1
|
Wang J, Huang Q, Chen X, You Z, He K, Mao X, Huang Y, Franzmeier N, Schöll M, Guo T, Zhao J, Guan Y, Ni R, Li B, Xie F. Prediction of longitudinal synaptic loss in Alzheimer's disease using tau PET and plasma biomarkers. Alzheimers Dement 2025; 21:e70333. [PMID: 40432308 PMCID: PMC12117192 DOI: 10.1002/alz.70333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
INTRODUCTION We investigated the associations of longitudinal synaptic loss and cognitive decline with tau burden and plasma biomarkers in Alzheimer's disease (AD). METHODS Twenty cognitively impaired (CI) individuals and 16 healthy controls (HC) underwent cognitive and plasma biomarker assessments, amyloid positron emission tomography (PET), tau PET, and synaptic density PET; after 1 year, tau and synaptic density PET were repeated. The relationships among tau burden, plasma biomarkers, synaptic density, and cognition were investigated. RESULTS The CI group had more longitudinal synapse loss and tau deposition than HCs. Longitudinal synaptic loss was positively associated with longitudinal cognitive decline, negatively with longitudinal tau deposition. Plasma glial fibrillary acidic protein (GFAP) mediates the relationship between longitudinal tau deposition and longitudinal synaptic loss. Tau burden, plasma phosphorylated tau181, and GFAP could predict longitudinal synaptic loss and cognitive decline. CONCLUSIONS The CI group had more longitudinal synapse loss and tau burden increases than HCs. Tau pathology and plasma GFAP could predict longitudinal synapse loss and cognitive decline. HIGHLIGHTS Cognitively impaired individuals had more longitudinal synapse loss in the medial temporal lobe, and increased tau burden in the widespread neocortex than healthy controls. The longitudinal change of synaptic density was negatively associated with the longitudinal change of tau burden, and positively associated with longitudinal cognitive decline. Plasma glial fibrillary acidic protein (GFAP) mediates the relationship between longitudinal tau deposition and longitudinal synaptic loss. Tau burden, plasma phosphorylated tau181, and GFAP could predict longitudinal synaptic loss and cognitive decline.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xing Chen
- Department of Nuclear MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhiwen You
- Department of Nuclear MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiaoxie Mao
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yiyun Huang
- PET CenterDepartment of Radiology and Biomedical ImagingYale University School of MedicineNew HavenConnecticutUSA
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD)LMU University Hospital, Ludwig‐Maximilians‐University (LMU)MunichGermany
- Institute of Neuroscience and PhysiologyMunich Cluster for Systems Neurology (SyNergy)MunichGermany
- Department of Psychiatry and NeurochemistryUniversity of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and PhysiologyGothenburgSweden
| | - Michael Schöll
- Department of Psychiatry and NeurochemistryUniversity of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and PhysiologyGothenburgSweden
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Jun Zhao
- Department of Nuclear MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ruiqing Ni
- Institute for Biomedical EngineeringInstitute for Regenerative MedicineUniversity of Zurich & ETH Zurich, Zurich; Department of Nuclear Medicine, InselspitalBernSwitzerland
| | - Binyin Li
- Department of Neurology and Institute of NeurologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Goto R, Matsuoka K, Kimura Y, Kataoka Y, Oya M, Hirata K, Tagai K, Takahata K, Seki C, Kawamura K, Zhang MR, Higuchi M, Endo H. Human biodistribution and radiation dosimetry of two novel α-synuclein PET tracers, 18F-SPAL-T-06 and 18F-C05-05. Sci Rep 2025; 15:8640. [PMID: 40082668 PMCID: PMC11906790 DOI: 10.1038/s41598-025-93520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
18F-SPAL-T-06 and 18F-C05-05 are two novel positron emission tomography (PET) radioligands targeting α-synuclein fibrils. Our study aimed to evaluate the biodistribution, safety, and radiation dosimetry of each tracer in humans. Biodistribution and radiation dosimetry studies were carried out with two healthy volunteers for each tracer, 18F-SPAL-T-06 (one female and one male volunteer, both aged 63 years) and 18F-C05-05 (one female and one male volunteer, aged 63 and 73 years, respectively). After injection of either tracer, dynamic PET images were acquired from head to upper thigh. Effective dose of each tracer was estimated using OLINDA/EXM Version 2.2. Injection of either of the tracers caused no adverse effects. Greatest uptake of both tracers was observed in the liver and small intestine. The estimated absorbed doses were highest in the biliary tract, followed by the lower large intestinal wall. Effective doses were 35.9 µSv/MBq for 18F-SPAL-T-06 and 30.5 µSv/MBq for 18F-C05-05. 18F-SPAL-T-06 and 18F-C05-05 are safe for in vivo PET imaging of humans. Their mean effective doses were 6.6 mSv for 18F-SPAL-T-06 and 5.6 mSv for 18F-C05-05 when 185 MBq of either tracer was given to a subject, and they were comparable to other amyloid and tau PET tracers labelled with 18F.Trial registration Trial registration number: jRCTs031210180, Registered date: 2nd July 2021 (18F-SPAL-T-06) https://jrct.niph.go.jp/en-latest-detail/jRCTs031210180 and Trial registration number: jRCTs031220123, Registered date: 9th June 2022 (18F-C05-05) https://jrct.niph.go.jp/en-latest-detail/jRCTs031220123 .
Collapse
Affiliation(s)
- Ryoji Goto
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuyuki Kimura
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yuko Kataoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masaki Oya
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kosei Hirata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Keisuke Takahata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Chie Seki
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuroetiology and Diagnostic Science, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
3
|
Wongso H, Harada R, Furumoto S. Current Progress and Future Directions in Non-Alzheimer's Disease Tau PET Tracers. ACS Chem Neurosci 2025; 16:111-127. [PMID: 39762194 DOI: 10.1021/acschemneuro.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [18F]FDDNP, [11C]PBB3, [18F]flortaucipir, and the [18F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD. In 2020, [18F]flortaucipir was approved by the U.S. Food and Drug Administration for PET imaging of tau pathology in adult patients with cognitive deficits undergoing evaluation for AD. Despite remarkable progress in the development of AD tau PET tracers, imaging agents for rare non-AD tauopathies (4R tauopathies [predominantly expressing a 4R tau isoform], involved in progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and globular glial tauopathy, and 3R tauopathies [predominantly expressing a 3R tau isoform], such as Pick's disease) remain substantially underdeveloped. In this review, we discuss recent progress in tau PET tracer development, with particular emphasis on clinically validated tracers for AD and their potential use for non-AD tauopathies. Additionally, we highlight the critical need for further development of tau PET tracers specifically designed for non-AD tauopathies, an area that remains significantly underexplored despite its importance in advancing the understanding and diagnosis of these disorders.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Ryuichi Harada
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Shozo Furumoto
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
4
|
Lin KJ, Huang SY, Huang KL, Huang CC, Hsiao IT. Human biodistribution and radiation dosimetry for the tau tracer [ 18F]Florzolotau in healthy subjects. EJNMMI Radiopharm Chem 2024; 9:27. [PMID: 38563872 PMCID: PMC10987466 DOI: 10.1186/s41181-024-00259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Tau pathology plays a crucial role in neurodegeneration diseases including Alzheimer's disease (AD) and non-AD diseases such as progressive supranuclear palsy. Tau positron emission tomography (PET) is an in-vivo and non-invasive medical imaging technique for detecting and visualizing tau deposition within a human brain. In this work, we aim to investigate the biodistribution of the dosimetry in the whole body and various organs for the [18F]Florzolotau tau-PET tracer. A total of 12 healthy controls (HCs) were enrolled at Chang Gung Memorial Hospital. All subjects were injected with approximately 379.03 ± 7.03 MBq of [18F]Florzolotau intravenously, and a whole-body PET/CT scan was performed for each subject. For image processing, the VOI for each organ was delineated manually by using the PMOD 3.7 software. Then, the time-activity curve of each organ was acquired by optimally fitting an exponential uptake and clearance model using the least squares method implemented in OLINDA/EXM 2.1 software. The absorbed dose for each target organ and the effective dose were finally calculated. RESULTS From the biodistribution results, the elimination of [18F]Florzolotau is observed mainly from the liver to the intestine and partially through the kidneys. The highest organ-absorbed dose occurred in the right colon wall (255.83 μSv/MBq), and then in the small intestine (218.67 μSv/MBq), gallbladder wall (151.42 μSv/MBq), left colon wall (93.31 μSv/MBq), and liver (84.15 μSv/MBq). Based on the ICRP103, the final computed effective dose was 34.9 μSv/MBq with CV of 10.07%. CONCLUSIONS The biodistribution study of [18F]Florzolotau demonstrated that the excretion of [18F]Florzolotau are mainly through the hepatobiliary and gastrointestinal pathways. Therefore, a routine injection of 370 MBq or 185 MBq of [18F]Florzolotau leads to an estimated effective dose of 12.92 or 6.46 mSv, and as a result, the radiation exposure to the whole-body and each organ remains within acceptable limits and adheres to established constraints. TRIAL REGISTRATION Retrospectively Registered at Clinicaltrials.gov (NCT03625128) on 12 July, 2018, https://clinicaltrials.gov/study/NCT03625128 .
Collapse
Affiliation(s)
- Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan
| | - Shao-Yi Huang
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan.
| |
Collapse
|
5
|
Wagatsuma K, Miwa K, Akamatsu G, Yamao T, Kamitaka Y, Sakurai M, Fujita N, Hanaoka K, Matsuda H, Ishii K. Toward standardization of tau PET imaging corresponding to various tau PET tracers: a multicenter phantom study. Ann Nucl Med 2023; 37:494-503. [PMID: 37243882 DOI: 10.1007/s12149-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Tau positron emission tomography (PET) imaging is a recently developed non-invasive tool that can detect the density and extension of tau neurofibrillary tangles. Tau PET tracers have been validated to harmonize and accelerate their development and implementation in clinical practice. Whereas standard protocols including injected dose, uptake time, and duration have been determined for tau PET tracers, reconstruction parameters have not been standardized. The present study conducted phantom experiments based on tau pathology to standardize quantitative tau PET imaging parameters and optimize reconstruction conditions of PET scanners at four Japanese sites according to the results of phantom experiments. METHODS The activity of 4.0 and 2.0 kBq/mL for Hoffman 3D brain and cylindrical phantoms, respectively, was estimated from published studies of brain activity using [18F]flortaucipir, [18F]THK5351, and [18F]MK6240. We developed an original tau-specific volume of interest template for the brain based on pathophysiological tau distribution in the brain defined as Braak stages. We acquired brain and cylindrical phantom images using four PET scanners. Iteration numbers were determined as contrast and recover coefficients (RCs) in gray (GM) and white (WM) matter, and the magnitude of the Gaussian filter was determined from image noise. RESULTS Contrast and RC converged at ≥ 4 iterations, the error rates of RC for GM and WM were < 15% and 1%, respectively, and noise was < 10% in Gaussian filters of 2-4 mm in images acquired using the four scanners. Optimizing the reconstruction conditions for phantom tau PET images acquired by each scanner improved contrast and image noise. CONCLUSIONS The phantom activity was comprehensive for first- and second-generation tau PET tracers. The mid-range activity that we determined could be applied to later tau PET tracers. We propose an analytical tau-specific VOI template based on tau pathophysiological changes in patients with AD to standardize tau PET imaging. Phantom images reconstructed under the optimized conditions for tau PET imaging achieved excellent image quality and quantitative accuracy.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Minoru Sakurai
- Clinical Imaging Center for Healthcare, Nippon Medical School, 1-12-15, Sendagi, Bunkyo-Ku, Tokyo, 113-0022, Japan
| | - Naotoshi Fujita
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Kohei Hanaoka
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, 7-115, Yatsuyamada, Koriyama, 963-8052, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| |
Collapse
|
6
|
Conte M, De Feo MS, Sidrak MMA, Corica F, Gorica J, Granese GM, Filippi L, De Vincentis G, Frantellizzi V. Imaging of Tauopathies with PET Ligands: State of the Art and Future Outlook. Diagnostics (Basel) 2023; 13:diagnostics13101682. [PMID: 37238166 DOI: 10.3390/diagnostics13101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Tauopathies are a group of diseases characterized by the deposition of abnormal tau protein. They are distinguished into 3R, 4R, and 3R/4R tauopathies and also include Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Positron emission tomography (PET) imaging represents a pivotal instrument to guide clinicians. This systematic review aims to summarize the current and novel PET tracers. (2) Methods: Literature research was conducted on Pubmed, Scopus, Medline, Central, and the Web of Science using the query "pet ligands" and "tauopathies". Articles published from January 2018 to 9 February, 2023, were searched. Only studies on the development of novel PET radiotracers for imaging in tauopathies or comparative studies between existing PET tracers were included. (3) Results: A total of 126 articles were found, as follows: 96 were identified from PubMed, 27 from Scopus, one on Central, two on Medline, and zero on the Web of Science. Twenty-four duplicated works were excluded, and 63 articles did not satisfy the inclusion criteria. The remaining 40 articles were included for quality assessment. (4) Conclusions: PET imaging represents a valid instrument capable of helping clinicians in diagnosis, but it is not always perfect in differential diagnosis, even if further investigations on humans for novel promising ligands are needed.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Marko Magdi Abdou Sidrak
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ferdinando Corica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Maria Granese
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 00410 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
7
|
Miyamoto M, Okuyama C, Kagawa S, Kusano K, Takahashi M, Takahata K, Jang MK, Yamauchi H. Radiation dosimetry and pharmacokinetics of the tau PET tracer florzolotau (18F) in healthy Japanese subjects. Ann Nucl Med 2023; 37:300-309. [PMID: 36890399 PMCID: PMC10129982 DOI: 10.1007/s12149-023-01828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE Abnormal aggregation of tau in the brain is a major contributing factor in various neurodegenerative diseases. Florzolotau (18F) (florzolotau, APN-1607, PM-PBB3) has been shown to be a probe for tau fibrils in an animal model and patients with Alzheimer's disease and those with non-Alzheimer's disease tauopathies. The objective of this study is to evaluate the safety, pharmacokinetics, and radiation dose following a single intravenous administration of florzolotau in healthy Japanese subjects. METHODS Three healthy male Japanese subjects aged between 20 and 64 were enrolled in this study. Subjects were determined to be eligible based on the screening assessments at the study site. Subjects received a single intravenous dose of 195.0 ± 0.5 MBq of florzolotau and underwent the whole-body PET scan 10 times in total to calculate absorbed doses to major organs/tissues and effective dose. Radioactivities in whole blood and urine were also measured for pharmacokinetic evaluation. Absorbed doses to major organs/tissues and effective dose were estimated using the medical internal radiation dose (MIRD) method. Vital signs, electrocardiography (ECG), and blood tests were done for safety evaluation. RESULTS The intravenous injection of florzolotau was well tolerated. There were no adverse events or clinically detectable pharmacologic effects related to the tracer in any subjects. No significant changes in vital signs and ECG were observed. The highest mean initial uptake at 15 min after injection was in the liver (29.0 ± 4.0%ID), intestine (4.69 ± 1.65%ID), and brain (2.13 ± 0.18%ID). The highest absorbed dose was 508 μGy/MBq of the gallbladder wall, followed by the liver of 79.4 μGy/MBq, the pancreas of 42.5 μGy/MBq, and the upper large intestine of 34.2 μGy/MBq. The effective dose was calculated as 19.7 μSv/MBq according to the tissue weighting factor reported by ICRP-103. CONCLUSION Florzolotau intravenous injection was well tolerated in healthy male Japanese subjects. The effective dose was determined as 3.61 mSv when 185 MBq florzolotau was given.
Collapse
Affiliation(s)
| | - Chio Okuyama
- Shiga Medical Center Research Institute, Moriyama, Japan
| | - Shinya Kagawa
- Shiga Medical Center Research Institute, Moriyama, Japan
| | | | | | - Keisuke Takahata
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Hiroshi Yamauchi
- Shiga Medical Center Research Institute, Moriyama, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Seibyl JP, DuBois JM, Racine A, Collins J, Guo Q, Wooten D, Stage E, Cheng D, Gunn RN, Porat L, Whittington A, Kuo PH, Ichise M, Comley R, Martarello L, Salinas C. A Visual Interpretation Algorithm for Assessing Brain Tauopathy with 18F-MK-6240 PET. J Nucl Med 2023; 64:444-451. [PMID: 36175137 PMCID: PMC10071795 DOI: 10.2967/jnumed.122.264371] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo characterization of pathologic deposition of tau protein in the human brain by PET imaging is a promising tool in drug development trials of Alzheimer disease (AD). 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (18F-MK-6240) is a radiotracer with high selectivity and subnanomolar affinity for neurofibrillary tangles that shows favorable nonspecific brain penetration and excellent kinetic properties. The purpose of the present investigation was to develop a visual assessment method that provides both an overall assessment of brain tauopathy and regional characterization of abnormal tau deposition. Methods: 18F-MK-6240 scans from 102 participants (including cognitively normal volunteers and patients with AD or other neurodegenerative disorders) were reviewed by an expert nuclear medicine physician masked to each participant's diagnosis to identify common patterns of brain uptake. This initial visual read method was field-tested in a separate, nonoverlapping cohort of 102 participants, with 2 additional naïve readers trained on the method. Visual read outcomes were compared with semiquantitative assessments using volume-of-interest SUV ratio. Results: For the visual read, the readers assessed 8 gray-matter regions per hemisphere as negative (no abnormal uptake) or positive (1%-25% of the region involved, 25%-75% involvement, or >75% involvement) and then characterized the tau binding pattern as positive or negative for evidence of tau and, if positive, whether brain uptake was in an AD pattern. The readers demonstrated agreement 94% of the time for overall positivity or negativity. Concordance on the determination of regional binary outcomes (negative or positive) showed agreement of 74.3% and a Fleiss κ of 0.912. Using clinical diagnosis as the ground truth, the readers demonstrated a sensitivity of 73%-79% and specificity of 91%-93%, with a combined reader-concordance sensitivity of 80% and specificity of 93%. The average SUV ratio in cortical regions showed a robust correlation with visually derived ratings of regional involvement (r = 0.73, P < 0.0001). Conclusion: We developed a visual read algorithm for 18F-MK-6240 PET offering determination of both scan positivity and the regional degree of cortical involvement. These cross-sectional results show strong interreader concordance on both binary and regional assessments of tau deposition, as well as good sensitivity and excellent specificity supporting use as a tool for clinical trials.
Collapse
Affiliation(s)
- John P Seibyl
- Institute for Neurodegenerative Disorders, New Haven, Connecticut;
- Invicro, New Haven, Connecticut
| | | | | | | | - Qi Guo
- AbbVie, North Chicago, Illinois
| | | | | | | | | | | | | | | | - Masanori Ichise
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | | | | |
Collapse
|
9
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
11
|
Ohnishi A, Akamatsu G, Ikari Y, Nishida H, Shimizu K, Matsumoto K, Aita K, Sasaki M, Yamamoto Y, Yamane T, Senda M. Dosimetry and efficacy of a tau PET tracer [ 18F]MK-6240 in Japanese healthy elderly and patients with Alzheimer's disease. Ann Nucl Med 2023; 37:108-120. [PMID: 36411357 PMCID: PMC9902412 DOI: 10.1007/s12149-022-01808-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A new tau PET tracer [18F]MK-6240 has been developed; however, its dosimetry and pharmacokinetics have been published only for a European population. This study investigated the safety, radiation dosimetry, pharmacokinetics and biodistribution of [18F]MK-6240 in Japanese elderly subjects. Also, the pattern and extent of brain retention of [18F]MK-6240 in Japanese healthy elderly subjects and patients with Alzheimer's disease (AD) were investigated. These Japanese results were compared with previous reports on non-Japanese. METHODS Three healthy elderly subjects and three AD patients were enrolled. Dynamic whole-body PET scans were acquired for up to 232 min after starting injection of [18F]MK-6240 (370.4 ± 27.0 MBq) for the former, while a dynamic brain scan was performed from 0 to 75 min post injection for the latter. For both groups, brain PET scans were conducted from 90 to 110 min post injection. Sequential venous blood sampling was performed to measure the radioactivity concentration in the whole blood and plasma as well as the percentages of parent [18F]MK-6240 and radioactive metabolites in plasma. Organ doses and effective doses were estimated using the OLINDA Ver.2 software. Standardized uptake value ratios (SUVRs) and distribution volume ratios (DVRs) by Logan reference tissue model (LRTM) were measured in eight brain regions using the cerebellar cortex as the reference. Blood tests, urine analysis, vital signs and electrocardiography were performed for safety assessments. RESULTS No adverse events were observed. The highest radiation doses were received by the gallbladder (257.7 ± 74.9 μGy/MBq) and the urinary bladder (127.3 ± 11.7 μGy/MBq). The effective dose was 26.8 ± 1.4 μSv/MBq. The parent form ([18F]MK-6240) was metabolized quickly and was less than 15% by 35 min post injection. While no obvious accumulation was found in the brain of healthy subjects, focal accumulation of [18F]MK-6240 was observed in the cerebral cortex of AD patients. Regional SUVRs of the focal lesions in AD patients increased gradually over time, and the difference of SUVRs between healthy subjects and AD patients became large and stable at 90 min after injection. High correlations of SUVR and DVR were observed (p < 0.01). CONCLUSION The findings supported safety and efficacy of [18F]MK-6240 as a tau PET tracer for Japanese populations. Even though the number of subjects was limited, the radiation dosimetry profiles, pharmacokinetics, and biodistribution of [18F]MK-6240 were consistent with those for non-Japanese populations. TRIAL REGISTRATION Japan Pharmaceutical Information Center ID, JapicCTI-194972.
Collapse
Affiliation(s)
- Akihito Ohnishi
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Radiology, Kobe Red Cross Hospital, 1-3-1 Wakinohamakaigan-Dori, Chuo-Ku, Kobe, Hyogo, 651-0073, Japan
| | - Go Akamatsu
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Yasuhiko Ikari
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Medical Physics and Engineering Course of Health Science, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, 565-0871, Japan
| | - Hiroyuki Nishida
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Keiji Shimizu
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Keiichi Matsumoto
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Radiological Technology, Kyoto College of Medical Science, 1-3 Imakita Oyamahigashi-Cho, Sonobe Nantan, Kyoto, 622-0041, Japan
| | - Kazuki Aita
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Masahiro Sasaki
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuji Yamamoto
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Tomohiko Yamane
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Michio Senda
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
12
|
Long-term test-retest of cerebral [18F]MK-6240 binding and longitudinal evaluation of extracerebral tracer uptake in healthy controls and amnestic MCI patients. Eur J Nucl Med Mol Imaging 2022; 49:4580-4588. [DOI: 10.1007/s00259-022-05907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
13
|
Mertens N, Michiels L, Vanderlinden G, Vandenbulcke M, Lemmens R, Van Laere K, Koole M. Impact of meningeal uptake and partial volume correction techniques on [ 18F]MK-6240 binding in aMCI patients and healthy controls. J Cereb Blood Flow Metab 2022; 42:1236-1246. [PMID: 35062837 PMCID: PMC9207493 DOI: 10.1177/0271678x221076023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
[18F]MK-6240 is a second-generation tau PET-tracer to quantify neurofibrillary tangles in-vivo. However, individually variable levels of meningeal uptake induce spill-in-effects into the cortex, complicating [18F]MK-6240 PET quantification. Group SUVR differences between age-matched HC subgroups with varying extracerebral uptake (EC-low/mixed/high), and between aMCI and each HC subgroup were assessed without and with partial volume correction (PVC). Both Müller-Gartner (MG-)PVC and region-based voxelwise (RBV-)PVC, with the latter also correcting for extracerebral spill-in-effects, were implemented. Between HC groups, where no differences are to be expected, HC EC-high showed spill-in differences compared to HC EC-low when no PVC was applied while for MG-PVC, differences were reduced and, for RBV-PVC, no statistically significant differences were observed. Between aMCI and HC, cortical SUVR differences were statistically significant, both without and with PVC, but modulated by the varying meningeal uptake in HC subgroups when no PVC was applied. After applying PVC, correlations to clinical parameters improved and effect sizes between HC and aMCI increased, independent of the HC-subgroup. Therefore, appropriate PVC with correction for extracerebral spill-in-effects is recommended to minimize the impact of varying meningeal uptake on cortical differences between HC and aMCI.
Collapse
Affiliation(s)
- Nathalie Mertens
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium.,Old-Age Psychiatry, University Hospital and KU Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Nerella SG, Singh P, Sanam T, Digwal CS. PET Molecular Imaging in Drug Development: The Imaging and Chemistry Perspective. Front Med (Lausanne) 2022; 9:812270. [PMID: 35295604 PMCID: PMC8919964 DOI: 10.3389/fmed.2022.812270] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography with selective radioligands advances the drug discovery and development process by revealing information about target engagement, proof of mechanism, pharmacokinetic and pharmacodynamic profiles. Positron emission tomography (PET) is an essential and highly significant tool to study therapeutic drug development, dose regimen, and the drug plasma concentrations of new drug candidates. Selective radioligands bring up target-specific information in several disease states including cancer, cardiovascular, and neurological conditions by quantifying various rates of biological processes with PET, which are associated with its physiological changes in living subjects, thus it reveals disease progression and also advances the clinical investigation. This study explores the major roles, applications, and advances of PET molecular imaging in drug discovery and development process with a wide range of radiochemistry as well as clinical outcomes of positron-emitting carbon-11 and fluorine-18 radiotracers.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Tulja Sanam
- Department of Microbiology and Applied Sciences, University of Agricultural Sciences, Bangalore, India
| | - Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
16
|
Wang Y, Cai L, Zhou K, Cui M, Yao S. Biodistribution and Dosimetry Evaluation for a Novel Tau Tracer [18F]-S16 in Healthy Volunteers and Its Application in Assessment of Tau Pathology in Alzheimer’s Disease. Front Bioeng Biotechnol 2022; 9:812818. [PMID: 35223820 PMCID: PMC8866701 DOI: 10.3389/fbioe.2021.812818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Background: The goal of this study was to report a fully automated radiosynthetic procedure of a novel tau tracer [18F]-S16 and its safety, biodistribution, and dosimetry in healthy volunteers as well as the potential utility of [18F]-S16 positron emission tomography (PET) in Alzheimer’s disease (AD).Methods: The automated radiosynthesis of [18F]-S16 was performed on a GE Tracerlab FX2 N module. For the biodistribution and dosimetry study, healthy volunteers underwent a series of PET scans acquired at 10, 60, 120, and 240 min post-injection. The biodistribution and safety were assessed. For the AD study, both AD and healthy controls (HCs) underwent dynamic [18F]-S16 and static [18F]-FDG PET imaging. [18F]-S16 binding was assessed quantitatively using standardized uptake value ratios (SUVRs) measured at different regions of interest (ROIs). [18F]-S16 SUVRs were compared between the AD patients and HCs using the Mann–Whitney U-test. In AD patients with all cortical ROIs, Spearman rank-correlation analysis was used to calculate the voxel-wise correlations between [18F]-S16 and [18F]-FDG.Results: The automated radiosynthesis of [18F]-S16 was finished within 45 min, with a radiochemical yield of 30 ± 5% (n = 8, non-decay-corrected). The radiochemical purity was greater than 98%, and the specific activity was calculated to be 1,047 ± 450 GBq/μmol (n = 5), and [18F]-S16 was stable in vitro. In the healthy volunteer study, no adverse effect was observed within 24 h post-injection, and no defluorination was observed in vivo. The radiotracer could pass through the blood–brain barrier easily and was rapidly cleared from the circulation and excreted through the hepatic system. The whole-body mean effective dose was 15.3 ± 0.3 μSv/MBq. In AD patients, [18F]-S16 accumulation was identified as involving the parietal, temporal, precuneus, posterior cingulate, and frontal lobes. No specific [18F]-S16 cerebral uptake was identified in HCs. The SUVR of AD patients was significantly higher than that of HCs. No specific binding uptake was found in the choroid plexus, venous sinus, and white matter. A significant correlation was found between [18F]-S16 binding and hypometabolism across neocortical regions.Conclusion: [18F]-S16 could be synthesized automatically, and it showed favorable biodistribution and safety in humans. [18F]-S16 PET indicated a high image quality for imaging tau deposition in AD and distinguishing AD from HCs.
Collapse
Affiliation(s)
- Ying Wang
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Cai
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaixiang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Shaobo Yao
- Department of PET/CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, China
- Department of Nuclear Medicine, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Shaobo Yao,
| |
Collapse
|
17
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Levy JP, Bezgin G, Savard M, Pascoal TA, Finger E, Laforce R, Sonnen JA, Soucy JP, Gauthier S, Rosa-Neto P, Ducharme S. 18F-MK-6240 tau-PET in genetic frontotemporal dementia. Brain 2021; 145:1763-1772. [PMID: 34664612 PMCID: PMC9166561 DOI: 10.1093/brain/awab392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient’s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer’s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer’s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer’s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer’s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability.
Collapse
Affiliation(s)
- Jake P Levy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Parkwood Institute, Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques du CHU de Québec, Faculté de Médecine, Université Laval, QC, Canada
| | - Joshua A Sonnen
- Departments of Pathology, Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Douglas Mental Health University Institute, Department of Psychiatry, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
19
|
Abstract
The use of PET imaging agents in oncology, cardiovascular disease, and neurodegenerative disease shows the power of this technique in evaluating the molecular and biological characteristics of numerous diseases. These agents provide crucial information for designing therapeutic strategies for individual patients. Novel PET tracers are in continual development and many have potential use in clinical and research settings. This article discusses the potential applications of tracers in diagnostics, the biological characteristics of diseases, the ability to provide prognostic indicators, and using this information to guide treatment strategies including monitoring treatment efficacy in real time to improve outcomes and survival.
Collapse
|
20
|
Kondo T, Banno H, Okunomiya T, Amino Y, Endo K, Nakakura A, Uozumi R, Kinoshita A, Tada H, Morita S, Ishikawa H, Shindo A, Yasuda K, Taruno Y, Maki T, Suehiro T, Mori K, Ikeda M, Fujita K, Izumi Y, Kanemaru K, Ishii K, Shigenobu K, Kutoku Y, Sunada Y, Kawakatsu S, Shiota S, Watanabe T, Uchikawa O, Takahashi R, Tomimoto H, Inoue H. Repurposing bromocriptine for Aβ metabolism in Alzheimer's disease (REBRAnD) study: randomised placebo-controlled double-blind comparative trial and open-label extension trial to investigate the safety and efficacy of bromocriptine in Alzheimer's disease with presenilin 1 (PSEN1) mutations. BMJ Open 2021; 11:e051343. [PMID: 34193504 PMCID: PMC8246358 DOI: 10.1136/bmjopen-2021-051343] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is one of the most common causes of dementia. Pathogenic variants in the presenilin 1 (PSEN1) gene are the most frequent cause of early-onset AD. Medications for patients with AD bearing PSEN1 mutation (PSEN1-AD) are limited to symptomatic therapies and no established radical treatments are available. Induced pluripotent stem cell (iPSC)-based drug repurposing identified bromocriptine as a therapeutic candidate for PSEN1-AD. In this study, we used an enrichment strategy with iPSCs to select the study population, and we will investigate the safety and efficacy of an orally administered dose of bromocriptine in patients with PSEN1-AD. METHODS AND ANALYSIS This is a multicentre, randomised, placebo-controlled trial. AD patients with PSEN1 mutations and a Mini Mental State Examination-Japanese score of ≤25 will be randomly assigned, at a 2:1 ratio, to the trial drug or placebo group (≥4 patients in TW-012R and ≥2 patients in placebo). This clinical trial consists of a screening period, double-blind phase (9 months) and extension phase (3 months). The double-blind phase for evaluating the efficacy and safety is composed of the low-dose maintenance period (10 mg/day), high-dose maintenance period (22.5 mg/day) and tapering period of the trial drug. Additionally, there is an open-labelled active drug extension period for evaluating long-term safety. Primary outcomes are safety and efficacy in cognitive and psychological function. Also, exploratory investigations for the efficacy of bromocriptine by neurological scores and biomarkers will be conducted. ETHICS AND DISSEMINATION The proposed trial is conducted according to the Declaration of Helsinki, and was approved by the Institutional Review Board (K070). The study results are expected to be disseminated at international or national conferences and published in international journals following the peer-review process. TRIAL REGISTRATION NUMBER jRCT2041200008, NCT04413344.
Collapse
Affiliation(s)
- Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Haruhiko Banno
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Taro Okunomiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Yoko Amino
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Kayoko Endo
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Akiyoshi Nakakura
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Ryuji Uozumi
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akemi Kinoshita
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Harue Tada
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ken Yasuda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Suehiro
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Fujita
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazutomi Kanemaru
- Department of Stroke, Tokyo Metropolitan Geriatric Medical Center, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Yumiko Kutoku
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Fukushima Medical University Aizu Medical Center, Aizu, Japan
| | | | | | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
21
|
Luo C, Ampomah-Wireko M, Wang H, Wu C, Wang Q, Zhang H, Cao Y. Isoquinolines: Important Cores in Many Marketed and Clinical Drugs. Anticancer Agents Med Chem 2021; 21:811-824. [PMID: 32329698 DOI: 10.2174/1871520620666200424132248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Isoquinoline analogs are an important, structurally diverse class of compounds that are extensively used as pharmaceuticals. Derivatives containing the isoquinoline scaffold have become a focus of therapeutic research because of their wide range of biological characteristics. Examples of these drugs, many of which are in clinical application or at the pre-clinical stage, are used to treat a broad swathe of ailments, such as tumors, respiratory diseases, infections, nervous system diseases, cardiovascular and cerebrovascular diseases, endocrine and metabolic diseases. METHODS Data were collected from PubMed, Web of Science, and SciFinder, through searches of drug names. RESULTS At least 38 isoquinoline-based therapeutic drugs are in clinical application or clinical trials, and their chemical structure and pharmacokinetics are described in detail. CONCLUSION The isoquinoline ring is a privileged scaffold which is often preferred as a structural basis for drug design, and plays an important role in drug discovery. This review provides a guide for pharmacologists to find effective preclinical/clinical drugs and examines recent progress in the application of the isoquinoline scaffold.
Collapse
Affiliation(s)
- Chunying Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Huanhuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|