1
|
Minamimoto R, Kato K, Naganawa S. Clinical scenarios of unusual FDG uptake in muscle. Jpn J Radiol 2025; 43:177-185. [PMID: 39412643 PMCID: PMC11790741 DOI: 10.1007/s11604-024-01672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 02/04/2025]
Abstract
Glucose is essential for muscle function and its uptake is influenced by aerobic conditions, hormonal regulations, and exercise. 18F-Fluorodeoxyglucose (FDG), a glucose analog used in PET/CT scans, can show incidental uptake in muscles, and thus careful interpretation is required to avoid misdiagnosis. Proper patient preparation and understanding of the clinical scenarios affecting FDG uptake are crucial for accurate PET/CT interpretation, thus ensuring precise diagnoses and avoiding unnecessary interventions. This review emphasizes the need to consider patient-specific factors in evaluating incidental FDG uptake in muscle.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Department of Integrated Image Information Analysis, Nagoya University Graduate School of Medicine, 65, Tsurumaicho, Shouwa-ku, Nagoya, Aichi, 466-8550, Japan.
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Katsuhiko Kato
- Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Functional Medical Imaging, Biomedical Imaging Sciences, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Iritani Y, Kato H, Kaneko Y, Ishihara T, Ando T, Kawaguchi M, Shibata H, Ogawa T, Noda Y, Hyodo F, Matsuo M. FDG uptake in the cervical muscles after neck dissection: imaging features and postoperative natural course on 18F‑FDG‑PET/CT. Jpn J Radiol 2024; 42:892-898. [PMID: 38658502 PMCID: PMC11286666 DOI: 10.1007/s11604-024-01568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE This study aimed to assess the imaging features and postoperative natural course of 18F-fluorodeoxyglucose (FDG) uptake in the cervical muscles after neck dissection. MATERIALS AND METHODS This study included 83 patients who underwent preoperative and postoperative 18F-FDG-PET/CT and were diagnosed with head and neck malignancy after neck dissection. Postoperative 18F-FDG-PET/CT was performed within 5 years after neck dissection. Preoperative and postoperative FDG uptake of the trapezius, sternocleidomastoid, scalene, pectoralis major, and deltoid muscles was visually assessed. Increased postoperative uptake was visually defined as higher postoperative FDG uptake than the preoperative one in the corresponding muscle. The maximum standardized uptake value (SUVmax) was measured in cases with increased postoperative uptakes. RESULTS Increased postoperative uptakes were observed in 43 patients (52%). The trapezius (31/83, 37%), sternocleidomastoid (19/83, 23%), and scalene (12/83, 14%) muscles were involved, as opposed to the pectoralis major and deltoid muscles were not. Increased postoperative uptakes were observed on the dissected side in all 43 patients. Significant differences between SUVmax estimated from the mixed-effects model and postoperative months were observed in the trapezius muscle (Coefficient (β) = -0.038; 95% confidence interval (CI): [-0.047, -0.028]; p < 0.001) and sternocleidomastoid muscle (β = -0.015; 95% CI: [-0.029, -0.001]; p = 0.046). CONCLUSIONS Increased postoperative uptakes in the cervical muscles were observed on the dissected side in approximately half of the patients after neck dissection. The SUVmax in the trapezius and sternocleidomastoid muscles decreased after surgery over time.
Collapse
Affiliation(s)
- Yukako Iritani
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Yo Kaneko
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Tomohiro Ando
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masaya Kawaguchi
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | - Takenori Ogawa
- Department of Otolaryngology, Gifu University, Gifu, Japan
| | - Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
3
|
Elhessy HM, Habotta OA, Eldesoqui M, Elsaed WM, Soliman MFM, Sewilam HM, Elhassan YH, Lashine NH. Comparative neuroprotective effects of Cerebrolysin, dexamethasone, and ascorbic acid on sciatic nerve injury model: Behavioral and histopathological study. Front Neuroanat 2023; 17:1090738. [PMID: 36816518 PMCID: PMC9928760 DOI: 10.3389/fnana.2023.1090738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Background The majority of the suggested experimental modalities for peripheral nerve injury (PNI) result in varying degrees of recovery in animal models; however, there are not many reliable clinical pharmacological treatment models available. To alleviate PNI complications, research on approaches to accelerate peripheral nerve regeneration is encouraged. Cerebrolysin, dexamethasone, and ascorbic acid (vitamin C) drug models were selected in our study because of their reported curative effects of different mechanisms of action. Methodology A total of 40 adult male albino rats were used in this study. Sciatic nerve crush injury was induced in 32 rats, which were divided equally into four groups (model, Cerebrolysin, dexamethasone, and vitamin C groups) and compared to the sham group (n = 8). The sciatic nerve sensory and motor function regeneration after crushing together with gastrocnemius muscle histopathological changes were evaluated by the sciatic function index, the hot plate test, gastrocnemius muscle mass ratio, and immune expression of S100 and apoptosis cascade (BAX, BCL2, and BAX/BCL2 ratio). Results Significant improvement of the behavioral status and histopathological assessment scores occurred after the use of Cerebrolysin (as a neurotrophic factor), dexamethasone (as an anti-inflammatory), and vitamin C (as an antioxidant). Despite these seemingly concomitant, robust behavioral and pathological changes, vitamin C appeared to have the best results among the three main outcome measures. There was a positive correlation between motor and sensory improvement and also between behavioral and histopathological changes, boosting the effectiveness, and implication of the sciatic function index as a mirror for changes occurring on the tissue level. Conclusion Vitamin C is a promising therapeutic in the treatment of PNI. The sciatic function index (SFI) test is a reliable accurate method for assessing sciatic nerve integrity after both partial disruption and regrowth.
Collapse
Affiliation(s)
- Heba M. Elhessy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,*Correspondence: Heba M. Elhessy,
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mamdouh Eldesoqui
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F. M. Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Haitham M. Sewilam
- Department of Histology and Cell Biology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Y. H. Elhassan
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Nermeen H. Lashine
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Hu Y, Zhu Y, Wen X, Zeng F, Feng Y, Xu Z, Xu F, Wang J. Repetitive transcranial magnetic stimulation regulates neuroinflammation, relieves hyperalgesia and reverses despair-like behaviour in chronic constriction injury rats. Eur J Neurosci 2022; 56:4930-4947. [PMID: 35895439 DOI: 10.1111/ejn.15779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) could effectively relieve the pain and depression in neuropathic pain (NP) patients. However, the specific treatment parameters and exact mechanism are still unclear. Our purpose is to observe the effects of rTMS on pain and despair-like behaviour in chronic constriction injury (CCI) rats and explore its possible mechanism. Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into four groups: sham operation group (S, n = 8), CCI group (n = 8), 1 Hz-rTMS group (n = 8) and 10 Hz-rTMS group (n = 8). The rTMS was applied to the left dorsal anterior agranular insular (AId) 1 week after the operation, once a day, 5 days/week for 4 consecutive weeks. Mechanical hyperalgesia, despair-like behaviours and sciatic nerve function were used to evaluate the effects of rTMS. Besides, glucose metabolism, the metabotropic glutamate receptors 5 (mGluR5), N-Methyl-D-Aspartic acid receptor type 2B (NMDAR2B), tumour necrosis factor-α (TNF-α), interleukin-6 (Ll-6) and interleukin-1β (Ll-1β) in AId were tested to explore the possible mechanism. Compared with 1 Hz-rTMS, the rats of 10 Hz-rTMS had higher the mechanical hyperalgesia, higher sugar preference and shorter swimming immobility time. Besides, the expressions of mGluR5, NMDAR2B, TNF-α, Ll-1β and Ll-6 both in 1 Hz-rTMS and 10 Hz-rTMS groups were reduced compared with the CCI group; the 10 Hz-rTMS group had a more decrease than that of 1 Hz-rTMS. Furthermore, the [18]F-FDG uptake was lower than that in the 1 Hz-rTMS group. Compared with 1 Hz-rTMS, 10 Hz-rTMS could more effectively relieve mechanical hyperalgesia and reverse despair-like behaviour in rats. The mechanism could be related to regulating mGluR5/NMDAR2B-related inflammatory signalling pathways in the AId.
Collapse
Affiliation(s)
- Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanliang Zhu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Wen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fanshuo Zeng
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Zhangyu Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fangyuan Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianxiong Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
5
|
Kondratyev SA, Skiteva EN, Zabrodskaya YM, Ryzhkova DV, Kondratyeva ЕА, Kondratyev AN. Structural and Metabolic Changes in Skeletal Muscles of Patients with Chronic Disorders of Consciousness—To the Issue of Critical Illness Polyneuromyopathies (a PET/CT Pathomorphological Study). J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
McMillin SL, Stanley EC, Weyrauch LA, Brault JJ, Kahn BB, Witczak CA. Insulin Resistance Is Not Sustained Following Denervation in Glycolytic Skeletal Muscle. Int J Mol Sci 2021; 22:4913. [PMID: 34066429 PMCID: PMC8125496 DOI: 10.3390/ijms22094913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Denervation rapidly induces insulin resistance (i.e., impairments in insulin-stimulated glucose uptake and signaling proteins) in skeletal muscle. Surprisingly, whether this metabolic derangement is long-lasting is presently not clear. The main goal of this study was to determine if insulin resistance is sustained in both oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles following long-term (28 days) denervation. Mouse hindlimb muscles were denervated via unilateral sciatic nerve resection. Both soleus and EDL muscles atrophied ~40%. Strikingly, while denervation impaired submaximal insulin-stimulated [3H]-2-deoxyglucose uptake ~30% in the soleus, it enhanced submaximal (~120%) and maximal (~160%) insulin-stimulated glucose uptake in the EDL. To assess possible mechanism(s), immunoblots were performed. Denervation did not consistently alter insulin signaling (e.g., p-Akt (Thr308):Akt; p-TBC1D1 [phospho-Akt substrate (PAS)]:TBC1D1; or p-TBC1D4 (PAS):TBC1D4) in either muscle. However, denervation decreased glucose transporter 4 (GLUT4) levels ~65% in the soleus but increased them ~90% in the EDL. To assess the contribution of GLUT4 to the enhanced EDL muscle glucose uptake, muscle-specific GLUT4 knockout mice were examined. Loss of GLUT4 prevented the denervation-induced increase in insulin-stimulated glucose uptake. In conclusion, the denervation results sustained insulin resistance in the soleus but enhanced insulin sensitivity in the EDL due to increased GLUT4 protein levels.
Collapse
Affiliation(s)
- Shawna L. McMillin
- Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; (S.L.M.); (E.C.S.); (L.A.W.); (J.J.B.)
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Erin C. Stanley
- Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; (S.L.M.); (E.C.S.); (L.A.W.); (J.J.B.)
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Luke A. Weyrauch
- Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; (S.L.M.); (E.C.S.); (L.A.W.); (J.J.B.)
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Jeffrey J. Brault
- Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; (S.L.M.); (E.C.S.); (L.A.W.); (J.J.B.)
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
| | - Carol A. Witczak
- Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; (S.L.M.); (E.C.S.); (L.A.W.); (J.J.B.)
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Choi JS, Seo HG, Oh BM, Choi H, Cheon GJ, Lee SU, Lee SH. 18 F-FDG uptake in denervated muscles of patients with peripheral nerve injury. Ann Clin Transl Neurol 2019; 6:2175-2185. [PMID: 31588693 PMCID: PMC6856607 DOI: 10.1002/acn3.50899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/08/2019] [Accepted: 09/01/2019] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE We aimed to investigate the clinical significance of increased uptake in 18 F-fluorodeoxyglucose positron emission tomography in patients with peripheral nerve lesions. METHODS We selected patients with unilateral peripheral nerve lesions confirmed with electromyography who had undergone 18 F-fluorodeoxyglucose positron emission tomography covering the lesions. In the denervated muscles and their contralateral corresponding pairs, a mean (SUVmean) and maximum standardized uptake value (SUVmax) were obtained from 18 F-fluorodeoxyglucose positron emission tomography images. We analyzed the difference in these values between the denervated and normal muscles. The lesion-to-normal ratio of the SUVmean (LNRmean) between each muscle pair was also obtained. Subgroup analysis was performed to find whether these three parameters were related to severity, abundance of abnormal spontaneous activity, and etiology. RESULTS Twenty-three patients with 38 denervated muscles were included. Compared to their normal counterparts, the denervated muscles showed significantly higher SUVmax (1.33 ± 0.49 vs. 1.10 ± 0.37, n = 38, P < 0.001) and SUVmean (0.91 ± 0.31 vs. 0.77 ± 0.28, n = 38, P < 0.001). The muscles with severe neuropathy showed significantly higher LNRmean than those with mild neuropathy (1.30 ± 0.36, n = 19 vs. 1.11 ± 0.24, n = 19; P = 0.046), and the muscles with traumatic neuropathy showed significantly higher LNRmean than those with nontraumatic neuropathy (1.32 ± 0.28, n = 13 vs. 1.14 ± 0.33, n = 23; P = 0.015). INTERPRETATION Denervated muscles with peripheral nerve injury showed higher uptake than normal muscles in 18 F-fluorodeoxyglucose positron emission tomography, and this was associated with severity and etiology.
Collapse
Affiliation(s)
- Ji Soo Choi
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Shi-Uk Lee
- Department of Rehabilitation Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| |
Collapse
|
8
|
Graham ZA, Siedlik JA, Harlow L, Sahbani K, Bauman WA, Tawfeek HA, Cardozo CP. Key Glycolytic Metabolites in Paralyzed Skeletal Muscle Are Altered Seven Days after Spinal Cord Injury in Mice. J Neurotrauma 2019; 36:2722-2731. [PMID: 30869558 DOI: 10.1089/neu.2018.6144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spinal cord injury (SCI) results in rapid muscle atrophy and an oxidative-to-glycolytic fiber-type shift. Those with chronic SCI are more at risk for developing insulin resistance and reductions in glucose clearance than able-bodied individuals, but how glucose metabolism is affected after SCI is not well known. An untargeted metabolomics approach was utilized to investigate changes in whole-muscle metabolites at an acute (7-day) and subacute (28-day) time frame after a complete T9 spinal cord transection in 20-week-old female C57BL/6 mice. Two hundred one metabolites were detected in all samples, and 83 had BinBase IDs. A principal components analysis showed the 7-day group as a unique cluster. Further, 36 metabolites were altered after 7- and/or 28-day post-SCI (p values <0.05), with 12 passing further false discovery rate exclusion criteria; of those 12 metabolites, three important glycolytic molecules-glucose and downstream metabolites pyruvic acid and lactic acid-were reduced at 7 days compared to those values in sham and/or 28-day animals. These changes were associated with altered expression of proteins associated with glycolysis, as well as monocarboxylate transporter 4 gene expression. Taken together, our data suggest an acute disruption of skeletal muscle glucose uptake at 7 days post-SCI, which leads to reduced pyruvate and lactate levels. These levels recover by 28 days post-SCI, but a reduction in pyruvate dehydrogenase protein expression at 28 days post-SCI implies disruption in downstream oxidation of glucose.
Collapse
Affiliation(s)
- Zachary A Graham
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
| | - Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Medical Service, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Medical Service, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Li L, Li Y, Fan Z, Wang X, Li Z, Wen J, Deng J, Tan D, Pan M, Hu X, Zhang H, Lai M, Guo J. Ascorbic Acid Facilitates Neural Regeneration After Sciatic Nerve Crush Injury. Front Cell Neurosci 2019; 13:108. [PMID: 30949031 PMCID: PMC6437112 DOI: 10.3389/fncel.2019.00108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Ascorbic acid (AA) is an essential micronutrient that has been safely used in the clinic for many years. The present study indicates that AA has an unexpected function in facilitating nerve regeneration. Using a mouse model of sciatic nerve crush injury, we found that AA can significantly accelerate axonal regrowth in the early stage [3 days post-injury (dpi)], a finding that was revealed by immunostaining and Western blotting for antibodies against GAP-43 and SCG10. On day 28 post-injury, histomorphometric assessments demonstrated that AA treatment increased the density, size, and remyelination of regenerated axons in the injured nerve and alleviated myoatrophy in the gastrocnemius. Moreover, the results from various behavioral tests and electrophysiological assays revealed that nerve injury-derived functional defects in motor and sensory behavior as well as in nerve conduction were significantly attenuated by treatment with AA. The potential mechanisms of AA in nerve regeneration were further explored by investigating the effects of AA on three types of cells involved in this process [neurons, Schwann cells (SCs) and macrophages] through a series of experiments. Overall, the data illustrated that AA treatment in cultured dorsal root ganglionic neurons resulted in increased neurite growth and lower expression of RhoA, which is an important inhibitory factor in neural regeneration. In SCs, proliferation, phagocytosis, and neurotrophin expression were all enhanced by AA. Meanwhile, AA treatment also improved proliferation, migration, phagocytosis, and anti-inflammatory polarization in macrophages. In conclusion, this study demonstrated that treatment with AA can promote the morphological and functional recovery of injured peripheral nerves and that this effect is potentially due to AA’s bioeffects on neurons, SCs and macrophages, three of most important types of cells involved in nerve injury and regeneration.
Collapse
Affiliation(s)
- Lixia Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Zhihao Fan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xianghai Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zhenlin Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jinkun Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Junyao Deng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Dandan Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Mengjie Pan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xiaofang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Haowen Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Muhua Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jiasong Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Lee SH, Seo HG, Oh BM, Choi H, Cheon GJ, Lee SU. 18F-FDG positron emission tomography as a novel diagnostic tool for peripheral nerve injury. J Neurosci Methods 2019; 317:11-19. [PMID: 30684510 DOI: 10.1016/j.jneumeth.2019.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Glucose hypermetabolism in denervated skeletal muscle suggests the potential for developing a diagnostic tool for peripheral nerve injuries. Herein, we investigated the characteristics and molecular mechanism of this phenomenon. NEW METHOD Temporal course of glucose hypermetabolism and development of abnormal spontaneous activities (ASA) through electromyography (EMG) were investigated in rats with complete sciatic nerve injuries. Rats with partial sciatic nerve injuries were used to investigate the relationship between nerve injury severity and change in glucose metabolism. Rapamycin-treated rats were used to study molecular mechanism. Mean lesion-to-normal count ratios (LNRmean) was calculated as a numeric value of the 18F-FDG uptake. RESULTS Glucose hypermetabolism began 2 days after nerve injury and lasted up to 12 weeks, with the maximum increase at 1 week after denervation (10-fold increase compared to sham-operated muscle; LNRmean, sham, 1.360 ± 0.452; denervation, 10.340 ± 4.094; n = 5; P < 0.05). The metabolic changes showed similar temporal characteristics to ASA on EMG. The signal intensity of 18F-FDG uptake in denervated skeletal muscle was strongly related to nerve injury severity in a partial nerve injury model (Pearson correlation coefficient 0.63, P < 0.05). Suppression of mTOR by rapamycin treatment reduced the increase in peak glucose hypermetabolism in muscle denervation. COMPARISON WITH EXISTING METHOD Metabolic changes in 18F-FDG PET scans have a wider time span than abnormalities on EMG after denervation and it is correlated with the severity of nerve injury assessed by NCS. CONCLUSIONS 18F-FDG PET may be used to diagnose and evaluate peripheral nerve injuries.
Collapse
Affiliation(s)
- Seung Hak Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Rehabilitation Medicine, Incheon Workers' Compensation Hospital, Incheon, Republic of Korea; Department of Rehabilitation Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Shi-Uk Lee
- Department of Rehabilitation Medicine, Seoul National University Boramae Medical Center, 425 Sindaebang-dong, Dongjak-gu, Seoul 156-707, Republic of Korea.
| |
Collapse
|
11
|
Yao Y, Cui Y, Zhao Y, Xiao Z, Li X, Han S, Chen B, Fang Y, Wang P, Pan J, Dai J. Efect of longitudinally oriented collagen conduit combined with nerve growth factor on nerve regeneration after dog sciatic nerve injury. J Biomed Mater Res B Appl Biomater 2017; 106:2131-2139. [PMID: 29024435 DOI: 10.1002/jbm.b.34020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/10/2017] [Accepted: 09/24/2017] [Indexed: 01/23/2023]
Abstract
The research on artificial nerve conduits has become a focus of study in peripheral nerve reconstruction so as a possible replacement for the treatment of autologous nerve grafts in clinics. In this study, we used longitudinally oriented collagen conduit (LOCC) combined with nerve growth factor (NGF) to reconstruct long distance of sciatic nerve defects (35 mm) in adult dog model. The long term follow-up evaluation demonstrated that the LOCC/NGF conduit allowed functional and morphological nerve regeneration at the transection site of the injured sciatic nerve. Furthermore, the functional study confirmed that when NGF was loaded onto LOCC it promoted a better recovery of regenerated axons than LOCC alone. The gastrocnemius muscle mass in the LOCC/NGF group was significantly greater than in the LOCC alone group. The results indicated that when LOCC conduit combined with NGF it would provide a preferential environment for sciatic nerve regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2131-2139, 2018.
Collapse
Affiliation(s)
- Yao Yao
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yi Cui
- Reproductive and GeneticNational Research Institute for Family Planning, Beijing, 100081, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Xing Li
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Sufang Han
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Bing Chen
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Piao Wang
- Department of Oral & Maxillofacial, Plastic & Trauma Surgery, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Juli Pan
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
12
|
|