1
|
McMahon NP, Solanki A, Wang LG, Montaño AR, Jones JA, Samkoe KS, Tichauer KM, Gibbs SL. In situ single-cell therapeutic response imaging facilitated by the TRIPODD fluorescence imaging platform. Theranostics 2024; 14:2816-2834. [PMID: 38773974 PMCID: PMC11103495 DOI: 10.7150/thno.93256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 05/24/2024] Open
Abstract
Purpose: Small molecule drugs such as tyrosine kinase inhibitors (TKIs) targeting tumoral molecular dependencies have become standard of care for numerous cancer types. Notably, epidermal growth factor receptor (EGFR) TKIs (e.g., erlotinib, afatinib, osimertinib) are the current first-line treatment for non-small cell lung cancer (NSCLC) due to their improved therapeutic outcomes for EGFR mutated and overexpressing disease over traditional platinum-based chemotherapy. However, many NSCLC tumors develop resistance to EGFR TKI therapy causing disease progression. Currently, the relationship between in situ drug target availability (DTA), local protein expression and therapeutic response cannot be accurately assessed using existing analytical tools despite being crucial to understanding the mechanism of therapeutic efficacy. Procedure: We have previously reported development of our fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution) that is capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. TRIPODD combines two complementary fluorescence imaging techniques: intracellular paired agent imaging (iPAI) to measure DTA and cyclic immunofluorescence (cyCIF), which utilizes oligonucleotide conjugated antibodies (Ab-oligos) for spatial proteomic expression profiling on tissue samples. Herein, TRIPODD was modified and optimized to provide a downstream analysis of therapeutic response through single-cell DTA and proteomic response imaging. Results: We successfully performed sequential imaging of iPAI and cyCIF resulting in high dimensional imaging and biomarker assessment to quantify single-cell DTA and local protein expression on erlotinib treated NSCLC models. Pharmacodynamic and pharmacokinetic studies of the erlotinib iPAI probes revealed that administration of 2.5 mg/kg each of the targeted and untargeted probe 4 h prior to tumor collection enabled calculation of DTA values with high Pearson correlation to EGFR, the erlotinib molecular target, expression in the tumors. Analysis of single-cell biomarker expression revealed that a single erlotinib dose was insufficient to enact a measurable decrease in the EGFR signaling cascade protein expression, where only the DTA metric detected the presence of bound erlotinib. Conclusion: We demonstrated the capability of TRIPODD to evaluate therapeutic response imaging to erlotinib treatment as it relates to signaling inhibition, DTA, proliferation, and apoptosis with preserved spatial context.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Allison Solanki
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Antonio R. Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jocelyn A. Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Kenneth M. Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
2
|
Denzer L, Muranyi W, Schroten H, Schwerk C. The role of PLVAP in endothelial cells. Cell Tissue Res 2023; 392:393-412. [PMID: 36781482 PMCID: PMC10172233 DOI: 10.1007/s00441-023-03741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involvement of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight the structure and functions of PLVAP in different endothelial types in health and disease.
Collapse
Affiliation(s)
- Lea Denzer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Chen Y, Streeter SS, Hunt B, Sardar HS, Gunn JR, Tafe LJ, Paydarfar JA, Pogue BW, Paulsen KD, Samkoe KS. Fluorescence molecular optomic signatures improve identification of tumors in head and neck specimens. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1009638. [PMID: 36875185 PMCID: PMC9975724 DOI: 10.3389/fmedt.2023.1009638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Background Fluorescence molecular imaging using ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for surgical guidance during head and neck squamous cell carcinoma (HNSCC) resection. However, tumor-to-normal tissue contrast is confounded by intrinsic physiological limitations of heterogeneous EGFR expression and non-specific agent uptake. Objective In this preliminary study, radiomic analysis was applied to optical ABY-029 fluorescence image data for HNSCC tissue classification through an approach termed "optomics." Optomics was employed to improve tumor identification by leveraging textural pattern differences in EGFR expression conveyed by fluorescence. The study objective was to compare the performance of conventional fluorescence intensity thresholding and optomics for binary classification of malignant vs. non-malignant HNSCC tissues. Materials and Methods Fluorescence image data collected through a Phase 0 clinical trial of ABY-029 involved a total of 20,073 sub-image patches (size of 1.8 × 1.8 mm2) extracted from 24 bread-loafed slices of HNSCC surgical resections originating from 12 patients who were stratified into three dose groups (30, 90, and 171 nanomoles). Each dose group was randomly partitioned on the specimen-level 75%/25% into training/testing sets, then all training and testing sets were aggregated. A total of 1,472 standardized radiomic features were extracted from each patch and evaluated by minimum redundancy maximum relevance feature selection, and 25 top-ranked features were used to train a support vector machine (SVM) classifier. Predictive performance of the SVM classifier was compared to fluorescence intensity thresholding for classifying testing set image patches with histologically confirmed malignancy status. Results Optomics provided consistent improvement in prediction accuracy and false positive rate (FPR) and similar false negative rate (FNR) on all testing set slices, irrespective of dose, compared to fluorescence intensity thresholding (mean accuracies of 89% vs. 81%, P = 0.0072; mean FPRs of 12% vs. 21%, P = 0.0035; and mean FNRs of 13% vs. 17%, P = 0.35). Conclusions Optomics outperformed conventional fluorescence intensity thresholding for tumor identification using sub-image patches as the unit of analysis. Optomics mitigate diagnostic uncertainties introduced through physiological variability, imaging agent dose, and inter-specimen biases of fluorescence molecular imaging by probing textural image information. This preliminary study provides a proof-of-concept that applying radiomics to fluorescence molecular imaging data offers a promising image analysis technique for cancer detection in fluorescence-guided surgery.
Collapse
Affiliation(s)
- Yao Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Samuel S. Streeter
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Brady Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Hira S. Sardar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Jason R. Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Laura J. Tafe
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Pathology, Dartmouth Health, Lebanon, NH, United States
| | - Joseph A. Paydarfar
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Surgery, Dartmouth Health, Lebanon, NH, United States
- Department of Otolaryngology, Dartmouth Health, Lebanon, NH, United States
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Surgery, Dartmouth Health, Lebanon, NH, United States
| |
Collapse
|
4
|
Wang C, Xu X, Hodge S, Chen EY, Hoopes PJ, Tichauer KM, Samkoe KS. Identification of a Suitable Untargeted Agent for the Clinical Translation of ABY-029 Paired-Agent Imaging in Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:97-109. [PMID: 34642897 PMCID: PMC9413473 DOI: 10.1007/s11307-021-01642-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Non-specific uptake and retention of molecular targeted agents and heterogeneous tissue optical properties diminish the ability to differentiate between tumor and normal tissues using molecular targeted fluorescent agents. Paired-agent imaging (PAI) can increase the diagnostic ability to detect tumor tissue by mitigating these non-specific effects and providing true molecular contrast by co-administration of an untargeted control imaging agent with a targeted agent. This study evaluates the suitability of available clinically translatable untargeted agents for the translation of PAI in fluorescence-guided surgery using an affibody-based targeted imaging agent (ABY-029). EXPERIMENTAL DESIGN: Three untargeted agents that fluoresce near 700 nm and exhibit good clinical safety profiles (methylene blue, IRDye 700DX, and IRDye 680LT) were tested in combination with the clinically tested IRDye 800CW-labeled anti-epidermal growth factor receptor (EGFR) affibody molecule, ABY-029 (eIND 122,681). Properties of the untargeted agent important for human use and integrity of PAI were tested: (1) plasma protein binding; (2) fluorescence signal linearity in in vitro whole blood dilution; (3) in vivo pharmacokinetic matching to targeted agent in negative control tissue; and (4) in vivo diagnostic accuracy of PAI vs single agent imaging (SAI) of ABY-029 alone in orthotopic oral head and neck squamous cell carcinomas. RESULTS IRDye 680LT outperformed IRDye 700DX and methylene blue with the highest signal linearity (R2 = 0.9998 ± 0.0002, 0.9995 ± 0.0004, 0.91 ± 0.02, respectively), the highest fluorescence yield in whole blood at 1 μM (104.42 ± 0.05, 103.68 ± 0.09, 101.9 ± 0.2, respectively), and the most closely matched ABY-029 pharmacokinetics in EGFR-negative tissues (binding potential error percentage = 0.31% ± 0.37%, 10.25% ± 1.30%, and 8.10% ± 5.37%, respectively). The diagnostic ability of PAI with ABY-029 and IRDye 680LT outperformed conventional SAI with an area-under-the-receiver-operating-characteristic curve (AUC) value of 0.964 vs. 0.854, and 0.978 vs. 0.925 in the Odyssey scanning system and Pearl wide field imaging system, respectively. CONCLUSION PAI is a highly promising methodology for increasing detection of tumors in fluorescence-guided surgery. Although not yet clinically approved, IRDye 680LT demonstrates promise as an untargeted agent when paired with ABY-029. The clinical translation of PAI to maximize tumor excision, while minimizing normal tissue removal, could improve both patient survival and life quality.
Collapse
Affiliation(s)
- Cheng Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eunice Y Chen
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
5
|
Ma K, Chen X, Zhao X, Chen S, Yang J. PLVAP is associated with glioma-associated malignant processes and immunosuppressive cell infiltration as a promising marker for prognosis. Heliyon 2022; 8:e10298. [PMID: 36033326 PMCID: PMC9404362 DOI: 10.1016/j.heliyon.2022.e10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previous reports have confirmed the significance of plasmalemma vesicle-associated protein (PLVAP) in the progression of multiple tumors; however, there are few studies examining its immune properties in the context of gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. A total of 699 patients diagnosed with gliomas in the cancer genome atlas along with 325 glioma patients in the Chinese glioma genome atlas were collected for the training and validation sets. We analyzed and visualized the total statistics using RStudio. PLVAP was markedly upregulated among high grade gliomas, O6-methylguanine-DNA methyltransferase promoter unmethylated subforms, isocitrate dehydrogenase wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. The receiver operating characteristics analysis illustrated the favorable applicability of PLVAP in regard to estimating mesenchyme subform gliomas. Subsequent Kaplan–Meier curves together with multivariable Cox analyses upon survival identified high-expression PLVAP as a distinct prognostic variable for patients with gliomas. Gene ontology analysis of PLVAP among gliomas has documented the predominant role of this protein in glioma-associated immunobiological processes and also in inflammatory responses. We consequently examined the associations of PLVAP with immune-related meta-genes, and PLVAP was positively correlated with hematopoietic cell kinase, lymphocyte-specific protein tyrosine kinase, major histocompatibility complex (MHC) I, MHC II, signal transducer and activator of transcription 1, and interferon and was negatively correlated with immunoglobulin G. Moreover, association analyses between PLVAP and glioma-infiltrating immunocytes indicated that the infiltrating degrees of most immune cells exhibited positive correlations with PLVAP expression, particularly immunosuppressive subsets such as tumor-related macrophages, myeloid-derived suppressor cells, and regulatory T lymphocytes. In summary, we originally demonstrated that PLVAP is markedly associated with immunosuppressive immune cell infiltration degrees, unfavorable survival, and adverse pathology types among gliomas, thus identifying PLVAP as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Wang Y, Yu H, Xie X, Deng T, Ye L, Wu L, Ding X, Yang Z, Zhu Q, Li J, Zheng Y, Yu Z, Chen G. Plasmalemma vesicle-associated protein promotes angiogenesis in cholangiocarcinoma via the DKK1/CKAP4/PI3K signaling pathway. Oncogene 2021; 40:4324-4337. [PMID: 34079085 DOI: 10.1038/s41388-021-01844-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is aggressive and has poor clinical outcomes because of typically delayed diagnosis and a lack of effective non-surgical therapeutic options. Recent studies have shown that plasmalemma vesicle-associated protein (PLVAP) is related to angiogenesis in various tumors, and in vivo PLVAP targeting therapy has been proven effective against hepatocellular carcinoma and pancreatic cancer. The goal of this study was to determine the potential therapeutic utility of targeting PLVAP and thus angiogenesis in CCA and explore the underlying molecular mechanisms. We found that the PLVAP expression levels were significantly higher in CCA tissues when compared with matched adjacent non-tumor tissues obtained from a total of 90 CCA patients; higher expression levels of PLVAP were associated with shorter overall survival of patients. In addition, overexpression of PLVAP was associated with higher micro-vessel density in CCA tissues. In a PLVAP overexpressing CCA patient-derived xenograft model, a novel humanized anti-PLVAP antibody in combination with Gemcitabine plus Cisplatin was significantly inhibited tumor growth. Molecular analysis of CCA cells co-cultured with human umbilical vascular endothelial cells or human hepatic sinusoidal endothelial cells showed that Dickkopf-related protein 1 (DKK1) secreted by CCA cells activated the PI3K/Akt pathway after binding to its receptor, cytoskeleton-associated protein 4 (CKAP4), resulting in the upregulation of PLVAP. Thus, CCA cells increased the angiogenic potency of endothelial cells in a paracrine fashion. Consistently, patients bearing CKAP4 and PLVAP overexpressing tumors had a poor prognosis. In conclusion, the DKK1/CKAP4/PI3K/PLVAP pathway increases angiogenesis in CCA and is therefore a potential anti-angiogenic target.
Collapse
Affiliation(s)
- Yi Wang
- Division of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Haitao Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tuo Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longyun Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiwei Ding
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Qiandong Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjian Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
McMahon NP, Solanki A, Wang LG, Montaño AR, Jones JA, Samkoe KS, Tichauer KM, Gibbs SL. TRIPODD: a Novel Fluorescence Imaging Platform for In Situ Quantification of Drug Distribution and Therapeutic Response. Mol Imaging Biol 2021; 23:650-664. [PMID: 33751366 DOI: 10.1007/s11307-021-01589-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Personalized medicine has largely failed to produce curative therapies in advanced cancer patients. Evaluation of in situ drug target availability (DTA) concomitant with local protein expression is critical to an accurate assessment of therapeutic efficacy, but tools capable of both are currently lacking. PROCEDURE We developed and optimized a fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution), resulting in the only methodology capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. Using TRIPODD, we demonstrate the feasibility of combining two complementary fluorescence imaging techniques, intracellular paired agent imaging (iPAI) and cyclic immunofluorescence (cyCIF), conducted with oligonucleotide-conjugated antibodies (Ab-oligos) on tissue samples. RESULTS We successfully performed sequential imaging on a single tissue section of iPAI to capture single-cell DTA and local protein expression heterogeneity using Ab-oligo cyCIF. Fluorescence imaging data acquisition was followed by spatial registration resulting in high dimensional data correlating DTA to protein expression at the single-cell level where uptake of a targeted probe alone was not well correlated to protein expression. CONCLUSION Herein, we demonstrated the utility of TRIPODD as a powerful imaging platform capable of interpreting tumor heterogeneity for a mechanistic understanding of therapeutic response and resistance through quantification of drug target availability and proteomic response with preserved spatial context at single-cell resolution.
Collapse
Affiliation(s)
- Nathan P McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Allison Solanki
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Jocelyn A Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering at Dartmouth College, Dartmouth College, Hanover, NH, USA.,Department of Surgery, Geisel School of Medicine at Dartmouth College, Dartmouth College, Hanover, NH, 03755, USA
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA. .,Knight Cancer Institute, Oregon Health & Science University, Collaborative Life Sciences Building, 2730 S Moody Ave, Mail Code: CL3SG, Portland, OR, 97201, USA.
| |
Collapse
|
8
|
Solanki A, Wang L, Korber J, McMahon N, Tichauer K, Samkoe KS, Gibbs SL. Intracellular paired agent imaging enables improved evaluation of tyrosine kinase inhibitor target engagement. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11219:112190F. [PMID: 32292225 PMCID: PMC7155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Targeting the aberrant epidermal growth factor receptor (EGFR) signaling pathway is an attractive choice for many cancers (e.g., non-small cell lung carcinoma (NSCLC) and head and neck squamous cell carcinoma (HNSCC)). Despite the development of promising therapeutics, incomplete target engagement and acquired resistance (e.g., mutagenesis and intracellular signaling pathway rewiring) ensure that curative options still elude patients. To address limitations posed by standard drag evaluation assays (e.g., western blot, bulk plasma monitoring, immunohistochemistry), we have developed a novel dynamic, fluorescence-based platform termed intracellular paired agent imaging (iPAI). iPAI quantifies intracellular protein target engagement using two matched small-molecule, cell membrane-permeable agents: one targeted to the protein of interest and one untargeted, which accounts for non-specific therapeutic uptake. Currently, our iPAI panel includes successfully characterized tyrosine kinase inhibitors targeting the kinase binding domain of numerous proteins in the EGFR pathway, including erlotinib (EGFR). Here, we present a pharmacokinetic uptake study using our novel iPAI erlotinib reagents: a targeted erlotinib probed conjugated to silicon tetramethylrhodamine (Erl-SiTMR-T) and an untargeted reagent conjugated to tetramethylrhodaime (Erl-TMR-UT). An initial uptake study in a cell derived xenograft (CDX) model of NSCLC was performed by administering the Erl iPAI reagents systemically via tail vein injection, where drag uptake was quantified in the tumor over time. Excitingly, evidence of heterogeneous uptake was observed in the iPAI injected cohort, displaying distinct drug-uptake within a single tumor. Characterization of additional iPAI agents targeting downstream effectors (e.g., AKT, PI3K, MEK and ERK) is ongoing and will allow us to visualize complex drug-target interactions and quantify their downstream signaling partners during treatment regimens for NSCLC and other cancers. Together, we anticipate these iPAI probes will improve understanding of current limitations in personalized cancer therapy.
Collapse
Affiliation(s)
- Allison Solanki
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Lei Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Jesse Korber
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Nathan McMahon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Kenneth Tichauer
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, 60616
| | - Kimberley S. Samkoe
- Department of Surgery, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03766
| | - Summer L. Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201
| |
Collapse
|
9
|
McMahon NP, Solanki A, Jones J, Kwon S, Chang YH, Chin K, Nederlof MA, Gray JW, Gibbs SL. Fluorescent Imaging for In Situ Measurement of Drug Target Engagement and Cell Signaling Pathways. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11219:112190O. [PMID: 32296256 PMCID: PMC7158854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and identify druggable therapeutic targets. Tyrosine kinase inhibitors (TKI) are a class of drugs seeking to inhibit signaling pathways critical to sustaining proliferative signaling, resisting cell death, and the other hallmarks of cancer. While tumors may initially respond to TKI therapy, disease progression is near universal due to mechanisms of acquired resistance largely involving cellular signaling pathway reprogramming. With the ultimate goal of improved TKI therapeutic efficacy our group has developed intracellular paired agent imaging (iPAI) to quantify drug target interactions and oligonucleotide conjugated antibody (Ab-oligo) cyclic immunofluorescence (cycIF) imaging to characterize perturbed signaling pathways in response to therapy. iPAI uses spectrally distinct, fluorescently labeled targeted and untargeted drug derivatives, correcting for non-specific drug distribution and facilitating quantitative assessment of the drug binding before and after therapy. Ab-oligo cycIF exploits in situ hybridization of complementary oligonucleotides for biomarker labeling while oligonucleotide modifications facilitate signal removal for sequential rounds of fluorescent tagging and imaging. Ab-oligo CycIF is capable of generating extreme multi-parametric images for quantifying total and phosphorylated protein expression to quantify protein activation, expression, and spatial distribution. Together iPAI and Ab-oligo cycIF can be applied to interrogate drug uptake and target binding as well as changes to heterogenous cell populations within tumors that drive variable therapeutic responses in patients.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Allison Solanki
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Jocelyn Jones
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Sunjong Kwon
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | - Young-Hwan Chang
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97201
| | - Koei Chin
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | | | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | - Summer L. Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| |
Collapse
|
10
|
Samkoe KS, Park Y, Marra K, Chen EY, Tichauer KM. Paired-agent imaging for detection of head and neck cancers. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10853. [PMID: 31686720 DOI: 10.1117/12.2510897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Head and neck cancers overwhelmingly overexpress epidermal growth factor receptor (EGFR). This overexpression has been utilized for head and neck cancers using molecular targeted agents for therapy and cancer cell detection. Significant progress has been made in using EGFR-targeted fluorescent antibody and Affibody molecule agents for fluorescent guided surgery in head and neck cancers. Although success in achieving tumor-to-background ratio of 3-5 have been achieved, the field is limited by the non-specific fluorescence in normal tissues as well as EGFR specific fluorescence in the oral cavity. We propose that paired-agent imaging (PAI) could improve the contrast between tumor and normal tissue by removing the fluorescent signal arising from non-specific binding. Here, ABY-029 - an anti-EGFR Affibody molecule labeled with IRDye 800CW - and IRDye 680RD conjugated to Affibody Control Imaging Agent molecule (IR680-Affctrl) are used as targeted and untargeted control agents, respectively, in a panel of head and neck squamous cell carcinomas (HNSCC) to test the ability of PAI to increase tumor detection. Initial results demonstrate that binding potential, a value proportional to receptor concentration, correlates well to EGFR expression but experimental limitations prevented pixel-by-pixel analysis that was desired. Although promising, a more rigorous and well-defined experimental protocol is required to align ex vivo EGFR immunohistochemistry with in vivo binding potential and fluorescence intensity. Additionally, a new set of paired-agents, ABY-029 and IRDye 700DX, are successfully tested in naïve mice and will be carried forward for clinical translation.
Collapse
Affiliation(s)
- Kimberley S Samkoe
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755.,Department of Surgery, Dartmouth-Hitchcock, Lebanon, NH, 03756
| | | | - Kayla Marra
- Thayer School of Engineering at Dartmouth, Lebanon, NH, 03755
| | - Eunice Y Chen
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, llinois Institute of Technology, Chicago, Illinois, 60616
| |
Collapse
|
11
|
Shuvaev VV, Khoshnejad M, Pulsipher KW, Kiseleva RY, Arguiri E, Cheung-Lau JC, LeFort KM, Christofidou-Solomidou M, Stan RV, Dmochowski IJ, Muzykantov VR. Spatially controlled assembly of affinity ligand and enzyme cargo enables targeting ferritin nanocarriers to caveolae. Biomaterials 2018; 185:348-359. [PMID: 30273834 PMCID: PMC6487198 DOI: 10.1016/j.biomaterials.2018.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Makan Khoshnejad
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine W Pulsipher
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Raisa Yu Kiseleva
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasmina C Cheung-Lau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen M LeFort
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Sadeghipour N, Davis SC, Tichauer KM. Generalized paired-agent kinetic model for in vivo quantification of cancer cell-surface receptors under receptor saturation conditions. Phys Med Biol 2016; 62:394-414. [PMID: 27997381 DOI: 10.1088/1361-6560/62/2/394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only 'trace' levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptor-saturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean ± sd): GSRTM 0 ± 1 and SRTM 50 ± 1) and match the SRTM accuracy in non-saturated conditions (% error (mean ± sd): GSRTM 5 ± 5 and SRTM 0 ± 5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general 'rule-of-thumb' algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological information about the tissue. These studies suggest that the GSRTM is necessary when receptor saturation exceeds 20% and highlight the potential for GSRTM to accurately measure receptor concentrations under saturation conditions, such as might be required during high dose drug studies, or for imaging applications where high concentrations of imaging agent are required to optimize signal-to-noise conditions. This model can also be applied to PET and SPECT imaging studies that tend to suffer from noisier data, but require one less parameter to fit if images are converted to imaging agent concentration (quantitative PET/SPECT).
Collapse
Affiliation(s)
- N Sadeghipour
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | | |
Collapse
|
13
|
Ghassemi P, Wang B, Wang J, Wang Q, Chen Y, Joshua Pfefer T. Evaluation of Mobile Phone Performance for Near-Infrared Fluorescence Imaging. IEEE Trans Biomed Eng 2016; 64:1650-1653. [PMID: 28113231 DOI: 10.1109/tbme.2016.2601014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated the potential for contrast-enhanced near-infrared fluorescence imaging of tissue on a mobile phone platform. Charge-coupled device- and phone-based cameras were used to image molded and three-dimensional-printed tissue phantoms, and an ex vivo animal model. Quantitative and qualitative evaluations of image quality demonstrate the viability of this approach and elucidate variations in performance due to wavelength, pixel color, and image processing.
Collapse
Affiliation(s)
- Pejhman Ghassemi
- Center for Devices and Radiological HealthFood and Drug Administration
| | - Bohan Wang
- Department of Electrical and Computer EngineeringUniversity of Maryland
| | - Jianting Wang
- Center for Devices and Radiological HealthFood and Drug Administration
| | - Quanzeng Wang
- Center for Devices and Radiological HealthFood and Drug Administration
| | - Yu Chen
- Fischell Department of BioengineeringUniversity of Maryland
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
14
|
Guo L, Zhang H, Hou Y, Wei T, Liu J. Plasmalemma vesicle-associated protein: A crucial component of vascular homeostasis. Exp Ther Med 2016; 12:1639-1644. [PMID: 27602081 PMCID: PMC4998186 DOI: 10.3892/etm.2016.3557] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Endothelial subcellular structures, including caveolae, fenestrae and transendothelial channels, are crucial for regulating microvascular function. Plasmalemma vesicle-associated protein (PLVAP) is an endothelial cell-specific protein that forms the stomatal and fenestral diaphragms of blood vessels and regulates basal permeability, leukocyte migration and angiogenesis. Loss of PLVAP in mice leads to premature mortality due to disrupted homeostasis. Evidence from previous studies suggested that PLVAP is involved in cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Specifically, PLVAP expression has been demonstrated to be upregulated in these diseases, accompanied by pro-angiogenic or pro-inflammatory responses. Therefore, PLVAP is considered a novel therapeutic target, in addition to an endothelial cell marker. The present review summarizes the structure and functions of PLVAP, and its roles in pathophysiological processes.
Collapse
Affiliation(s)
- Ling Guo
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hongyan Zhang
- Department of Cardiovascular Medicine, Xintai City People's Hospital Affiliated to Taishan Medical University, Xintai, Shandong 271200, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tianshu Wei
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Victoria 3010, Australia
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
15
|
Tichauer KM, Wang Y, Pogue BW, Liu JTC. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys Med Biol 2015; 60:R239-69. [PMID: 26134619 PMCID: PMC4522156 DOI: 10.1088/0031-9155/60/14/r239] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| | | | | | | |
Collapse
|
16
|
Samkoe KS, Tichauer KM, Gunn JR, Wells WA, Hasan T, Pogue BW. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach. Cancer Res 2014; 74:7465-74. [PMID: 25344226 PMCID: PMC4268352 DOI: 10.1158/0008-5472.can-14-0141] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant; therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects, but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry (IHC). Using multiple xenograft tumor models with varying EGFR expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored IHC and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot analysis or in vitro flow-cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immunostaining, with implications for use in noninvasive monitoring of therapy or therapeutic guidance during surgery.
Collapse
Affiliation(s)
- Kimberley S Samkoe
- Department of Surgery, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Wendy A Wells
- Department of Pathology, Geisel School of Medicine at Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Brian W Pogue
- Department of Surgery, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
17
|
Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging. Nat Med 2014; 20:1348-53. [PMID: 25344739 PMCID: PMC4224611 DOI: 10.1038/nm.3732] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
Lymph node biopsy (LNB) is employed in many cancer surgeries to identify metastatic disease and stage the cancer, yet morbidity and diagnostic delays associated with LNB could be avoided if non-invasive imaging of nodal involvement was reliable. Molecular imaging has potential in this regard; however, variable delivery and nonspecific uptake of imaging tracers has made conventional approaches ineffective clinically. A method of correcting for non-specific uptake with injection of a second untargeted tracer is presented, allowing tumor burden in lymph nodes to be quantified. The approach was confirmed in an athymic mouse model of metastatic human breast cancer targeting epidermal growth factor receptor, a cell surface receptor overexpressed by many cancers. A significant correlation was observed between in vivo (dual-tracer) and ex vivo measures of tumor burden (r = 0.97, p < 0.01), with an ultimate sensitivity of approximately 200 cells (potentially more sensitive than conventional LNB).
Collapse
|
18
|
Tichauer KM, Diop M, Elliott JT, Samkoe KS, Hasan T, St Lawrence K, Pogue BW. Accounting for pharmacokinetic differences in dual-tracer receptor density imaging. Phys Med Biol 2014; 59:2341-51. [PMID: 24743262 DOI: 10.1088/0031-9155/59/10/2341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labeled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in four mice was estimated using dual-tracer kinetic modeling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured.
Collapse
Affiliation(s)
- K M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | | | | | | | | | | |
Collapse
|