 28.3 ± 6.4 years) were included. None died nor required invasive mechanical ventilation. The main lung opacity on CT scans was lower lobe consolidation. Lungs of patients with ACS exhibited higher SUVmax than those of SCD non-ACS controls (2.5 [2.1-2.9] vs 0.8 [0.6-1.0]; P < 0.0001). Regional SUVmax and SUVmean was higher in lower than in upper lobes of ACS patients (P < 0.001) with a significant correlation between lung density and SUVmax (R = 0.78). SUVmean was higher in upper lobes of ACS patients than in lungs of SCD non-ACS controls (P < 0.001). Patients with SUVmax >2.5 had longer intensive care unit (ICU) stay than others (7 [6-11] vs 4 [3-6] days; P = 0.016).Lungs of patients with ACS exhibited higher F-FDG uptake than SCD non-ACS controls. Lung apices had normal aeration and lower F-FDG uptake than lung bases, but higher F-FDG uptake than lungs of SCD non-ACS controls. Patients with higher lung F-FDG uptake had longer ICU stay than others.
Collapse
Affiliation(s)
- Nicolas de Prost
- From the Assistance Publique-Hôpitaux de Paris (NP, KR, CB-B, AMD), Hôpitaux Universitaires Henri Mondor, DHU A-TVB, Service de Réanimation Médicale; UPEC-Université Paris-Est Créteil Val de Marne (NP, KR, CB-B, AMD), Faculté de Médecine de Créteil, CARMAS Research Group; UPEC-Université Paris-Est Créteil Val de Marne (MS, J-FD, AH, FG, MM, BM, EI), Faculté de Médecine de Créteil; Assistance Publique-Hôpitaux de Paris (MS, MM, EI), Hôpitaux Universitaires Henri Mondor, Service de Médecine Nucléaire; Assistance Publique-Hôpitaux de Paris (J-FD), Hôpitaux Universitaires Henri Mondor, Service de Radiologie; Assistance Publique-Hôpitaux de Paris (AH, FG), Hôpitaux Universitaires Henri Mondor, Unité des Maladies Génétiques du Globule Rouge - Service de Médecine Interne; and Assistance Publique-Hôpitaux de Paris (BM), Hôpitaux Universitaires Henri Mondor Antenne de Pneumologie, Service de Réanimation Médicale, Créteil, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Prost N, Feng Y, Wellman T, Tucci MR, Costa EL, Musch G, Winkler T, Harris RS, Venegas JG, Chao W, Vidal Melo MF. 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J Nucl Med 2014; 55:1871-7. [PMID: 25286924 DOI: 10.2967/jnumed.114.140962] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED PET with (18)F-FDG allows for noninvasive assessment of regional lung metabolism reflective of neutrophilic inflammation. This study aimed at determining during early acute lung injury whether local (18)F-FDG phosphorylation rate and volume of distribution were sensitive to the initial regional inflammatory response and whether they depended on the mechanism of injury: endotoxemia and surfactant depletion. METHODS Twelve sheep underwent homogeneous unilateral surfactant depletion (alveolar lavage) and were mechanically ventilated for 4 h (positive end-expiratory pressure, 10 cm H2O; plateau pressure, 30 cm H2O) while receiving intravenous endotoxin (lipopolysaccharide-positive [LPS+] group; n = 6) or not (lipopolysaccharide-negative group; n = 6). (18)F-FDG PET emission scans were then acquired. (18)F-FDG phosphorylation rate and distribution volume were calculated with a 4-compartment model. Lung tissue expression of inflammatory cytokines was measured using real-time quantitative reverse transcription polymerase chain reaction. RESULTS (18)F-FDG uptake increased in LPS+ (P = 0.012) and in surfactant-depleted sheep (P < 0.001). These increases were topographically heterogeneous, predominantly in dependent lung regions, and without interaction between alveolar lavage and LPS. The increase of (18)F-FDG uptake in the LPS+ group was related both to increases in the (18)F-FDG phosphorylation rate (P < 0.05) and to distribution volume (P < 0.01). (18)F-FDG distribution volume increased with infiltrating neutrophils (P < 0.001) and phosphorylation rate with the regional expression of IL-1β (P = 0.026), IL-8 (P = 0.011), and IL-10 (P = 0.023). CONCLUSION Noninvasive (18)F-FDG PET-derived parameters represent histologic and gene expression markers of early lung injury. Pulmonary metabolism assessed with (18)F-FDG PET depends on the mechanism of injury and appears to be additive for endotoxemia and surfactant depletion. (18)F-FDG PET may be a valuable imaging biomarker of early lung injury.
Collapse
Affiliation(s)
- Nicolas de Prost
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Medical Intensive Care Unit, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Yan Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tyler Wellman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mauro R Tucci
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Pulmonary Division, Cardio-pulmonary Department, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil; and
| | - Eduardo L Costa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Pulmonary Division, Cardio-pulmonary Department, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil; and
| | - Guido Musch
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - R Scott Harris
- Department of Medicine (Pulmonary and Critical Care Unit), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jose G Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Chao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Wellman TJ, Winkler T, Costa EL, Musch G, Harris RS, Zheng H, Venegas JG, Vidal Melo MF. Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep*. Crit Care Med 2014; 42:e491-500. [PMID: 24758890 PMCID: PMC4123638 DOI: 10.1097/ccm.0000000000000346] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Regional tidal lung strain may trigger local inflammation during mechanical ventilation, particularly when additional inflammatory stimuli are present. However, it is unclear whether inflammation develops proportionally to tidal strain or only above a threshold. We aimed to 1) assess the relationship between regional tidal strain and local inflammation in vivo during the early stages of lung injury in lungs with regional aeration heterogeneity comparable to that of humans and 2) determine how this strain-inflammation relationship is affected by endotoxemia. DESIGN Interventional animal study. SETTING Experimental laboratory and PET facility. SUBJECTS Eighteen 2- to 4-month-old sheep. INTERVENTIONS Three groups of sheep (n = 6) were mechanically ventilated to the same plateau pressure (30-32 cm H2O) with high-strain (VT = 18.2 ± 6.5 mL/kg, positive end-expiratory pressure = 0), high-strain plus IV lipopolysaccharide (VT = 18.4 ± 4.2 mL/kg, positive end-expiratory pressure = 0), or low-strain plus lipopolysaccharide (VT = 8.1 ± 0.2 mL/kg, positive end-expiratory pressure = 17 ± 3 cm H2O). At baseline, we acquired respiratory-gated PET scans of inhaled NN to measure tidal strain from end-expiratory and end-inspiratory images in six regions of interest. After 3 hours of mechanical ventilation, dynamic [F]fluoro-2-deoxy-D-glucose scans were acquired to quantify metabolic activation, indicating local neutrophilic inflammation, in the same regions of interest. MEASUREMENTS AND MAIN RESULTS Baseline regional tidal strain had a significant effect on [F]fluoro-2-deoxy-D-glucose net uptake rate Ki in high-strain lipopolysaccharide (p = 0.036) and on phosphorylation rate k3 in high-strain (p = 0.027) and high-strain lipopolysaccharide (p = 0.004). Lipopolysaccharide exposure increased the k3-tidal strain slope three-fold (p = 0.009), without significant lung edema. The low-strain lipopolysaccharide group showed lower baseline regional tidal strain (0.33 ± 0.17) than high-strain (1.21 ± 0.62; p < 0.001) or high-strain lipopolysaccharide (1.26 ± 0.44; p < 0.001) and lower k3 (p < 0.001) and Ki (p < 0.05) than high-strain lipopolysaccharide. CONCLUSIONS Local inflammation develops proportionally to regional tidal strain during early lung injury. The regional inflammatory effect of strain is greatly amplified by IV lipopolysaccharide. Tidal strain enhances local [F]fluoro-2-deoxy-D-glucose uptake primarily by increasing the rate of intracellular [F]fluoro-2-deoxy-D-glucose phosphorylation.
Collapse
Affiliation(s)
- Tyler J. Wellman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eduardo L.V. Costa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Guido Musch
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - R. Scott Harris
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcos F. Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Early inflammation mainly affects normally and poorly aerated lung in experimental ventilator-induced lung injury*. Crit Care Med 2014; 42:e279-87. [PMID: 24448197 DOI: 10.1097/ccm.0000000000000161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The common denominator in most forms of ventilator-induced lung injury is an intense inflammatory response mediated by neutrophils. PET with [(18)F]fluoro-2-deoxy-D-glucose can be used to image cellular metabolism, which, during lung inflammatory processes, mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. The aim of this study was to assess the location and magnitude of lung inflammation using PET imaging of [(18)F]fluoro-2-deoxy-D-glucose in a porcine experimental model of early acute respiratory distress syndrome. DESIGN Prospective laboratory investigation. SETTING A university animal research laboratory. SUBJECTS Seven piglets submitted to experimental ventilator-induced lung injury and five healthy controls. INTERVENTIONS Lung injury was induced by lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. All animals were subsequently studied with dynamic PET imaging of [(18)F]fluoro-2-deoxy-D-glucose. CT scans were acquired at end expiration and end inspiration. MEASUREMENTS AND MAIN RESULTS [(18)F]fluoro-2-deoxy-D-glucose uptake rate was computed for the whole lung, four isogravitational regions, and regions grouping voxels with similar density. Global and intermediate gravitational zones [(18)F]fluoro-2-deoxy-D-glucose uptakes were higher in ventilator-induced lung injury piglets compared with controls animals. Uptake of normally and poorly aerated regions was also higher in ventilator-induced lung injury piglets compared with control piglets, whereas regions suffering tidal recruitment or tidal hyperinflation had [(18)F]fluoro-2-deoxy-D-glucose uptakes similar to controls. CONCLUSIONS The present findings suggest that normally and poorly aerated regions--corresponding to intermediate gravitational zones--are the primary targets of the inflammatory process accompanying early experimental ventilator-induced lung injury. This may be attributed to the small volume of the aerated lung, which receives most of ventilation.
Collapse
|
30
|
Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology 2014; 120:683-93. [PMID: 24051392 DOI: 10.1097/01.anes.0000435742.04859.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute lung injury occurs in a third of patients with smoke inhalation injury. Its clinical manifestations usually do not appear until 48-72 h after inhalation. Identifying inflammatory changes that occur in pulmonary parenchyma earlier than that could provide insight into the pathogenesis of smoke-induced acute lung injury. Furthermore, noninvasive measurement of such changes might lead to earlier diagnosis and treatment. Because glucose is the main source of energy for pulmonary inflammatory cells, the authors hypothesized that its pulmonary metabolism is increased shortly after smoke inhalation, when classic manifestations of acute lung injury are not yet expected. METHODS In five sheep, the authors induced unilateral injury with 48 breaths of cotton smoke while the contralateral lung served as control. The authors used positron emission tomography with: (1) [F]fluorodeoxyglucose to measure metabolic activity of pulmonary inflammatory cells; and (2) [N]nitrogen in saline to measure shunt and ventilation-perfusion distributions separately in the smoke-exposed and control lungs. RESULTS The pulmonary [F]fluorodeoxyglucose uptake rate was increased at 4 h after smoke inhalation (mean ± SD: 0.0031 ± 0.0013 vs. 0.0026 ± 0.0010 min; P < 0.05) mainly as a result of increased glucose phosphorylation. At this stage, there was no worsening in lung aeration or shunt. However, there was a shift of perfusion toward units with lower ventilation-to-perfusion ratio (mean ratio ± SD: 0.82 ± 0.10 vs. 1.12 ± 0.02; P < 0.05) and increased heterogeneity of the ventilation-perfusion distribution (mean ± SD: 0.21 ± 0.07 vs. 0.13 ± 0.01; P < 0 .05). CONCLUSION Using noninvasive imaging, the authors demonstrated that increased pulmonary [F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch occur early after smoke inhalation.
Collapse
|
31
|
de Prost N, Vidal Melo MF. Lung metabolism during ventilator-induced lung injury: stretching the relevance of the normally aerated lung*. Crit Care Med 2014; 42:1010-2. [PMID: 24633113 PMCID: PMC4100582 DOI: 10.1097/ccm.0000000000000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nicolas de Prost
- Service de Réanimation Médicale,
Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris,
Créteil, France
- Department of Anesthesia, Critical Care and Pain Medicine,
Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marcos F. Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine,
Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
32
|
Vincent JL. Dynamics of Regional Lung Inflammation: New Questions and Answers Using PET. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2014 2014. [PMCID: PMC7176157 DOI: 10.1007/978-3-319-03746-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The meaning of the term ‘inflammation’ has undergone considerable evolution. It was originally defined around the year 25 A.D. by Aulus Cornelius Celsus [1] and described the body’s acute reaction following a traumatic event, such as a microscopic tear of a ligament or muscle. His original wording: “Notae vero inflammationis sunt quatour: rubor et tumor cum calore et dolore” (true signs of inflammation are four: redness and swelling with heat and pain) still holds. Disturbance of function (functio laesa) is the legendary fifth cardinal sign of inflammation and was added by Galen in the second century A.D. [2]. Recent articles [3] highlight the complicated role that inflammation plays in chronic illnesses, including metabolic, cardiovascular and neurodegenerative diseases. In addition to these difficult-to-treat diseases, more research and research tools are needed to illuminate therapeutic strategies in another difficulty-to-treat inflammatory malady, the acute respiratory distress syndrome (ARDS).
Collapse
|
33
|
Chen DL, Wang X, Yamamoto S, Carpenter D, Engle JT, Li W, Lin X, Kreisel D, Krupnick AS, Huang HJ, Gelman AE. Increased T cell glucose uptake reflects acute rejection in lung grafts. Am J Transplant 2013; 13:2540-9. [PMID: 23927673 PMCID: PMC3956601 DOI: 10.1111/ajt.12389] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/30/2013] [Accepted: 06/15/2013] [Indexed: 01/25/2023]
Abstract
Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [(18)F]fluorodeoxyglucose ([(18)F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [(18)F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [(18)F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8(+) T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen-presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients.
Collapse
Affiliation(s)
- Delphine L. Chen
- Department of Radiology, Washington University School of Medicine,
St. Louis, MO 63110 USA,Address correspondence to either: Delphine L. Chen, Division of
Radiological Sciences and Nuclear Medicine, Washington University School of
Medicine, Box 8223, 510 S. Kingshighway Blvd., St. Louis, MO 63110
or Andrew E. Gelman, Division of
Cardiothoracic Surgery, Washington University School of Medicine, Box 8234, 660
S. Euclid Ave., St. Louis, MO 63110
| | - Xingan Wang
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Sumiharu Yamamoto
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Danielle Carpenter
- Department of Pathology & Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Jacquelyn T. Engle
- Department of Radiology, Washington University School of Medicine,
St. Louis, MO 63110 USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Xue Lin
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA,Department of Pathology & Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Alexander S. Krupnick
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Howard J. Huang
- Department of Medicine, Washington University School of Medicine,
St. Louis, MO 63110 USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA,Department of Pathology & Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA,Address correspondence to either: Delphine L. Chen, Division of
Radiological Sciences and Nuclear Medicine, Washington University School of
Medicine, Box 8223, 510 S. Kingshighway Blvd., St. Louis, MO 63110
or Andrew E. Gelman, Division of
Cardiothoracic Surgery, Washington University School of Medicine, Box 8234, 660
S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
34
|
Regional lung derecruitment and inflammation during 16 hours of mechanical ventilation in supine healthy sheep. Anesthesiology 2013; 119:156-65. [PMID: 23535501 DOI: 10.1097/aln.0b013e31829083b8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Lung derecruitment is common during general anesthesia. Mechanical ventilation with physiological tidal volumes could magnify derecruitment, and produce lung dysfunction and inflammation. The authors used positron emission tomography to study the process of derecruitment in normal lungs ventilated for 16 h and the corresponding changes in regional lung perfusion and inflammation. METHODS Six anesthetized supine sheep were ventilated with VT=8 ml/kg and positive end-expiratory pressure=0. Transmission scans were performed at 2-h intervals to assess regional aeration. Emission scans were acquired at baseline and after 16 h for the following tracers: (1) F-fluorodeoxyglucose to evaluate lung inflammation and (2) NN to calculate regional perfusion and shunt fraction. RESULTS Gas fraction decreased from baseline to 16 h in dorsal (0.31±0.13 to 0.14±0.12, P<0.01), but not in ventral regions (0.61±0.03 to 0.63±0.07, P=nonsignificant), with time constants of 1.5-44.6 h. Although the vertical distribution of relative perfusion did not change from baseline to 16 h, shunt increased in dorsal regions (0.34±0.23 to 0.63±0.35, P<0.01). The average pulmonary net F-fluorodeoxyglucose uptake rate in six regions of interest along the ventral-dorsal direction increased from 3.4±1.4 at baseline to 4.1±1.5 10(-3)/min after 16 h (P<0.01), and the corresponding average regions of interest F-fluorodeoxyglucose phosphorylation rate increased from 2.0±0.2 to 2.5±0.2 10(-2)/min (P<0.01). CONCLUSIONS When normal lungs are mechanically ventilated without positive end-expiratory pressure, loss of aeration occurs continuously for several hours and is preferentially localized to dorsal regions. Progressive lung derecruitment was associated with increased regional shunt, implying an insufficient hypoxic pulmonary vasoconstriction. The increased pulmonary net uptake and phosphorylation rates of F-fluorodeoxyglucose suggest an incipient inflammation in these initially normal lungs.
Collapse
|
35
|
de Prost N, Costa EL, Wellman T, Musch G, Tucci MR, Winkler T, Harris R, Venegas JG, Kavanagh BP, Vidal Melo MF. Effects of ventilation strategy on distribution of lung inflammatory cell activity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R175. [PMID: 23947920 PMCID: PMC4056777 DOI: 10.1186/cc12854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/15/2013] [Indexed: 01/22/2023]
Abstract
Introduction Leukocyte infiltration is central to the development of acute lung injury, but it is not known how mechanical ventilation strategy alters the distribution or activation of inflammatory cells. We explored how protective (vs. injurious) ventilation alters the magnitude and distribution of lung leukocyte activation following systemic endotoxin administration. Methods Anesthetized sheep received intravenous endotoxin (10 ng/kg/min) followed by 2 h of either injurious or protective mechanical ventilation (n = 6 per group). We used positron emission tomography to obtain images of regional perfusion and shunting with infused 13N[nitrogen]-saline and images of neutrophilic inflammation with 18F-fluorodeoxyglucose (18F-FDG). The Sokoloff model was used to quantify 18F-FDG uptake (Ki), as well as its components: the phosphorylation rate (k3, a surrogate of hexokinase activity) and the distribution volume of 18F-FDG (Fe) as a fraction of lung volume (Ki = Fe × k3). Regional gas fractions (fgas) were assessed by examining transmission scans. Results Before endotoxin administration, protective (vs. injurious) ventilation was associated with a higher ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) (351 ± 117 vs. 255 ± 74 mmHg; P < 0.01) and higher whole-lung fgas (0.71 ± 0.12 vs. 0.48 ± 0.08; P = 0.004), as well as, in dependent regions, lower shunt fractions. Following 2 h of endotoxemia, PaO2/FiO2 ratios decreased in both groups, but more so with injurious ventilation, which also increased the shunt fraction in dependent lung. Protective ventilation resulted in less nonaerated lung (20-fold; P < 0.01) and more normally aerated lung (14-fold; P < 0.01). Ki was lower during protective (vs. injurious) ventilation, especially in dependent lung regions (0.0075 ± 0.0043/min vs. 0.0157 ± 0.0072/min; P < 0.01). 18F-FDG phosphorylation rate (k3) was twofold higher with injurious ventilation and accounted for most of the between-group difference in Ki. Dependent regions of the protective ventilation group exhibited lower k3 values per neutrophil than those in the injurious ventilation group (P = 0.01). In contrast, Fe was not affected by ventilation strategy (P = 0.52). Lung neutrophil counts were not different between groups, even when regional inflation was accounted for. Conclusions During systemic endotoxemia, protective ventilation may reduce the magnitude and heterogeneity of pulmonary inflammatory cell metabolic activity in early lung injury and may improve gas exchange through its effects predominantly in dependent lung regions. Such effects are likely related to a reduction in the metabolic activity, but not in the number, of lung-infiltrating neutrophils.
Collapse
|