1
|
Hu Y, Wu Y, Li L, Gu L, Zhu X, Jiang J, Ren W. Simultaneous reconstruction of 3D fluorescence distribution and object surface using structured light illumination and dual-camera detection. OPTICS EXPRESS 2024; 32:15760-15773. [PMID: 38859218 DOI: 10.1364/oe.517189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 06/12/2024]
Abstract
Fluorescence molecular tomography (FMT) serves as a noninvasive modality for visualizing volumetric fluorescence distribution within biological tissues, thereby proving to be an invaluable imaging tool for preclinical animal studies. The conventional FMT relies upon a point-by-point raster scan strategy, enhancing the dataset for subsequent reconstruction but concurrently elongating the data acquisition process. The resultant diminished temporal resolution has persistently posed a bottleneck, constraining its utility in dynamic imaging studies. We introduce a novel system capable of simultaneous FMT and surface extraction, which is attributed to the implementation of a rapid line scanning approach and dual-camera detection. The system performance was characterized through phantom experiments, while the influence of scanning line density on reconstruction outcomes has been systematically investigated via both simulation and experiments. In a proof-of-concept study, our approach successfully captures a moving fluorescence bolus in three dimensions with an elevated frame rate of approximately 2.5 seconds per frame, employing an optimized scan interval of 5 mm. The notable enhancement in the spatio-temporal resolution of FMT holds the potential to broaden its applications in dynamic imaging tasks, such as surgical navigation.
Collapse
|
2
|
Wang Q, Chen B, Duan C, Wang T, Lou X, Dai J, Xia F. Unfolded Protein-Based Sandwich AIE Probe Imparts High Fluorescent Contrast for Pan-Cancer Surgical Navigation. Anal Chem 2024; 96:3609-3617. [PMID: 38364862 DOI: 10.1021/acs.analchem.3c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Fluorescence imaging-guided navigation for cancer surgery has a promising clinical application. However, pan-cancer encompasses a wide variety of cancer types with significant heterogeneity, resulting in the lack of universal and highly contrasted fluorescent probes for surgical navigation. Here, we developed an aggregation-induced emission (AIE) probe (MI-AIE-TsG, MAT) with dual activation for pan-cancer surgical navigation. MAT weakly activates fluorescence by targeting the SUR1 protein on the endoplasmic reticulum (ER) through the TsG group. Subsequently, the sulfhydryl groups on the unfolded proteins, which are highly enriched in cancer ER, react with the maleimide (MI) of MAT through the thiol-ene click reaction, further enhancing the fluorescence. The formation of a SUR1-MAT-unfolded protein sandwich complex reinforces the restriction of intramolecular motion and eliminates photoinduced electron transfer of MAT, leading to high signal-to-noise (9.2) fluorescence imaging and use for surgical navigation of pan-cancer. The generally high content of unfolded proteins in cancer cells makes MAT imaging generalizable, and it currently has proven feasibility in ovarian, cervical, and breast cancers. Meanwhile, MAT promotes cellular autophagy by hindering protein folding, thereby inhibiting cancer cell proliferation. This generalizable, high-contrast AIE fluorescent probe spans the heterogeneity of pancreatic cancer, enabling precise pancreatic cancer surgery navigation and treatment.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Zhang X, Jia Y, Cui J, Zhang J, Cao X, Zhang L, Zhang G. Two-stage deep learning method for sparse-view fluorescence molecular tomography reconstruction. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1359-1371. [PMID: 37706737 DOI: 10.1364/josaa.489702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/23/2023] [Indexed: 09/15/2023]
Abstract
Fluorescence molecular tomography (FMT) is a preclinical optical tomographic imaging technique that can trace various physiological and pathological processes at the cellular or even molecular level. Reducing the number of FMT projection views can improve the data acquisition speed, which is significant in applications such as dynamic problems. However, a reduction in the number of projection views will dramatically aggravate the ill-posedness of the FMT inverse problem and lead to significant degradation of the reconstructed images. To deal with this problem, we have proposed a deep-learning-based reconstruction method for sparse-view FMT that only uses four perpendicular projection views and divides the image reconstruction into two stages: image restoration and inverse Radon transform. In the first stage, the projection views of the surface fluorescence are restored to eliminate the blur derived from photon diffusion through a fully convolutional neural network. In the second stage, another convolutional neural network is used to implement the inverse Radon transform between the restored projections from the first stage and the reconstructed transverse slices. Numerical simulation and phantom and mouse experiments are carried out. The results show that the proposed method can effectively deal with the image reconstruction problem of sparse-view FMT.
Collapse
|
4
|
O'Brien CM, Bishop KW, Zhang H, Xu X, Shmuylovich L, Conley E, Nwosu K, Duncan K, Mondal SB, Sudlow G, Achilefu S. Quantitative tumor depth determination using dual wavelength excitation fluorescence. BIOMEDICAL OPTICS EXPRESS 2022; 13:5628-5642. [PMID: 36733737 PMCID: PMC9872884 DOI: 10.1364/boe.468059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/07/2023]
Abstract
Quantifying solid tumor margins with fluorescence-guided surgery approaches is a challenge, particularly when using near infrared (NIR) wavelengths due to increased penetration depths. An NIR dual wavelength excitation fluorescence (DWEF) approach was developed that capitalizes on the wavelength-dependent attenuation of light in tissue to determine fluorophore depth. A portable dual wavelength excitation fluorescence imaging system was built and tested in parallel with an NIR tumor-targeting fluorophore in tissue mimicking phantoms, chicken tissue, and in vivo mouse models of breast cancer. The system showed high accuracy in all experiments. The low cost and simplicity of this approach make it ideal for clinical use.
Collapse
Affiliation(s)
- Christine M O'Brien
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive St. Louis, MO 63130, USA
- These authors contributed equally to this work
| | - Kevin W Bishop
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
| | - Haini Zhang
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive St. Louis, MO 63130, USA
| | - Xiao Xu
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
| | - Leo Shmuylovich
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 4960 Children's Place, St. Louis, MO 63110, USA
| | - Elizabeth Conley
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
| | - Karen Nwosu
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
| | - Kathleen Duncan
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
| | - Suman B Mondal
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
| | - Gail Sudlow
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive St. Louis, MO 63130, USA
- Department of Medicine, Washington University School of Medicine, 4960 Children's Place, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- These authors contributed equally to this work
| |
Collapse
|
5
|
Zhang P, Ma C, Song F, Liu Z, Feng Y, Sun Y, He Y, Liu F, Wang D, Zhang G. Multi-branch attention prior based parameterized generative adversarial network for fast and accurate limited-projection reconstruction in fluorescence molecular tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5327-5343. [PMID: 36425627 PMCID: PMC9664898 DOI: 10.1364/boe.469505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Limited-projection fluorescence molecular tomography (FMT) allows rapid reconstruction of the three-dimensional (3D) distribution of fluorescent targets within a shorter data acquisition time. However, the limited-projection FMT is severely ill-posed and ill-conditioned due to insufficient fluorescence measurements and the strong scattering properties of photons in biological tissues. Previously, regularization-based methods, combined with the sparse distribution of fluorescent sources, have been commonly used to alleviate the severe ill-posed nature of the limited-projection FMT. Due to the complex iterative computations, time-consuming solution procedures, and less stable reconstruction results, the limited-projection FMT remains an intractable challenge for achieving fast and accurate reconstructions. In this work, we completely discard the previous iterative solving-based reconstruction themes and propose multi-branch attention prior based parameterized generative adversarial network (MAP-PGAN) to achieve fast and accurate limited-projection FMT reconstruction. Firstly, the multi-branch attention can provide parameterized weighted sparse prior information for fluorescent sources, enabling MAP-PGAN to effectively mitigate the ill-posedness and significantly improve the reconstruction accuracy of limited-projection FMT. Secondly, since the end-to-end direct reconstruction strategy is adopted, the complex iterative computation process in traditional regularization algorithms can be avoided, thus greatly accelerating the 3D visualization process. The numerical simulation results show that the proposed MAP-PGAN method outperforms the state-of-the-art methods in terms of localization accuracy and morphological recovery. Meanwhile, the reconstruction time is only about 0.18s, which is about 100 to 1000 times faster than the conventional iteration-based regularization algorithms. The reconstruction results from the physical phantoms and in vivo experiments further demonstrate the feasibility and practicality of the MAP-PGAN method in achieving fast and accurate limited-projection FMT reconstruction.
Collapse
Affiliation(s)
- Peng Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
- These authors contributed equally to this work
| | - Chenbin Ma
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
- Shenyuan Honors College, Beihang University, 100191, Beijing, China
- These authors contributed equally to this work
| | - Fan Song
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
| | - Zeyu Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
| | - Youdan Feng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
| | - Yangyang Sun
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
| | - Yufang He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
| | - Fei Liu
- Advanced Information & Industrial Technology Research Institute, Beijing Information Science & Technology University, Beijing, 100192, China
| | - Daifa Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
| | - Guanglei Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering,
Beihang University, Beijing, 100191, China
| |
Collapse
|
6
|
Cheng J, Zhang P, Liu F, Liu J, Hui H, Tian J, Luo J. Encoder-decoder deep learning network for simultaneous reconstruction of fluorescence yield and lifetime distributions. BIOMEDICAL OPTICS EXPRESS 2022; 13:4693-4705. [PMID: 36187270 PMCID: PMC9484427 DOI: 10.1364/boe.466349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
A time-domain fluorescence molecular tomography in reflective geometry (TD-rFMT) has been proposed to circumvent the penetration limit and reconstruct fluorescence distribution within a 2.5-cm depth regardless of the object size. In this paper, an end-to-end encoder-decoder network is proposed to further enhance the reconstruction performance of TD-rFMT. The network reconstructs both the fluorescence yield and lifetime distributions directly from the time-resolved fluorescent signals. According to the properties of TD-rFMT, proper noise was added to the simulation training data and a customized loss function was adopted for self-supervised and supervised joint training. Simulations and phantom experiments demonstrate that the proposed network can significantly improve the spatial resolution, positioning accuracy, and accuracy of lifetime values.
Collapse
Affiliation(s)
- Jiaju Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Zhang
- Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Fei Liu
- Beijing Advanced Information and Industrial Technology Research Institute, Beijing Information Science and Technology University, Beijing 100192, China
| | - Jie Liu
- Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing 100191, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zhang M, Zhou Q, Huang C, Chan CT, Wu W, Li G, Lim M, Gambhir SS, Daldrup-Link HE. In Vivo Evaluation of Near-Infrared Fluorescent Probe for TIM3 Targeting in Mouse Glioma. Mol Imaging Biol 2022; 24:280-287. [PMID: 34846678 PMCID: PMC9254586 DOI: 10.1007/s11307-021-01667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Current checkpoint inhibitor immunotherapy strategies in glioblastoma are challenged by mechanisms of resistance including an immunosuppressive tumor microenvironment. T cell immunoglobulin domain and mucin domain 3 (TIM3) is a late-phase checkpoint receptor traditionally associated with T cell exhaustion. We apply fluorescent imaging techniques to explore feasibility of in vivo visualization of the immune state in a glioblastoma mouse model. PROCEDURES TIM3 monoclonal antibody was conjugated to a near-infrared fluorescent dye, IRDye-800CW (800CW). The TIM3 experimental conjugate and isotype control were assessed for specificity with immunofluorescent staining and flow cytometry in murine cell lines (GL261 glioma and RAW264.7 macrophages). C57BL/6 mice with orthotopically implanted GL261 cells were imaged in vivo over 4 days after intravenous TIM3-800CW injection to assess tumor-specific uptake. Cell-specific uptake was then assessed on histologic sections. RESULTS The experimental TIM3-800CW, but not its isotype control, bound to RAW264.7 macrophages in vitro. Specificity to RAW264.7 macrophages and not GL261 tumor cells was quantitatively confirmed with the corresponding clone of TIM3 on flow cytometry. In vivo fluorescence imaging of the 800CW signal was localized to the intracranial tumor and significantly higher for the TIM3-800CW cohort, relative to non-targeting isotype control, immediately after tail vein injection and for up to 48 h after injection. Resected organs of tumor bearing mice showed significantly higher uptake in the liver and spleen. TIM3-800CW was seen to co-stain with CD3 (13%), CD11b (29%), and CD206 (26%). CONCLUSIONS We propose fluorescent imaging of immune cell imaging as a potential strategy for monitoring and localizing immunologically relevant foci in the setting of brain tumors. Alternative markers and target validation will further clarify the temporal relationship of immunosuppressive effector cells throughout glioma resistance.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Quan Zhou
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, CA, USA
| | - Chinghsin Huang
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Carmel T Chan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Wei Wu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
8
|
Chan MH, Huang WT, Satpathy A, Su TY, Hsiao M, Liu RS. Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics. Pharmaceutics 2022; 14:pharmaceutics14020456. [PMID: 35214188 PMCID: PMC8875488 DOI: 10.3390/pharmaceutics14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
The most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%. Brain diseases are complicated to treat. The reason for this is that drugs are challenging to deliver to the brain because there is a blood–brain barrier (BBB) protection mechanism in the brain, which only allows water, oxygen, and blood sugar to enter the brain through blood vessels. Other chemicals cannot enter the brain due to their large size or are considered harmful substances. As a result, the efficacy of drugs for treating brain diseases is only about 30%, which cannot satisfy treatment expectations. Therefore, researchers have designed many types of nanoparticles and nanocomposites to fight against the most common malignant tumors in the brain, and they have been successful in animal experiments. This review will discuss the application of various nanocomposites in diagnosing and treating GBM. The topics include (1) the efficient and long-term tracking of brain images (magnetic resonance imaging, MRI, and near-infrared light (NIR)); (2) breaking through BBB for drug delivery; and (3) natural and chemical drugs equipped with nanomaterials. These multifunctional nanoparticles can overcome current difficulties and achieve progressive GBM treatment and diagnosis results.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Aishwarya Satpathy
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| |
Collapse
|
9
|
Kim S, Deep G. Optical Imaging of Matrix Metalloproteinases Activity in Prostate Tumors in Mice. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2413:7-12. [PMID: 35044649 DOI: 10.1007/978-1-0716-1896-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular characterization of cancer could have significant clinical benefits, including early diagnosis, making treatment decisions, and monitoring therapeutic response. In this regard, noninvasive assessment of expression/activity of specific molecules in tumors could be vital in managing cancer. Optical probes have demonstrated promise in the molecular imaging of cancer. Here, we have described a method to noninvasively assess the activity of matrix metalloproteinases (MMPs) in human prostate tumors in mice. We used an activatable probe MMPSense™ 750 FAST (MMPSense750) with fluorescent properties in the near-infrared (NIR) range with peak excitation at ~749 nm and peak emission ~775 nm. These optical properties offer the advantage of a higher depth of detection. This probe has shown immense potential in imaging MMPs activity in deeper tissue with high target-specific signal and low background autofluorescence. Therefore, this probe could be valuable in assessing MMPs activity in primary tumors and metastasis.
Collapse
Affiliation(s)
- Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 2021; 51:566-593. [PMID: 34928283 DOI: 10.1039/d1cs00525a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time, dynamic optical visualization of lesions and margins ensures not only complete resection of the malignant tissues but also better preservation of the vital organs/tissues during surgical procedures. Most imaging probes with an "always-on" signal encounter high background noise due to their non-specific accumulation in normal tissues. By contrast, activatable molecular probes only "turn on" their signals upon reaction with the targeted biomolecules that are overexpressed in malignant cells, offering high target-to-background ratios with high specificity and sensitivity. This review summarizes the recent progress of activatable molecular probes in surgical imaging and diagnosis. The design principle and mechanism of activatable molecular probes are discussed, followed by specific emphasis on applications ranging from fluorescence-guided surgery to endoscopy and tissue biopsy. Finally, potential challenges and perspectives in the field of activatable molecular probe-enabled surgical imaging are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guopeng Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
11
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Morlandt AB, Moore LS, Johnson AO, Smith CM, Stevens TM, Warram JM, MacDougall M, Rosenthal EL, Amm HM. Fluorescently Labeled Cetuximab-IRDye800 for Guided Surgical Excision of Ameloblastoma: A Proof of Principle Study. J Oral Maxillofac Surg 2020; 78:1736-1747. [PMID: 32554066 PMCID: PMC7541684 DOI: 10.1016/j.joms.2020.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Fluorescently labeled epidermal growth factor receptor (EGFR) antibodies have successfully identified microscopic tumors in multiple in vivo models of human cancers with limited toxicity. The present study sought to demonstrate the ability of fluorescently labeled anti-EGFR, cetuximab-IRDye800, to localize to ameloblastoma (AB) tumor cells in vitro and in vivo. MATERIAL AND METHODS EGFR expression in AB cells was confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry. Primary AB cells were labeled in vitro with cetuximab-IRDye800 or nonspecific IgG-IRDye800. An in vivo patient-derived xenograft (PDX) model of AB was developed. The tumor tissue from 3 patients was implanted subcutaneously into immunocompromised mice. The mice received an intravenous injection of cetuximab-IRDye800 or IgG-IRDye800 and underwent imaging to detect infrared fluorescence using a Pearl imaging system (LI-COR Biosciences, Lincoln, NE). After resection of the overlying skin, the tumor/background ratios (TBRs) were calculated and statistically analyzed using a paired t test. RESULTS EGFR expression was seen in all AB samples. Tumor-specific labeling was achieved, as evidenced by a positive fluorescence signal from cetuximab-IRDye800 binding to AB cells, with little staining seen in the negative controls treated with IgG-IRDye800. In the animal PDX model, imaging revealed that the TBRs produced by cetuximab were significantly greater than those produced by IgG on days 7 to 14 for AB-20 tumors. After skin flap removal to simulate a preresection state, the TBRs increased with cetuximab and were significantly greater than the TBRs with the IgG control for PDX tumors derived from the 3 patients with AB. The excised tissues were embedded in paraffin and examined to confirm the presence of tumor. CONCLUSIONS Fluorescently labeled anti-EGFR demonstrated specificity for AB cells and PDX tumors. The present study is the first report of tumor-specific, antibody-based imaging of odontogenic tumors, of which AB is one of the most clinically aggressive. We expect this technology will ultimately assist surgeons treating AB by helping to accurately assess the tumor margins during surgery, leading to improved long-term local tumor control and less surgical morbidity.
Collapse
Affiliation(s)
- Anthony B Morlandt
- Associate Professor and Section Chief, Division of Oral Oncology, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Lindsay S Moore
- Resident, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Aubrey O Johnson
- Student, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Caris M Smith
- Researcher II, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Todd M Stevens
- Associate Professor, Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason M Warram
- Associate Professor, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Mary MacDougall
- Dean and Professor, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Eben L Rosenthal
- Professor, Division of Otolaryngology - Head and Neck Surgery, and Associate Director, Department of Clinical Care, Stanford Cancer Institute, Stanford University, Stanford, CA
| | - Hope M Amm
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
13
|
Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. Eur J Pharm Biopharm 2020; 152:123-143. [PMID: 32437752 DOI: 10.1016/j.ejpb.2020.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
Cancer is a public health problem and the main cause of human mortality and morbidity worldwide. Complete removal of tumors and metastatic lymph nodes in surgery is significantly beneficial for the prognosis of patients. Tumor-targeted, near-infrared fluorescent (NIRF) imaging is an emerging field of real-time intraoperative cancer imaging based on tumor-targeted NIRF dyes. Targeted NIRF dyes contain NIRF fluorophores and specific binding ligands such as antibodies, peptides and small molecules. The present article reviews recently updated tumor-targeted NIRF dyes for the molecular imaging of malignant tumors in the preclinical stage and clinical trials. The strengths and challenges of NIRF agents with tumor-targeting ability are also summarized. Smaller ligands, near infrared II dyes, dual-modality dyes and activatable dyes may contribute to quicker, deeper, stronger imaging in the nearest future. In this review, we highlighted tumor-targeted NIRF dyes for fluorescence-guided surgery and their potential clinical translation.
Collapse
|
14
|
Habimana-Griffin L, Ye D, Carpenter J, Prior J, Sudlow G, Marsala L, Mixdorf M, Rubin JB, Chen H, Achilefu S. Intracranial glioma xenograft model rapidly reestablishes blood-brain barrier integrity for longitudinal imaging of tumor progression using fluorescence molecular tomography and contrast agents. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-13. [PMID: 32112540 PMCID: PMC7047009 DOI: 10.1117/1.jbo.25.2.026004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
SIGNIFICANCE The blood-brain barrier (BBB) is a major obstacle to detecting and treating brain tumors. Overcoming this challenge will facilitate the early and accurate detection of brain lesions and guide surgical resection of tumors. AIM We generated an orthotopic brain tumor model that simulates the pathophysiology of gliomas at early stages; determine the BBB integrity and breakdown over the time course of tumor progression using generic and cancer-targeted near-infrared (NIR) fluorescent molecular probes. APPROACH We developed an intracranial tumor xenograft model that rapidly reestablished BBB integrity and monitored tumor progression by bioluminescence imaging. Sham control mice were injected with phosphate-buffered saline only. Fluorescence molecular tomography (FMT) was used to quantify the uptake of tumor-targeted and passive NIR fluorescent imaging agents in orthotopic glioma (U87-GL-GFP PDE7B H217Q cells) tumor model. Cancer-induced and transient (with focused ultrasound, FUS) disruption of BBB integrity was monitored with NIR fluorescent dyes. RESULTS Stereotactic injection of 50,000 cells into mouse brain allowed rapid reestablishment of BBB integrity within a week, as determined by the inability of both tumor-targeted and generic NIR imaging agents to extravasate into the brain. Tumor-induced BBB disruption was observed 7 weeks after tumor implantation. FUS achieved a similar effect at any time point after reestablishing BBB integrity. While tumor uptake and retention of the passive NIR dye, indocyanine green, was negligible, both actively tumor-targeting agents exhibited selective accumulation in the tumor region. The tumor-targeting molecular probe that clears rapidly from nontumor brain tissue exhibits higher contrast than the analogous vascular-targeting agent and helps delineate tumors from sham control. CONCLUSIONS We highlight the utility of FMT imaging for longitudinal assessment of brain tumors and the interplay between the stages of BBB disruption and molecular probe retention in tumors, with potential application to other neurological diseases.
Collapse
Affiliation(s)
- LeMoyne Habimana-Griffin
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Dezhuang Ye
- Washington University, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
| | - Julia Carpenter
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Julie Prior
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Gail Sudlow
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Lynne Marsala
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Matthew Mixdorf
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Joshua B. Rubin
- Washington University School of Medicine, Department of Pediatrics, St. Louis, Missouri, United States
| | - Hong Chen
- Washington University, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiation Oncology, St. Louis, Missouri, United States
| | - Samuel Achilefu
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, St. Louis, Missouri, United States
| |
Collapse
|
15
|
Kondo N. [Development of Novel Nuclear Medical Imaging Probes for Quantification of Matrix Metalloproteinases in Diseases]. YAKUGAKU ZASSHI 2020; 140:7-13. [PMID: 31902888 DOI: 10.1248/yakushi.19-00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) regulate various cellular functions, such as motility, invasion, differentiation, and apoptosis. Precise in vivo quantification of MMPs in disease can provide beneficial information for both basic and clinical research studies. To this end, various types of probes have been developed for imaging MMPs in vivo. In this review, representative MMP-targeted probes, such as binding probes and activatable probes, are outlined, including highlights of our own research. In addition, strategies for the development of probes that apply "theranostics," a concept that integrates therapy and diagnostics, are elucidated with reference to [18F]IPFP, a new probe developed in our laboratory. [18F]IPFP was prepared by iodination of a known MMP inhibitor to enhance its affinity and labeled with the compact prosthetic agent 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) for MMP-targeted positron-emission tomography (PET) and other therapeutic properties. IPFP demonstrated high inhibitory activity toward MMP-12 (IC50 value=1.5 nM). Radioactivity accumulation in the lungs 90 min after administration of [18F]IPFP was 4-fold higher in chronic obstructive pulmonary disease (COPD) mice overexpressing MMPs compared with normal mice. Ex vivo PET confirmed the radioactivity distribution in tissues, and autoradiography analysis demonstrated accumulation differences between COPD and normal mice. Consequently, [18F]IPFP showed potent inhibitory activities against MMPs and suitable pharmacokinetics for imaging pulmonary disease. Thus, [18F]IPFP is a promising theranostic probe for pulmonary disease and is expected to be applied to various other MMP-related diseases. Strategies for MMP probe development introduced in this review are anticipated to lead to the development of superior imaging probes in the future.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
16
|
Abstract
The spatiotemporal determination of molecular events and cells is important for understanding disease processes, especially in oncology, and thus for the development of novel treatments. Equally important is the knowledge of the biodistribution, localization, and targeted accumulation of novel therapies as well as monitoring of tumor growth and therapeutic response. Optical imaging provides an ideal versatile platform for imaging of all these problems and questions.
Collapse
|