1
|
Glennan P, Shehu V, Singh SB, Werner TJ, Alavi A, Revheim ME. PET Imaging in Chimeric Antigen Receptor T-Cell Trafficking. PET Clin 2024; 19:569-576. [PMID: 38987123 DOI: 10.1016/j.cpet.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The evolving field of chimeric antigen receptor (CAR) T-cell therapy, though promising, necessitates more comprehensive imaging methods to enhance therapeutic effectiveness and track cell trafficking in patients and ex vivo. This review examines the application of PET imaging in CAR T-cell trafficking and optimizing their therapeutic impact. The application of PET imaging using various radiotracers is promising in providing evaluation of CAR T-cell interaction within the host, thereby facilitating strategies for improved patient outcomes. As this technology progresses, further innovative strategies to streamline assessments of immunotherapeutic effectiveness are anticipated.
Collapse
Affiliation(s)
- Patrick Glennan
- Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Vanessa Shehu
- University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Shashi B Singh
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, The Richard M. Lucas Center for Imaging, 1201 Welch Road, Stanford, CA 94305, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Division for Technology and Innovation, The Intervention Center, Oslo University Hospital, Rikshospitalet, Post Box 4950 Nydalen, Oslo 0424, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postbox 1078, Blindern, Oslo 0316, Norway.
| |
Collapse
|
2
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
Affiliation(s)
- Grace C Russell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Yassin Hamzaoui
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel Rho
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gaurav Sutrave
- The University of Sydney, Sydney, Australia; Department of Haematology, Westmead Hospital, Sydney, Australia; Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada
| | - Joseph S Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dara S Missan
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Gabrielle A Reckard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michael P Gustafson
- Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada; Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gloria B Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| |
Collapse
|
3
|
Ren M, Yao B, Han B, Li C. Nuclear Imaging of CAR T Immunotherapy to Solid Tumors: In Terms of Biodistribution, Viability, and Cytotoxic Effect. Adv Biol (Weinh) 2023; 7:e2200293. [PMID: 36642820 DOI: 10.1002/adbi.202200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/25/2022] [Indexed: 01/17/2023]
Abstract
Immunotherapy has become a mainstay of cancer therapy. Since chimeric antigen receptor (CAR) T immunotherapy achieves unprecedented success in curing hematological malignancies, the possibility of it revolutionizing the paradigm of solid tumors has aroused increasing attention. However, the restricted accessibility to tumor parenchyma, the immunosuppressive tumor microenvironment, and antigen heterogeneity of solid tumors make it difficult to replicate its success. Therefore, dynamic evaluation of CAR T cells' tumor accessibility, intratumoral viability, and anti-tumor cytotoxicity is necessary to facilitate its translation to solid tumors. Besides, real-timely imaging above events in vivo can help evaluate therapeutic responses and optimize CAR T immunotherapy for solid tumors. Nuclear imaging, including positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging, is frequently applied for evaluating adoptive cell therapies owing to its excellent sensitivity, high tissue penetration, and great translation potential. In addition, quantitative analysis can be performed in dynamic and noninvasive patterns. This review focuses on recent advances in PET/SPECT technologies and imaging probes in monitoring CAR T cells' migration, viability, and cytotoxicity to solid tumors post-administration. Prospects of what should be done in the next stage to promote CAR T therapy's application in solid tumors are also discussed.
Collapse
Affiliation(s)
- Mingliang Ren
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Zhangheng Road 826, 201203, Shanghai, China
| | - Bolin Yao
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Zhangheng Road 826, 201203, Shanghai, China
| | - Bing Han
- Minhang Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Zhangheng Road 826, 201203, Shanghai, China
| |
Collapse
|
4
|
Application and Design of Switches Used in CAR. Cells 2022; 11:cells11121910. [PMID: 35741039 PMCID: PMC9221702 DOI: 10.3390/cells11121910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.
Collapse
|
5
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|
6
|
Liu J, Xu N, Wang X, Wang Y, Wu Q, Li X, Pan D, Wang L, Xu Y, Yan J, Li X, Yu L, Yang M. Quantitative radio-thin-layer chromatography and positron emission tomography studies for measuring streptavidin transduced chimeric antigen receptor T cells. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122944. [PMID: 34592686 DOI: 10.1016/j.jchromb.2021.122944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The proliferation of chimeric antigen receptor (CAR) T cells is closely related to their efficacy, but it is still a great challenge to monitor and quantify CAR T cells in vivo. Based on the high affinity (Kd ≈ 10-15 M) of streptavidin (SA) and biotin, radiolabeled biotin may be used to quantify SA-transduced CAR T cells (SA-CAR T cells). Radio-thin-layer chromatography (radio-TLC) and positron emission tomography (PET) are highly sensitive for trace analysis. Our aim was to develop radio-TLC and PET methods to quantify SA-CAR T cells in vitro and in vivo. First, we developed [68Ga]-DOTA-biotin. Commercially available SA was used as a standard, and quantitative standard curves were established in vitro and in vivo by radio-TLC and PET. Furthermore, the feasibility of the method was verified in Raji model mice. The linear range of radio-TLC was 0.02 ∼ 0.15 pmol/μL with R2 = 0.9993 in vitro. The linear range of PET was 0.02 ∼ 0.76 pmol/μL with R2 = 0.9986 in vivo. SA in CAR T cells can also be accurately quantified in a Raji leukemia model according to PET imaging. The radio-TLC/PET method established in this study is promising for using in the dynamic monitoring and analysis of SA-CAR T cells during therapy.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Nan Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai 200062, China
| | - Xinyu Wang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yan Wang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qiong Wu
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xinxin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Donghui Pan
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuping Xu
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Junjie Yan
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai 200062, China
| | - Min Yang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
7
|
Lechermann LM, Lau D, Attili B, Aloj L, Gallagher FA. In Vivo Cell Tracking Using PET: Opportunities and Challenges for Clinical Translation in Oncology. Cancers (Basel) 2021; 13:4042. [PMID: 34439195 PMCID: PMC8392745 DOI: 10.3390/cancers13164042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cell therapy is a rapidly evolving field involving a wide spectrum of therapeutic cells for personalised medicine in cancer. In vivo imaging and tracking of cells can provide useful information for improving the accuracy, efficacy, and safety of cell therapies. This review focuses on radiopharmaceuticals for the non-invasive detection and tracking of therapeutic cells using positron emission tomography (PET). A range of approaches for imaging therapeutic cells is discussed: Direct ex vivo labelling of cells, in vivo indirect labelling of cells by utilising gene reporters, and detection of specific antigens expressed on the target cells using antibody-based radiopharmaceuticals (immuno-PET). This review examines the evaluation of PET imaging methods for therapeutic cell tracking in preclinical cancer models, their role in the translation into patients, first-in-human studies, as well as the translational challenges involved and how they can be overcome.
Collapse
Affiliation(s)
- Laura M. Lechermann
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Nuclear Medicine, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| |
Collapse
|
8
|
Sakemura R, Bansal A, Siegler EL, Hefazi M, Yang N, Khadka RH, Newsom AN, Hansen MJ, Cox MJ, Manriquez Roman C, Schick KJ, Can I, Tapper EE, Nevala WK, Adada MM, Bezerra ED, Kankeu Fonkoua LA, Horvei P, Ruff MW, Parikh SA, Pandey MK, DeGrado TR, Suksanpaisan L, Kay NE, Peng KW, Russell SJ, Kenderian SS. Development of a Clinically Relevant Reporter for Chimeric Antigen Receptor T-cell Expansion, Trafficking, and Toxicity. Cancer Immunol Res 2021; 9:1035-1046. [PMID: 34244299 DOI: 10.1158/2326-6066.cir-20-0901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Although chimeric antigen receptor T (CART)-cell therapy has been successful in treating certain hematologic malignancies, wider adoption of CART-cell therapy is limited because of minimal activity in solid tumors and development of life-threatening toxicities, including cytokine release syndrome (CRS). There is a lack of a robust, clinically relevant imaging platform to monitor in vivo expansion and trafficking to tumor sites. To address this, we utilized the sodium iodide symporter (NIS) as a platform to image and track CART cells. We engineered CD19-directed and B-cell maturation antigen (BCMA)-directed CART cells to express NIS (NIS+CART19 and NIS+BCMA-CART, respectively) and tested the sensitivity of 18F-TFB-PET to detect trafficking and expansion in systemic and localized tumor models and in a CART-cell toxicity model. NIS+CART19 and NIS+BCMA-CART cells were generated through dual transduction with two vectors and demonstrated exclusive 125I uptake in vitro. 18F-TFB-PET detected NIS+CART cells in vivo to a sensitivity level of 40,000 cells. 18F-TFB-PET confirmed NIS+BCMA-CART-cell trafficking to the tumor sites in localized and systemic tumor models. In a xenograft model for CART-cell toxicity, 18F-TFB-PET revealed significant systemic uptake, correlating with CART-cell in vivo expansion, cytokine production, and development of CRS-associated clinical symptoms. NIS provides a sensitive, clinically applicable platform for CART-cell imaging with PET scan. 18F-TFB-PET detected CART-cell trafficking to tumor sites and in vivo expansion, correlating with the development of clinical and laboratory markers of CRS. These studies demonstrate a noninvasive, clinically relevant method to assess CART-cell functions in vivo.
Collapse
Affiliation(s)
- Reona Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Nan Yang
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Infectious Disease, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Roman H Khadka
- Department of Immunology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Alysha N Newsom
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Claudia Manriquez Roman
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kendall J Schick
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Erin E Tapper
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Wendy K Nevala
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Mohamad M Adada
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Evandro D Bezerra
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Paulina Horvei
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Division of Pediatric Bone Marrow Transplant, University of California, San Francisco, San Francisco, California
| | - Michael W Ruff
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Stephen J Russell
- Division of Hematology, Mayo Clinic, Rochester, Minnesota.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, Minnesota. .,Division of Hematology, Mayo Clinic, Rochester, Minnesota.,Department of Immunology, Mayo Clinic, Rochester, Minnesota.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Abstract
Chimeric antigen receptor-engineer (CAR) T-cell therapy is a promising novel immunotherapy that has the potential to revolutionize cancer treatment. With four CAR T-cell therapies receiving FDA approval within the last 5 years, the role of CAR T-cells is anticipated to continue to evolve and expand. However, various aspects of CAR T-cell therapies remain poorly understood, and the therapies are associated with severe side effects [including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS)] that require prompt diagnosis and intervention. In this review, we discuss the role of imaging in diagnosing and monitoring toxicities from CAR T-cell therapies and explore the application of various imaging techniques, including use of PET/CT with novel radiotracers, to predict and assess treatment response and adverse effects. It is important for radiologists to recognize the imaging findings associated with each syndrome, as well as the typical and atypical treatment response patterns associated with CAR T-cell therapy. Given the expected increase in use of CAR T-cells in the near future, radiologists should familiarize themselves with the imaging findings encountered in these novel therapies, to provide comprehensive and up-to-date guidance for clinical management.
Collapse
|
10
|
Crotty EE, Downey KM, Ferrerosa LM, Flores CT, Hegde B, Raskin S, Hwang EI, Vitanza NA, Okada H. Considerations when treating high-grade pediatric glioma patients with immunotherapy. Expert Rev Neurother 2021; 21:205-219. [PMID: 33225764 PMCID: PMC7880880 DOI: 10.1080/14737175.2020.1855144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Children with high-grade gliomas (pHGGs) represent a clinical population in substantial need of new therapeutic options given the inefficacy and toxicity of current standard-of-care modalities. Although immunotherapy has emerged as a promising modality, it has yet to elicit a significant survival benefit for pHGG patients. While preclinical studies address a variety of underlying challenges, translational clinical trial design and management also need to reflect the most updated progress and lessons from the field. AREAS COVERED The authors will focus our discussion on the design of clinical trials, the management of potential toxicities, immune monitoring, and novel biomarkers. Clinical trial design should integrate appropriate patient populations, novel, and preclinically optimized trial design, and logical treatment combinations, particularly those which synergize with standard of care modalities. However, there are caveats due to the nature of immunotherapy trials, such as patient selection bias, evidenced by the frequent exclusion of patients on high-dose corticosteroids. Robust immune-modulating effects of modern immunotherapy can have toxicities. As such, it is important to understand and manage these, especially in pHGG patients. EXPERT OPINION Adequate integration of these considerations should allow us to effectively gain insights on biological activity, safety, and biomarkers associated with benefits for patients.
Collapse
Affiliation(s)
- Erin E. Crotty
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | - Kira M. Downey
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Lauren M. Ferrerosa
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCSF Benioff Children’s Hospital, Oakland, 747 52nd Street, Oakland, CA, USA
| | | | - Bindu Hegde
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Scott Raskin
- Children’s National Hospital, Washington, DC, USA
| | | | - Nicholas A. Vitanza
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Hideho Okada
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
- The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Kahle XU, Montes de Jesus FM, Glaudemans AWJM, Lub-de Hooge MN, Jorritsma-Smit A, Plattel WJ, van Meerten T, Diepstra A, van den Berg A, Kwee TC, Noordzij W, de Vries EGE, Nijland M. Molecular imaging in lymphoma beyond 18F-FDG-PET: understanding the biology and its implications for diagnostics and therapy. LANCET HAEMATOLOGY 2020; 7:e479-e489. [PMID: 32470439 DOI: 10.1016/s2352-3026(20)30065-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Mature lymphoproliferative diseases are a heterogeneous group of neoplasms arising from different stages of B-cell and T-cell development. With improved understanding of the molecular processes in lymphoma and novel treatment options, arises a growing need for the molecular characterisation of tumours. Molecular imaging with single-photon-emission CT and PET using specific radionuclide tracers can provide whole-body information to investigate cancer biology, to evaluate phenotypic heterogeneity, to identify resistance to targeted therapy, and to assess the biodistribution of drugs in patients. In this Review, we evaluate the existing literature on molecular imaging in lymphoma, other than 18F-fluordeoxyglucose molecular imaging. The aim is to examine the contribution of molecular imaging to the understanding of the biology of lymphoma and to discuss potential implications for the diagnostics and therapy of this disease. Finally, we discuss possible applications for molecular imaging of patients with lymphoma in the clinical context.
Collapse
Affiliation(s)
- Xaver U Kahle
- Department of Haematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Filipe M Montes de Jesus
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annelies Jorritsma-Smit
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wouter J Plattel
- Department of Haematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tom van Meerten
- Department of Haematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Thomas C Kwee
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marcel Nijland
- Department of Haematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
12
|
Minn I, Rowe SP, Pomper MG. Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol 2019; 20:e443-e451. [PMID: 31364596 DOI: 10.1016/s1470-2045(19)30461-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is one of the most remarkable advances in cancer therapy in the last several decades. More than 300 adoptive T-cell therapy trials are ongoing, which is a testament to the early success and hope engendered by this line of investigation. Despite the enthusiasm, application of CAR T-cell therapy to solid tumours has had little success, although positive outcomes are increasingly being reported for these diseases. In this Series paper, we discuss the short-term strategies to improve CAR T-cell therapy responses, particularly for solid tumours, by combining CAR T-cell therapy with radiotherapy through the use of careful monitoring and non-invasive imaging. Through the use of imaging, we can gain greater mechanistic insights into the cascade of events that must unfold to enable tumour eradication by CAR T-cell therapy.
Collapse
Affiliation(s)
- Il Minn
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P Rowe
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev 2019; 290:60-84. [PMID: 31355493 PMCID: PMC6771592 DOI: 10.1111/imr.12773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.
Collapse
Affiliation(s)
- David Akhavan
- Department of Radiation OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Dongrui Wang
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Michael R. Weist
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Jennifer K. Shepphird
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| |
Collapse
|
14
|
Mayer KE, Mall S, Yusufi N, Gosmann D, Steiger K, Russelli L, Bianchi HDO, Audehm S, Wagner R, Bräunlein E, Stelzl A, Bassermann F, Weichert W, Weber W, Schwaiger M, D'Alessandria C, Krackhardt AM. T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Am J Cancer Res 2018; 8:6070-6087. [PMID: 30613283 PMCID: PMC6299443 DOI: 10.7150/thno.27275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy has proven high efficacy in treating diverse cancer entities by immune checkpoint modulation and adoptive T-cell transfer. However, patterns of treatment response differ substantially from conventional therapies, and reliable surrogate markers are missing for early detection of responders versus non-responders. Current imaging techniques using 18F-fluorodeoxyglucose-positron-emmission-tomograpy (18F-FDG-PET) cannot discriminate, at early treatment times, between tumor progression and inflammation. Therefore, direct imaging of T cells at the tumor site represents a highly attractive tool to evaluate effective tumor rejection or evasion. Moreover, such markers may be suitable for theranostic imaging. Methods: We mainly investigated the potential of two novel pan T-cell markers, CD2 and CD7, for T-cell tracking by immuno-PET imaging. Respective antibody- and F(ab´)2 fragment-based tracers were produced and characterized, focusing on functional in vitro and in vivo T-cell analyses to exclude any impact of T-cell targeting on cell survival and antitumor efficacy. Results: T cells incubated with anti-CD2 and anti-CD7 F(ab´)2 showed no major modulation of functionality in vitro, and PET imaging provided a distinct and strong signal at the tumor site using the respective zirconium-89-labeled radiotracers. However, while T-cell tracking by anti-CD7 F(ab´)2 had no long-term impact on T-cell functionality in vivo, anti-CD2 F(ab´)2 caused severe T-cell depletion and failure of tumor rejection. Conclusion: This study stresses the importance of extended functional T-cell assays for T-cell tracer development in cancer immunotherapy imaging and proposes CD7 as a highly suitable target for T-cell immuno-PET imaging.
Collapse
|
15
|
Krebs S, Ahad A, Carter LM, Eyquem J, Brand C, Bell M, Ponomarev V, Reiner T, Meares CF, Gottschalk S, Sadelain M, Larson SM, Weber WA. Antibody with Infinite Affinity for In Vivo Tracking of Genetically Engineered Lymphocytes. J Nucl Med 2018; 59:1894-1900. [PMID: 29903928 DOI: 10.2967/jnumed.118.208041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
There remains an urgent need for the noninvasive tracking of transfused chimeric antigen receptor (CAR) T cells to determine their biodistribution, viability, expansion, and antitumor functionality. DOTA antibody reporter 1 (DAbR1) comprises a single-chain fragment of the antilanthanoid-DOTA antibody 2D12.5/G54C fused to the human CD4-transmembrane domain and binds irreversibly to lanthanoid (S)-2-(4-acrylamidobenzyl)-DOTA (AABD). The aim of this study was to investigate whether DAbR1 can be expressed on lymphocytes and used as a reporter gene as well as a suicide gene for therapy of immune-related adverse effects. Methods: DAbR1 was subcloned together with green fluorescent protein into an SFG-retroviral vector and used to transduce CD3/CD28-activated primary human T cells and second-generation 1928z (CAR) T cells. Cell surface expression of DAbR1 was confirmed by cell uptake studies with radiolabeled AABD. In addition, the feasibility of imaging of DAbR1-positive T cells in vivo after intravenous injection of 86Y/177Lu-AABD was studied and radiation doses determined. Results: A panel of DAbR1-expressing T cells and CAR T cells exhibited greater than 8-fold increased uptake of 86Y-AABD in vitro when compared with nontransduced cells. Imaging studies showed 86Y-AABD was retained by DAbR1-positive T cells while it continuously cleared from normal tissues, allowing for in vivo tracking of intravenously administered CAR T cells. Normal-organ dose estimates were favorable for repeated PET/CT studies. Selective T cell ablation in vivo with 177Lu-AABD seems feasible for clustered T-cell populations. Conclusion: We have demonstrated for the first time that T cells can be modified with DAbR1, enabling their in vivo tracking via PET and SPECT. The favorable biodistribution and high image contrast observed warrant further studies of this new reporter gene.
Collapse
Affiliation(s)
- Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Afruja Ahad
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Radiochemistry and Molecular Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Eyquem
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, New York, New York
| | - Christian Brand
- Radiochemistry and Molecular Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meghan Bell
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Ponomarev
- Radiochemistry and Molecular Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Radiochemistry and Molecular Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Claude F Meares
- Chemistry Department, University of California, Davis, California
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, New York, New York
| | - Steven M Larson
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wolfgang A Weber
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET Imaging of T cells. Trends Cancer 2018; 4:359-373. [PMID: 29709260 DOI: 10.1016/j.trecan.2018.03.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
The rapidly evolving field of cancer immunotherapy recently saw the approval of several new therapeutic antibodies. Several cell therapies, for example, chimeric antigen receptor-expressing T cells (CAR-T), are currently in clinical trials for a variety of cancers and other diseases. However, approaches to monitor changes in the immune status of tumors or to predict therapeutic responses are limited. Monitoring lymphocytes from whole blood or biopsies does not provide dynamic and spatial information about T cells in heterogeneous tumors. Positron emission tomography (PET) imaging using probes specific for T cells can noninvasively monitor systemic and intratumoral immune alterations during experimental therapies and may have an important and expanding value in the clinic.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; These authors contributed equally to this work
| | - Dawei Jiang
- Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; These authors contributed equally to this work
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Weibo Cai
- Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, USA.
| |
Collapse
|
17
|
Ajina A, Maher J. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 2017; 5:90. [PMID: 29157300 PMCID: PMC5696728 DOI: 10.1186/s40425-017-0294-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence.
Collapse
Affiliation(s)
- Adam Ajina
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - John Maher
- King’s College London, CAR Mechanics Group, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London, SE1 9RT UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
18
|
Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18:e653-e706. [PMID: 29208398 PMCID: PMC6178838 DOI: 10.1016/s1470-2045(17)30698-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.
Collapse
Affiliation(s)
| | - Chi Van Dang
- Ludwig Institute for Cancer Research New York, NY; Wistar Institute, Philadelphia, PA, USA.
| | - David B Agus
- University of Southern California, Beverly Hills, CA, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Alan Ashworth
- University of California San Francisco, San Francisco, CA, USA
| | | | - Roshan Bastani
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Bluestone
- University of California San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Atul J Butte
- University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Mark Davis
- California Institute for Technology, Pasadena, CA, USA
| | | | | | - Giulio Draetta
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Lindsay Frazier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Patricia A Ganz
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Eli Lilly and Company, Boston, MA, USA
| | | | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Faculty of Medicine and IHPME, University of Toronto, Toronto, Canada
| | - James Heath
- California Institute for Technology, Pasadena, CA, USA
| | - Ruth I Hoffman
- American Childhood Cancer Organization, Beltsville, MD, USA
| | - Cliff Hudis
- Breast Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chanita Hughes-Halbert
- Medical University of South Carolina and the Hollings Cancer Center, Charleston, SC, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Hossein Jadvar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Rick Kittles
- College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Scott M Lippman
- University of California San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Mankoff
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine at Nationwide Children's Hospital Columbus, OH, USA; College of Medicine, Ohio State University, Columbus, OH, USA
| | - Deborah K Mayer
- University of North Carolina Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kelly McMasters
- The Hiram C Polk Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Ornish
- University of California San Francisco, San Francisco, CA, USA
| | - Timothy M Pawlik
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | | | - Martin G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare, Charlotte, NC, USA
| | | | - Sally W Schwarz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jedd D Wolchok
- Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sandra L Wong
- Department of Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Kravets VG, Zhang Y, Sun H. Chimeric-Antigen-Receptor (CAR) T Cells and the Factors Influencing their Therapeutic Efficacy. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2017; 2:100-113. [PMID: 30443604 PMCID: PMC6233887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunotherapeutic treatments for malignant cancers have revolutionized the medical and scientific fields. Lymphocytes engineered to display chimeric antigen receptor (CAR) molecules contribute to the exciting advancements that have stemmed from a greater understanding of cell structure and function, biological interactions, and the unique tumor microenvironment. CAR T cells circumvent the unique immune evasion capability of tumors by acting in a major histocompatibility complex (MHC) independent manner. Various factors contribute to the efficacy of CAR therapy, including CAR structure, gene transfer strategies, in vitro culture system, target selection, and preconditioning regimens. While recent clinical trials have shown promising success, cytotoxicity and other various challenges need to be addressed before CAR therapy can reach its full clinical potency. This review will discuss factors associated with CAR therapeutic success and the difficulties that continue to be a focus of research around the world.
Collapse
Affiliation(s)
- Victoria G Kravets
- The Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, 30332, USA,Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| | - Yi Zhang
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| | - Hongxing Sun
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Larson SM, Truscott LC, Chiou TT, Patel A, Kao R, Tu A, Tyagi T, Lu X, Elashoff D, De Oliveira SN. Pre-clinical development of gene modification of haematopoietic stem cells with chimeric antigen receptors for cancer immunotherapy. Hum Vaccin Immunother 2017; 13:1094-1104. [PMID: 28059624 DOI: 10.1080/21645515.2016.1268745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Patients with refractory or recurrent B-lineage hematologic malignancies have less than 50% of chance of cure despite intensive therapy and innovative approaches are needed. We hypothesize that gene modification of haematopoietic stem cells (HSC) with an anti-CD19 chimeric antigen receptor (CAR) will produce a multi-lineage, persistent immunotherapy against B-lineage malignancies that can be controlled by the HSVsr39TK suicide gene. High-titer third-generation self-inactivating lentiviral constructs were developed to deliver a second-generation CD19-specific CAR and the herpes simplex virus thymidine kinase HSVsr39TK to provide a suicide gene to allow ablation of gene-modified cells if necessary. Human HSC were transduced with such lentiviral vectors and evaluated for function of both CAR and HSVsr39TK. Satisfactory transduction efficiency was achieved; the addition of the suicide gene did not impair CAR expression or antigen-specific cytotoxicity, and determined marked cytotoxicity to ganciclovir. NSG mice transplanted with gene-modified human HSC showed CAR expression not significantly different between transduced cells with or without HSVsr39TK, and expression of anti-CD19 CAR conferred anti-tumor survival advantage. Treatment with ganciclovir led to significant ablation of gene-modified cells in mouse tissues. Haematopoietic stem cell transplantation is frequently part of the standard of care for patients with relapsed and refractory B cell malignancies; following HSC collection, a portion of the cells could be modified to express the CD19-specific CAR and give rise to a persistent, multi-cell lineage, HLA-independent immunotherapy, enhancing the graft-versus-malignancy activity.
Collapse
Affiliation(s)
- Sarah M Larson
- a Department of Internal Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Laurel C Truscott
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Tzu-Ting Chiou
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Amie Patel
- c Western University of Health Sciences , Pomona , CA , USA
| | - Roy Kao
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Andy Tu
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Tulika Tyagi
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Xiang Lu
- a Department of Internal Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA.,d Clinical Translational Science Institute (CTSI), David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - David Elashoff
- a Department of Internal Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA.,d Clinical Translational Science Institute (CTSI), David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Satiro N De Oliveira
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| |
Collapse
|
21
|
Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more. Best Pract Res Clin Haematol 2016; 29:15-29. [DOI: 10.1016/j.beha.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
|