1
|
Encarnação PMCC, Correia PMM, Ribeiro FM, Veloso JFCA. Timing performance evaluation of a dual-Axis rotational PET system according to NEMA NU 4-2008 standards: A simulation study. Biomed Phys Eng Express 2025; 11:035012. [PMID: 40146005 DOI: 10.1088/2057-1976/adc5f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
Introduction:Positron Emission Tomography (PET) imaging's diagnostic accuracy is dependent on the scanner design and image quality, which is affected by several factors including the coincidence timing window (CTW). NEMA NU 4-2008 procedures are commonly used to assess and compare PET systems performance, including dual rotation technologies like easyPET.3D, known for high-spatial resolution and reduced parallax contribution.Aim:This study aims to identify easyPET.3D's optimal performance based on NEMA standards. In addition, explores the impact of different CTWs on PET image quality by comparing simulated electronics capable of a 300 ps CTW with a 40 ns CTW.Results:When the data is filtered by a 40 ns CTW, a sub-millimetre resolution at the field-of-view (FoV) centre and a constant behaviour in the radial direction are achieved. The absolute sensitivity was 0.18% with a maximum value of 0.31%, for a 15 mm transverse FoV. The noise equivalent count rate peaked at 18 MBq with 249 cps. Recovery coefficients ranged from 17% to 90%, and spilled-over ratios were 0.32 (water) and 0.41 (air).Conclusions:A shorter 300 ps CTW primarily impacted PET dynamic range, allowing higher activity acquisitions, with no significant changes in resolution and sensitivity under NEMA test conditions. As for the image quality test, the 300 ps CTW images have less background, better SOR values, and similar RC values when comparing the 40 ns CTW.
Collapse
Affiliation(s)
- P M C C Encarnação
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - P M M Correia
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - F M Ribeiro
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - J F C A Veloso
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Gebhardt P, Lavin B, Phinikaridou A, MacKewn J, Henningsson M, Schug D, Salomon A, Marsden PK, Schulz V, Botnar RM. Initial results of the Hyperion II DPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. Phys Med Biol 2025; 70:045017. [PMID: 39467386 DOI: 10.1088/1361-6560/ad8c1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Objective.In preclinical research,in vivoimaging of mice and rats is more common than any other animal species, since their physiopathology is very well-known and many genetically altered disease models exist. Animal studies based on small rodents are usually performed using dedicated preclinical imaging systems with high spatial resolution. For studies that require animal models such as mini-pigs or New-Zealand White (NZW) rabbits, imaging systems with larger bore sizes are required. In case of hybrid imaging using positron emission tomography (PET) and magnetic resonance imaging (MRI), clinical systems have to be used, as these animal models do not typically fit in preclinical simultaneous PET-MRI scanners.Approach.In this paper, we present initial imaging results obtained with the Hyperion IIDPET insert which can accommodate NZW rabbits when combined with a large volume MRI RF coil. First, we developed a rabbit-sized image quality phantom of comparable size to a NZW rabbit in order to evaluate the PET imaging performance of the insert under high count rates. For this phantom, radioactive spheres with inner diameters between 3.95 and7.86mm were visible in a warm background with a tracer activity ratio of 4.1 to 1 and with a total18F activity in the phantom of58MBq at measurement start. Second, we performed simultaneous PET-MR imaging of atherosclerotic plaques in a rabbitin vivousing a single injection containing18F-FDG for detection of inflammatory activity, and Gd-ESMA for visualization of the aortic vessel wall and plaques with MRI.Main results.The fused PET-MR images reveal18F-FDG uptake within an active plaques with plaque thicknesses in the sub-millimeter range. Histology showed colocalization of18F-FDG uptake with macrophages in the aortic vessel wall lesions.Significance.Our initial results demonstrate that this PET insert is a promising system for simultaneous high-resolution PET-MR atherosclerotic plaque imaging studies in NZW rabbits.
Collapse
Affiliation(s)
- P Gebhardt
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
- Department of Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Bruker Biospin GmbH & Co. KG., Ettlingen, Germany
| | - B Lavin
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - A Phinikaridou
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - J MacKewn
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - M Henningsson
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - D Schug
- Department of Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | - A Salomon
- Philips Research Europe, Eindhoven, The Netherlands
| | - P K Marsden
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - V Schulz
- Department of Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Aachen Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | - R M Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
- Instituto de Ingeniería Biológica y Médica, Universidad Católica de Chile, Santiago de Chile, Chile
| |
Collapse
|
3
|
Cong L, Kuang Z, Ren N, Sang Z, Liu Z, Niu M, Xie S, Peng Q, Yang Y. Algorithms to reduce the edge effect and improve the flood histogram quality of a PET detector consisting of two pixelated crystal arrays. Med Phys 2025; 52:856-866. [PMID: 39432181 DOI: 10.1002/mp.17484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
PURPOSE The performance of detectors is key for a PET scanner to achieve high spatial resolution and high sensitivity. This work aims to develop flood histogram generating algorithms to reduce the edge effect and improve the crystal identification of a PET detector consisting of two optically coupled pixelated scintillator detectors. METHODS The PET detector consists of two optically coupled detectors, each consisting of a 23×23 LYSO crystal array with a crystal size of 1.0×1.0×20 mm3 read out by an 8×8 SiPM array with a pixel size of 3.0×3.0 mm2. The SiPM array is read out with a resistor network circuit to obtain four position encoding energy signals. A novel center of gravity (COG) positioning algorithm using six signals from the two detectors was proposed and compared to the traditional COG algorithms using either four or eight signals from the detectors. The raised-to-the-power (RTP) method was applied to the three COG algorithms for the PET detector. Different powers of the RTP from 1.0 to 2.5 were evaluated. RESULTS The proposed COG algorithm significantly improves the crystal identification at the junction of the two detectors as compared to the COG algorithm using four signals of each detector, and improves the crystal identification at the center of the two detectors as compared to the COG algorithm using eight signals from both detectors. The RTP method significantly improves the overall flood histogram qualities of the two COG algorithms using either eight or six signals from the two detectors, and the two COG algorithm provide similar flood histogram quality when a power of 1.5 is used. CONCLUSION The novel positioning algorithms reduce the edge effect and improve the flood histogram quality for a PET detector consisting of two optically coupled detectors, each consisting of a pixelated scintillator crystal array and a SiPM array with highly multiplexed four signal readout. The positioning algorithms can be used in a PET scanner to improve the spatial resolution and sensitivity.
Collapse
Affiliation(s)
- Longhan Cong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
4
|
Kim SM, Lee JS. A comprehensive review on Compton camera image reconstruction: from principles to AI innovations. Biomed Eng Lett 2024; 14:1175-1193. [PMID: 39465108 PMCID: PMC11502649 DOI: 10.1007/s13534-024-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024] Open
Abstract
Compton cameras have emerged as promising tools in biomedical imaging, offering sensitive gamma-ray imaging capabilities for diverse applications. This review paper comprehensively overviews the latest advancements in Compton camera image reconstruction technologies. Beginning with a discussion of the fundamental principles of Compton scattering and its relevance to gamma-ray imaging, the paper explores the key components and design considerations of Compton camera systems. We then review various image reconstruction algorithms employed in Compton camera systems, including analytical, iterative, and statistical approaches. Recent developments in machine learning-based reconstruction methods are also discussed, highlighting their potential to enhance image quality and reduce reconstruction time in biomedical applications. In particular, we focus on the challenges posed by conical back-projection in Compton camera image reconstruction, and how innovative signal processing techniques have addressed these challenges to improve image accuracy and spatial resolution. Furthermore, experimental validations of Compton camera imaging in preclinical and clinical settings, including multi-tracer and whole-gamma imaging studies are introduced. In summary, this review provides potentially useful information about the current state-of-the-art Compton camera image reconstruction technologies, offering a helpful guide for investigators new to this field.
Collapse
Affiliation(s)
- Soo Mee Kim
- Maritime ICT & Mobility Research Department, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Brightonix Imaging Inc., Seoul, Korea
| |
Collapse
|
5
|
Lee MS, Shim HS, Lee JS. Strategies for mitigating inter-crystal scattering effects in positron emission tomography: a comprehensive review. Biomed Eng Lett 2024; 14:1243-1258. [PMID: 39465104 PMCID: PMC11502689 DOI: 10.1007/s13534-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Inter-crystal scattering (ICS) events in Positron Emission Tomography (PET) present challenges affecting system sensitivity and image quality. Understanding the physics and factors influencing ICS occurrence is crucial for developing strategies to mitigate its impact. This review paper explores the physics behind ICS events and their occurrence within PET detectors. Various methodologies, including energy-based comparisons, Compton kinematics-based approaches, statistical methods, and Artificial Intelligence (AI) techniques, which have been proposed for identifying and recovering ICS events accurately are introduced. Energy-based methods offer simplicity by comparing energy depositions in crystals. Compton kinematics-based approaches utilize trajectory information for first interaction position estimation, yielding reasonably good results. Additionally, statistical approach and AI algorithms contribute by optimizing likelihood analysis and neural network models for improved positioning accuracy. Experimental validations and simulation studies highlight the potential of recovering ICS events and enhancing PET sensitivity and image quality. Especially, AI technologies offers a promising avenue for addressing ICS challenges and improving PET image accuracy and resolution. These methods offer promising solutions for overcoming the challenges posed by ICS events and enhancing the accuracy and resolution of PET imaging, ultimately improving diagnostic capabilities and patient outcomes. Further studies applying these approaches to real PET systems are needed to validate theoretical results and assess practical implementation feasibility.
Collapse
Affiliation(s)
- Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Hyeong Seok Shim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jae Sung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Brightonix Imaging Inc, Seoul, Republic of Korea
| |
Collapse
|
6
|
Suh M, Park JY, Ko GB, Kim JY, Hwang DW, Rees L, Conway GE, Doak SH, Kang H, Lee N, Hyeon T, Lee YS, Lee DS. Optimization of micelle-encapsulated extremely small sized iron oxide nanoparticles as a T1 contrast imaging agent: biodistribution and safety profile. J Nanobiotechnology 2024; 22:419. [PMID: 39014410 PMCID: PMC11253436 DOI: 10.1186/s12951-024-02699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Iron oxide nanoparticles (IONPs) have been cleared by the Food and Drug Administration (FDA) for various clinical applications, such as tumor-targeted imaging, hyperthermia therapy, drug delivery, and live-cell tracking. However, the application of IONPs as T1 contrast agents has been restricted due to their high r2 values and r2/r1 ratios, which limit their effectiveness in T1 contrast enhancement. Notably, IONPs with diameters smaller than 5 nm, referred to as extremely small-sized IONPs (ESIONs), have demonstrated potential in overcoming these limitations. To advance the clinical application of ESIONs as T1 contrast agents, we have refined a scale-up process for micelle encapsulation aimed at improving the hydrophilization of ESIONs, and have carried out comprehensive in vivo biodistribution and preclinical toxicity assessments. RESULTS The optimization of the scale-up micelle-encapsulation process, specifically employing Tween60 at a concentration of 10% v/v, resulted in ESIONs that were uniformly hydrophilized, with an average size of 9.35 nm and a high purification yield. Stability tests showed that these ESIONs maintained consistent size over extended storage periods and dispersed effectively in blood and serum-mimicking environments. Relaxivity measurements indicated an r1 value of 3.43 mM- 1s- 1 and a favorable r2/r1 ratio of 5.36, suggesting their potential as T1 contrast agents. Biodistribution studies revealed that the ESIONs had extended circulation times in the bloodstream and were primarily cleared via the hepatobiliary route, with negligible renal excretion. We monitored blood clearance and organ distribution using positron emission tomography and magnetic resonance imaging (MRI). Additionally, MRI signal variations in a dose-dependent manner highlighted different behaviors at varying ESIONs concentrations, implying that optimal dosages might be specific to the intended imaging application. Preclinical safety evaluations indicated that ESIONs were tolerable in rats at doses up to 25 mg/kg. CONCLUSIONS This study effectively optimized a scale-up process for the micelle encapsulation of ESIONs, leading to the production of hydrophilic ESIONs at gram-scale levels. These optimized ESIONs showcased properties conducive to T1 contrast imaging, such as elevated r1 relaxivity and a reduced r2/r1 ratio. Biodistribution study underscored their prolonged bloodstream presence and efficient clearance through the liver and bile, without significant renal involvement. The preclinical toxicity tests affirmed the safety of the ESIONs, supporting their potential use as T1 contrast agent with versatile clinical application.
Collapse
Affiliation(s)
- Minseok Suh
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Ji Yong Park
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
- Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Guen Bae Ko
- Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
- Brightonix Imaging Inc, Seoul, Korea
| | - Ji Yoon Kim
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
- The Interdisciplinary Program of Cancer Biology, Seoul National University, Seoul, Korea
| | - Do Won Hwang
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| | - Louis Rees
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Gillian E Conway
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Hyelim Kang
- School of Advanced Materials Engineering, Kookmin University, Seoul, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
- Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
7
|
Galve P, Rodriguez-Vila B, Herraiz J, García-Vázquez V, Malpica N, Udias J, Torrado-Carvajal A. Recent advances in combined Positron Emission Tomography and Magnetic Resonance Imaging. JOURNAL OF INSTRUMENTATION 2024; 19:C01001. [DOI: 10.1088/1748-0221/19/01/c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Abstract
Hybrid imaging modalities combine two or more medical imaging techniques offering exciting new possibilities to image the structure, function and biochemistry of the human body in far greater detail than has previously been possible to improve patient diagnosis. In this context, simultaneous Positron Emission Tomography and Magnetic Resonance (PET/MR) imaging offers great complementary information, but it also poses challenges from the point of view of hardware and software compatibility. The PET signal may interfere with the MR magnetic field and vice-versa, posing several challenges and constrains in the PET instrumentation for PET/MR systems. Additionally, anatomical maps are needed to properly apply attenuation and scatter corrections to the resulting reconstructed PET images, as well motion estimates to minimize the effects of movement throughout the acquisition. In this review, we summarize the instrumentation implemented in modern PET scanners to overcome these limitations, describing the historical development of hybrid PET/MR scanners. We pay special attention to the methods used in PET to achieve attenuation, scatter and motion correction when it is combined with MR, and how both imaging modalities may be combined in PET image reconstruction algorithms.
Collapse
|
8
|
Kuang Z, Sang Z, Ren N, Wang X, Zeng T, Wu S, Niu M, Cong L, Kinyanjui SM, Chen Q, Tie C, Liu Z, Sun T, Hu Z, Du J, Li Y, Liang D, Liu X, Zheng H, Yang Y. Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors. Eur J Nucl Med Mol Imaging 2024; 51:346-357. [PMID: 37782321 DOI: 10.1007/s00259-023-06458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, 423000, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Samuel M Kinyanjui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaoyan Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junwei Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ye Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yongfeng Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Lee JS, Lee MS. Advancements in Positron Emission Tomography Detectors: From Silicon Photomultiplier Technology to Artificial Intelligence Applications. PET Clin 2024; 19:1-24. [PMID: 37802675 DOI: 10.1016/j.cpet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This review article focuses on PET detector technology, which is the most crucial factor in determining PET image quality. The article highlights the desired properties of PET detectors, including high detection efficiency, spatial resolution, energy resolution, and timing resolution. Recent advancements in PET detectors to improve these properties are also discussed, including the use of silicon photomultiplier technology, advancements in depth-of-interaction and time-of-flight PET detectors, and the use of artificial intelligence for detector development. The article provides an overview of PET detector technology and its recent advancements, which can significantly enhance PET image quality.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Brightonix Imaging Inc., Seoul 04782, South Korea
| | - Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea.
| |
Collapse
|
10
|
Kuang Z, Zhang L, Ren N, Kinyanjui SM, Liu Z, Sun T, Hu Z, Yang Y. Effect of depth of interaction resolution on the spatial resolution of SIAT aPET. Phys Med Biol 2023; 68:22NT02. [PMID: 37890466 DOI: 10.1088/1361-6560/ad078b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Objective.Spatial resolution is a crucial parameter for a positron emission tomography (PET) scanner. The spatial resolution of a high-resolution small animal PET scanner is significantly influenced by the effect of depth of interaction (DOI) uncertainty. The aim of this work is to investigate the impact of DOI resolution on the spatial resolution of a small animal PET scanner called SIAT aPET and determine the required DOI resolution to achieve nearly uniform spatial resolution within the field of view (FOV).Approach. The SIAT aPET detectors utilize 1.0 × 1.0 × 20 mm3crystals, with an average DOI resolution of ∼2 mm. A default number of 16 DOI bins are used during data acquisition. First, a Na-22 point source was scanned in the center of the axial FOV with different radial offsets. Then, a Derenzo phantom was scanned at radial offsets of 0 and 15 mm in the center axial FOV. The measured DOI information was rebinned to 1, 2, 4 and 8 DOI bins to mimic different DOI resolutions of the detectors during image reconstruction.Main results. Significant artifacts were observed in images obtained from both the point source and Derenzo phantom when using only one DOI bin. When accurate measurement of DOI is not achieved, degradation in spatial resolution is more pronounced in the radial direction compared to tangential and axial directions for large radial offsets. The radial spatial resolutions at a 30 mm radial offset are 5.05, 2.62, 1.24, 0.86 and 0.78 mm when using 1, 2, 4, 8, or 16 DOI bins, respectively. The axial spatial resolution improved from ∼1.3 to 0.7 mm as the number of DOI bins increased from 1 to 16 at radial offsets from 0 to 25 mm. Two DOI bins are required to obtain images without significant artifacts. The required DOI resolution is about three times the crystal width of SIAT aPET to achieve a uniform submillimeter spatial resolution within the central 60 mm FOV and resolve the 1 mm rods of the Derenzo phantom at both positions.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou 423000, People's Republic of China
| | - Ling Zhang
- School of Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Samuel M Kinyanjui
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
11
|
Seo M, Ko GB, Kim KY, Son JW, Byun JW, Lee YS, Kim KM, Park JW, Kim K, Lee T, Lee JS. Performance evaluation of SimPET-L and SimPET-XL: MRI-compatible small-animal PET systems with rat-body imaging capability. EJNMMI Phys 2023; 10:16. [PMID: 36881339 PMCID: PMC9992463 DOI: 10.1186/s40658-023-00534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND SimPET-L and SimPET-XL have recently been introduced with increased transaxial fields of view (FOV) compared with their predecessors (SimPET™ and SimPET-X), enabling whole-body positron emission tomography (PET) imaging of rats. We conducted performance evaluations of SimPET-L and SimPET-XL and rat-body imaging with SimPET-XL to demonstrate the benefits of increased axial and transaxial FOVs. PROCEDURES The detector blocks in SimPET-L and SimPET-XL consist of two 4 × 4 silicon photomultiplier arrays coupled with 20 × 9 array lutetium oxyorthosilicate crystals. SimPET-L and SimPET-XL have an inner diameter (bore size) of 7.6 cm, and they are composed of 40 and 80 detector blocks yielding axial lengths of 5.5 and 11 cm, respectively. Each system was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol. Rat imaging studies, such as 18F-NaF and 18F-FDG PET, were performed using SimPET-XL. RESULTS The radial resolutions at the axial center measured using the filtered back projection, 3D ordered-subset expectation maximization (OSEM), and 3D OSEM with point spread functions correction were 1.7, 0.82, and 0.82 mm FWHM in SimPET-L and 1.7, 0.91, and 0.91 mm FWHM in SimPET-XL, respectively. The peak sensitivities of SimPET-L and SimPET-XL were 6.30% and 10.4% for an energy window of 100-900 keV and 4.44% and 7.25% for a window of 250-750 keV, respectively. The peak noise equivalent count rate with an energy window of 250-750 keV was 249 kcps at 44.9 MBq for SimPET-L and 349 kcps at 31.3 MBq for SimPET-XL. In SimPET-L, the uniformity was 4.43%, and the spill-over ratios in air- and water-filled chambers were 5.54% and 4.10%, respectively. In SimPET-XL, the uniformity was 3.89%, and the spill-over ratio in the air- and water-filled chambers were 3.56% and 3.60%. Moreover, SimPET-XL provided high-quality images of rats. CONCLUSION SimPET-L and SimPET-XL show adequate performance compared with other SimPET systems. In addition, their large transaxial and long axial FOVs provide imaging capability for rats with high image quality.
Collapse
Affiliation(s)
- Minjee Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Guen Bae Ko
- Brightonix Imaging Inc., Seoul, 04782, South Korea
| | | | | | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyeong Min Kim
- Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Jang Woo Park
- Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Kipom Kim
- Brain Research Core Facility, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea
| | - Taekwan Lee
- Brain Research Core Facility, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Brain Research Core Facility, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| |
Collapse
|
12
|
Pommranz CM, Schmidt FP, Mannheim JG, Diebold SJ, Tenzer C, Santangelo A, Pichler BJ. Design and performance simulation studies of a breast PET insert integrable into a clinical whole-body PET/MRI scanner. Phys Med Biol 2023; 68. [PMID: 36753773 DOI: 10.1088/1361-6560/acba77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Objective. Three different breast positron emission tomography (PET) insert geometries are proposed for integration into an existing magnetic resonance imaging (MRI) breast coil (Breast Biopsy Coil, NORAS MRI products) to be used inside a whole-body PET/MRI scanner (Biograph mMR, Siemens Healthineers) to enhance the sensitivity and spatial resolution of imaging inside the breast.Approach. Monte Carlo simulations were performed to predict and compare the performance characteristics of the three geometries in terms of the sensitivity, spatial resolution, scatter fraction, and noise equivalent count rate (NECR). In addition, the background single count rate due to organ uptake in a clinical scan scenario was predicted using a realistic anthropomorphic phantom.Main results. In the center of the field of view (cFOV), absolute sensitivities of 3.1%, 2.7%, and 2.2% were found for Geometry A (detectors arranged in two cylinders), Geometry B (detectors arranged in two partial cylinders), and Geometry C (detectors arranged in two half cylinders combined with two plates), respectively. The full width at half maximum spatial resolution was determined to be 1.7 mm (Geometry A), 1.8 mm (Geometry B) and 2.0 mm (Geometry C) at 5 mm from the cFOV. Designs with multiple scintillation-crystal layers capable of determining the depth of interaction (DOI) strongly improved the spatial resolution at larger distances from the transaxial cFOV. The system scatter fractions were 33.1% (Geometries A and B) and 32.3% (Geometry C). The peak NECRs occurred at source activities of 300 MBq (Geometry A), 310 MBq (Geometry B) and 340 MBq (Geometry C). The background single-event count rates were 17.1 × 106cps (Geometry A), 15.3 × 106cps (Geometry B) and 14.8 × 106cps (Geometry C). Geometry A in the three-layer DOI variant exhibited the best PET performance characteristics but could be challenging to manufacture. Geometry C had the lowest impact on the spatial resolution and the lowest sensitivity among the investigated geometries.Significance. Geometry B in the two-layer DOI variant represented an effective compromise between the PET performance and manufacturing difficulty and was found to be a promising candidate for the future breast PET insert.
Collapse
Affiliation(s)
- C M Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - F P Schmidt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Otfried-Mueller-Strasse 14, D-72076 Tuebingen, Germany
| | - J G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - S J Diebold
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - C Tenzer
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - A Santangelo
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
13
|
Sang Z, Kuang Z, Wang X, Ren N, Wu S, Niu M, Cong L, Liu Z, Hu Z, Sun T, Liang D, Liu X, Zheng H, Li Y, Yang Y. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol 2023; 68. [PMID: 36549011 DOI: 10.1088/1361-6560/acae17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated.Approach.To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on theB0andB1field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured.Main results.The electronic and mechanical components of the PET insert affected the homogeneity of theB0field. The PET insert had no effect on the homogeneity ofB1produced by the dedicated mouse coil but slightly reduced the strength ofB1. The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner.Significance.The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
Collapse
Affiliation(s)
- Ziru Sang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ning Ren
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - San Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Longhan Cong
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zheng Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhanli Hu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Sun
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ye Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
14
|
Park H, Yi M, Lee JS. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review. Biomed Eng Lett 2022; 12:263-283. [PMID: 35892029 PMCID: PMC9308856 DOI: 10.1007/s13534-022-00234-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, silicon photomultiplier (SiPM) is replacing the photomultiplier tube (PMT) in positron emission tomography (PET) systems due to its superior properties, such as fast single-photon timing response, small gap between adjacent photosensitive pixels in the array, and insensitivity to magnetic fields. One of the technical challenges when developing SiPM-based PET systems or other position-sensitive radiation detectors is the large number of output channels coming from the SiPM array. Therefore, various signal multiplexing methods have been proposed to reduce the number of output channels and the load on the subsequent data acquisition (DAQ) system. However, the large PN-junction capacitance and quenching resistance of the SiPM yield undesirable resistance-capacitance delay when multiple SiPMs are combined, which subsequently causes the accumulation of dark counts and signal fluctuation of SiPMs. Therefore, without proper SiPM signal handling and processing, the SiPMs may yield worse timing characteristics than the PMTs. This article reviews the evolution of signal readout and multiplexing methods for the SiPM. In this review, we focus primarily on analog electronics for SiPM signal multiplexing, which allows for the reduction of DAQ channels required for the SiPM-based position-sensitive detectors used in PET and other radiation detector systems. Although the applications of most technologies described in the article are not limited to PET systems, the review highlights efforts to improve the physical performance (e.g. spatial, energy, and timing resolutions) of PET detectors and systems.
Collapse
Affiliation(s)
- Haewook Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Minseok Yi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Brightonix Imaging Inc, Seoul, 04782 South Korea
| |
Collapse
|
15
|
Adler SS, Seidel J, Choyke PL. Advances in Preclinical PET. Semin Nucl Med 2022; 52:382-402. [PMID: 35307164 PMCID: PMC9038721 DOI: 10.1053/j.semnuclmed.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
The classical intent of PET imaging is to obtain the most accurate estimate of the amount of positron-emitting radiotracer in the smallest possible volume element located anywhere in the imaging subject at any time using the least amount of radioactivity. Reaching this goal, however, is confounded by an enormous array of interlinked technical issues that limit imaging system performance. As a result, advances in PET, human or animal, are the result of cumulative innovations across each of the component elements of PET, from data acquisition to image analysis. In the report that follows, we trace several of these advances across the imaging process with a focus on small animal PET.
Collapse
Affiliation(s)
- Stephen S Adler
- Frederick National Laboratory for Cancer Research, Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Jurgen Seidel
- Contractor to Frederick National Laboratory for Cancer Research, Leidos biodical Research, Inc., Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda MD.
| |
Collapse
|
16
|
van den Wyngaert T, de Schepper S, Elvas F, Seyedinia SS, Beheshti M. Positron emission tomography-magnetic resonance imaging as a research tool in musculoskeletal conditions. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:15-30. [PMID: 35005878 DOI: 10.23736/s1824-4785.22.03434-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared to positron emission tomography/computed tomography (PET/CT), the uptake of PET- magnetic resonance imaging (MRI) has been slow, even more so in clinical practice compared to the (pre-)clinical research setting. However, for applications in musculoskeletal (MSK) research, the combination of PET and MRI into a single modality offers attractive advantages over other imaging modalities. Most importantly, MRI has exquisite soft-tissue detail without the use of contrast agents or ionizing radiation, superior bone marrow visualization, and an extensive spectrum of distinct multiparametric assessment methods. In the preclinical setting, the introduction of PET inserts for small-animal MRI machines has proven to be a successful concept in bringing this technology to the lab. Initial hurdles in quantification have been mainly overcome in this setting. In parallel, a promising range of radiochemistry techniques has been developed to create multimodality probes that offer the possibility of simultaneously querying different metabolic pathways. Not only will these applications help in elucidating disease mechanisms, but they can also facilitate drug development. The clinical applications of PET/MRI in MSK are still limited, but encouraging initial results with novel radiotracers suggest a high potential for use in various MSK conditions, including osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and inflammation and infection. Further innovations will be required to bring down the cost of PET/MRI to justify a broader clinical implementation, and remaining issues with quality control and standardization also need to be addressed. Nevertheless, PET/MRI is a powerful platform for MSK research with distinct qualities that are not offered by other techniques.
Collapse
Affiliation(s)
- Tim van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium -
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium -
- Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium -
| | - Stijn de Schepper
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Seyedeh S Seyedinia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
17
|
Disselhorst JA, Newport DF, Schmid AM, Schmidt FP, Parl C, Liu CC, Pichler BJ, Mannheim JG. NEMA NU 4-2008 performance evaluation and MR compatibility tests of an APD-based small animal PET-insert for simultaneous PET/MR imaging. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac499d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Abstract
An avalanche photodiode (APD)-based small animal positron emission tomography (PET)-insert was fully evaluated for its PET performance, as well as potential influences on magnetic resonance imaging (MRI) performance. This PET-insert has an extended axial field of view (FOV) compared with the previous design to increase system sensitivity, as well as an updated cooling and temperature regulation to enable stable and reproducible PET acquisitions. The PET performance was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol. The energy and timing resolution’s full width at half maximum were 16.1% and 4.7 ns, respectively. The reconstructed radial spatial resolution of the PET-insert was 1.8 mm full width at half maximum at the center FOV using filtered back projection for reconstruction and sensitivity was 3.68%. The peak noise equivalent count rates were 70 kcps for a rat-like and 350 kcps for a mouse-like phantom, respectively. Image quality phantom values and contrast recovery were comparable to state-of-the art PET-inserts and standalone systems. Regarding MR compatibility, changes in the mean signal-to-noise ratio for turbo spin echo and echo-planar imaging sequences were below 8.6%, for gradient echo sequences below 1%. Degradation of the mean homogeneity was below 2.3% for all tested sequences. The influence of the PET-insert on the B
0 maps was negligible and no influence on functional MRI sequences was detected. A mouse and rat imaging study demonstrated the feasibility of in vivo simultaneous PET/MRI.
Collapse
|
18
|
Lee JS, Kim KM, Choi Y, Kim HJ. A Brief History of Nuclear Medicine Physics, Instrumentation, and Data Sciences in Korea. Nucl Med Mol Imaging 2021; 55:265-284. [PMID: 34868376 DOI: 10.1007/s13139-021-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022] Open
Abstract
We review the history of nuclear medicine physics, instrumentation, and data sciences in Korea to commemorate the 60th anniversary of the Korean Society of Nuclear Medicine. In the 1970s and 1980s, the development of SPECT, nuclear stethoscope, and bone densitometry systems, as well as kidney and cardiac image analysis technology, marked the beginning of nuclear medicine physics and engineering in Korea. With the introduction of PET and cyclotron in Korea in 1994, nuclear medicine imaging research was further activated. With the support of large-scale government projects, the development of gamma camera, SPECT, and PET systems was carried out. Exploiting the use of PET scanners in conjunction with cyclotrons, extensive studies on myocardial blood flow quantification and brain image analysis were also actively pursued. In 2005, Korea's first domestic cyclotron succeeded in producing radioactive isotopes, and the cyclotron was provided to six universities and university hospitals, thereby facilitating the nationwide supply of PET radiopharmaceuticals. Since the late 2000s, research on PET/MRI has been actively conducted, and the advanced research results of Korean scientists in the fields of silicon photomultiplier PET and simultaneous PET/MRI have attracted significant attention from the academic community. Currently, Korean researchers are actively involved in endeavors to solve a variety of complex problems in nuclear medicine using artificial intelligence and deep learning technologies.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Kyeong Min Kim
- Department of Isotopic Drug Development, Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong Choi
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Hee-Joung Kim
- Department of Radiological Science, Yonsei University, Wonju, Korea
| |
Collapse
|
19
|
Kang HG, Tashima H, Nishikido F, Akamatsu G, Wakizaka H, Higuchi M, Yamaya T. Initial results of a mouse brain PET insert with a staggered 3-layer DOI detector. Phys Med Biol 2021; 66. [PMID: 34666328 DOI: 10.1088/1361-6560/ac311c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Objective.Small animal positron emission tomography (PET) requires a submillimeter resolution for better quantification of radiopharmaceuticals. On the other hand, depth-of-interaction (DOI) information is essential to preserve the spatial resolution while maintaining the sensitivity. Recently, we developed a staggered 3-layer DOI detector with 1 mm crystal pitch and 15 mm total crystal thickness, but we did not demonstrate the imaging performance of the DOI detector with full ring geometry. In this study we present initial imaging results obtained for a mouse brain PET prototype developed with the staggered 3-layer DOI detector.Approach.The prototype had 53 mm inner diameter and 11 mm axial field-of-view. The PET scanner consisted of 16 DOI detectors each of which had a staggered 3-layer LYSO crystal array (4/4/7 mm) coupled to a 4 × 4 silicon photomultiplier array. The physical performance was evaluated in terms of the NEMA NU 4 2008 protocol.Main Results.The measured spatial resolutions at the center and 15 mm radial offset were 0.67 mm and 1.56 mm for filtered-back-projection, respectively. The peak absolute sensitivity of 0.74% was obtained with an energy window of 400-600 keV. The resolution phantom imaging results show the clear identification of a submillimetric rod pattern with the ordered-subset expectation maximization algorithm. The inter-crystal scatter rejection using a narrow energy window could enhance the resolvability of a 0.75 mm rod significantly.Significance.In an animal imaging experiment, the detailed mouse brain structures such as cortex and thalamus were clearly identified with high contrast. In conclusion, we successfully developed the mouse brain PET insert prototype with a staggered 3-layer DOI detector.
Collapse
Affiliation(s)
- Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Hideaki Tashima
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Fumihiko Nishikido
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Go Akamatsu
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Hidekazu Wakizaka
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Makoto Higuchi
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| |
Collapse
|
20
|
Lee S, Lee JS. Inter-crystal scattering recovery of light-sharing PET detectors using convolutional neural networks. Phys Med Biol 2021; 66. [PMID: 34438380 DOI: 10.1088/1361-6560/ac215d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022]
Abstract
Inter-crystal scattering (ICS) is a type of Compton scattering of photons from one crystal to adjacent crystals and causes inaccurate assignment of the annihilation photon interaction position in positron emission tomography (PET). Because ICS frequently occurs in highly light-shared PET detectors, its recovery is crucial for the spatial resolution improvement. In this study, we propose two different convolutional neural networks (CNNs) for ICS recovery, exploiting the good pattern recognition ability of CNN techniques. Using the signal distribution of a photosensor array as input, one network estimates the energy deposition in each crystal (ICS-eNet) and another network chooses the first-interacted crystal (ICS-cNet). We performed GATE Monte Carlo simulations with optical photon tracking to test PET detectors comprising different crystal arrays (8 × 8 to 21 × 21) with lengths of 20 mm and the same photosensor array (3 mm 8 × 8 array) covering an area of 25.8 × 25.8 mm2. For each detector design, we trained ICS-eNet and ICS-cNet and evaluated their respective performance. ICS-eNet accurately identified whether the events were ICS (accuracy > 90%) and selected interacted crystals (accuracy > 60%) with appropriate energy estimation performance (R2 > 0.7) in the 8 × 8, 12 × 12, and 16 × 16 arrays. ICS-cNet also exhibited satisfactory performance, which was less dependent on the crystal-to-sensor ratio, with an accuracy enhancement that exceeds 10% in selecting the first-interacted crystal and a reduction in error distances compared when no recovery was applied. Both ICS-eNet and ICS-cNet exhibited consistent performances under various optical property settings of the crystals. For spatial resolution measurements in PET rings, both networks achieved significant enhancements particularly for highly pixelated arrays. We also discuss approaches for training the networks in an actual experimental setup. This proof-of-concept study demonstrated the feasibility of CNNs for ICS recovery in various light-sharing designs to efficiently improve the spatial resolution of PET in various applications.
Collapse
Affiliation(s)
- Seungeun Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Brightonix Imaging Inc., Seoul, 04782, Republic of Korea
| |
Collapse
|
21
|
Behnamian H, Yousefnejad S, Shafiee M, Rafiei A. Study of two-layer tapered depth of interaction PET detector. Appl Radiat Isot 2021; 174:109731. [PMID: 33964523 DOI: 10.1016/j.apradiso.2021.109731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Improving detection efficiency in small animal PET scanners without degrading spatial resolution is one of the main problems of these scanners. Commercial small animal PET scanners use different methods to achieve desirable levels of sensitivity and spatial resolution. GE Healthcare eXplore VISTA PET scanner uses double layer (LYSO-GSO) depth-of-interaction (DOI) capable cuboid detector modules. In this work, the design of GE Healthcare eXplore VISTA PET scanner is improved using tapered detector geometry instead of cuboid geometry. Using tapered detector geometry, the gaps between adjacent modules are filled and the sensitive volume has increased about 11.5%. The new designed PET scanner sensitivity and spatial resolution are studied for different crystal layer configurations (LYSO-GSO and GSO-LYSO with different thicknesses). As expected, average sensitivity over FOV is improved. Spatial resolution is slightly degraded but it is still uniform over FOV.
Collapse
Affiliation(s)
- Hadi Behnamian
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Sirous Yousefnejad
- Iranian Light Source Facility, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Shafiee
- Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan.
| | - Alireza Rafiei
- Department of Energy Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
22
|
Performance Evaluation of SimPET-X, a PET Insert for Simultaneous Mouse Total-Body PET/MR Imaging. Mol Imaging Biol 2021; 23:703-713. [PMID: 33768465 DOI: 10.1007/s11307-021-01595-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE In this study, a small animal PET insert (SimPET-X, Brightonix Imaging Inc.) for simultaneous PET/MR imaging studies is presented. This insert covers an 11-cm-long axial field-of-view (FOV) and enables imaging of mouse total-bodies and rat heads. PROCEDURES SimPET-X comprises 16 detector modules to yield a ring diameter of 63 mm and an axial FOV of 110 mm. The detector module supports four detector blocks, each comprising two 4 × 4 SiPM arrays coupled with a 20 × 9 array of LSO crystals (1.2 × 1.2 × 10 mm3). The physical characteristics of SimPET-X were measured in accordance with the NEMA NU4-2008 standard protocol. In addition, we assessed the compatibility of SimPET-X with a small animal-dedicated MRI (M7, Aspect Imaging) and conducted phantom and animal studies. RESULTS The radial spatial resolutions at the center based on 3D OSEM without and with the warm background were 0.73 mm and 0.99 mm, respectively. The absolute peak sensitivity of the system was 10.44% with an energy window of 100-900 keV and 8.27% with an energy window of 250-750 keV. The peak NECR and scatter fraction for the mouse phantom were 348 kcps at 26.2 MBq and 22.1% with an energy window of 250-750 keV, respectively. The standard deviation of pixel value in the uniform region of an NEMA IQ phantom was 4.57%. The spillover ratios for air- and water-filled chambers were 9.0% and 11.0%, respectively. In the hot-rod phantom image reconstructed using 3D OSEM-PSF, all small rods were resolved owing to the high spatial resolution of the SimPET-X system. There was no notable interference between SimPET-X and M7 MRI. SimPET-X provided high-quality mouse images with superior spatial resolution, sensitivity, and counting rate performance. CONCLUSION SimPET-X yielded a remarkably improved sensitivity and NECR compared with SimPETTM.
Collapse
|
23
|
Evaluation of Large-Area Silicon Photomultiplier Arrays for Positron Emission Tomography Systems. ELECTRONICS 2021. [DOI: 10.3390/electronics10060698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An individual readout of silicon photomultipliers (SiPMs) would enhance the performance of modern positron emission tomography (PET) systems. However, as it difficult to achieve in practice, a multiplexing readout of SiPM arrays could be performed instead. In this study, we characterized the performance of three PET detector modules utilizing three different SiPM models with active areas of 3 × 3, 4 × 4, and 6 × 6 mm2. Each SiPM array was coupled with a 4 × 4 LYSO crystal block. For SiPM multiplexing, we used a discretized positioning circuit to obtain position and energy information, and applied a first-order capacitive high-pass filter to enhance the time-of-flight measurement capability of the PET detector. The energy performance was similar among the three different SiPM arrays, with an energy resolution of 10%–11%. The best timing performance was achieved with the SiPM array with an active area of 6 × 6 mm2, which yielded a coincidence timing resolution (CTR) value of 401 ps FWHM when an analog high-pass filter was applied. We expect that, in combination with high-performance SiPM multiplexing techniques, the SiPM array with an active area of 6 × 6 mm2 can provide a cost-effective solution for developing a whole-body PET scanner.
Collapse
|
24
|
Gaudin É, Thibaudeau C, Arpin L, Leroux JD, Toussaint M, Beaudoin JF, Cadorette J, Paillé M, Pepin CM, Koua K, Bouchard J, Viscogliosi N, Paulin C, Fontaine R, Lecomte R. Performance evaluation of the mouse version of the LabPET II PET scanner. Phys Med Biol 2021; 66:065019. [PMID: 33412542 DOI: 10.1088/1361-6560/abd952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The LabPET II is a new positron emission tomography technology platform designed to achieve submillimetric spatial resolution imaging using fully pixelated avalanche photodiodes-based detectors and highly integrated parallel front-end processing electronics. The detector was designed as a generic building block to develop devices for preclinical imaging of small to mid-sized animals and for clinical imaging of the human brain. The aim of this work is to assess the physical characteristics and imaging performance of the mouse version of LabPET II scanner following the NEMA NU4-2008 standard and using high resolution phantoms and in vivo imaging applications. A reconstructed spatial resolution of 0.78 mm (0.5 μ l) is measured close to the center of the radial field of view. With an energy window of 350 650 keV, the system absolute sensitivity is 1.2% and its maximum noise equivalent count rate reaches 61.1 kcps at 117 MBq. Submillimetric spatial resolution is achieved in a hot spot phantom and tiny bone structures were resolved with unprecedented contrast in the mouse. These results provide convincing evidence of the capabilities of the LabPET II technology for biomolecular imaging in preclinical research.
Collapse
Affiliation(s)
- Émilie Gaudin
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Courteau A, McGrath J, Walker PM, Pegg R, Martin G, Garipov R, Doughty P, Cochet A, Brunotte F, Vrigneaud JM. Performance Evaluation and Compatibility Studies of a Compact Preclinical Scanner for Simultaneous PET/MR Imaging at 7 Tesla. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:205-217. [PMID: 32956042 DOI: 10.1109/tmi.2020.3024722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present the design and performance of a new compact preclinical system combining positron emission tomography (PET) and magnetic resonance imaging (MRI) for simultaneous scans. The PET contains sixteen SiPM-based detector heads arranged in two octagons and covers an axial field of view (FOV) of 102.5 mm. Depth of interaction effects and detector's temperature variations are compensated by the system. The PET is integrated in a dry magnet operating at 7 T. PET and MRI characteristics were assessed complying with international standards and interferences between both subsystems during simultaneous scans were addressed. For the rat size phantom, the peak noise equivalent count rates (NECR) were 96.4 kcps at 30.2 MBq and 132.3 kcps at 28.4 MBq respectively with and without RF coil. For mouse, the peak NECR was 300.0 kcps at 34.5 MBq and 426.9 kcps at 34.3 MBq respectively with and without coil. At the axial centre of the FOV, spatial resolutions expressed as full width at half maximum / full width at tenth maximum (FWHM/FWTM) ranged from 1.69/3.19 mm to 2.39/4.87 mm. The peak absolute sensitivity obtained with a 250-750 keV energy window was 7.5% with coil and 7.9% without coil. Spill over ratios of the NEMA NU4-2008 image quality (NEMA-IQ) phantom ranged from 0.25 to 0.96 and the percentage of non-uniformity was 5.7%. The image count versus activity was linear up to 40 MBq. The principal magnetic field variation was 0.03 ppm/mm over 40 mm. The qualitative and quantitative aspects of data were preserved during simultaneous scans.
Collapse
|
26
|
Kuang Z, Wang X, Ren N, Wu S, Gao J, Zeng T, Gao D, Zhang C, Sang Z, Hu Z, Du J, Liang D, Liu X, Zheng H, Yang Y. Design and performance of SIAT aPET: a uniform high-resolution small animal PET scanner using dual-ended readout detectors. Phys Med Biol 2020; 65:235013. [PMID: 32992302 DOI: 10.1088/1361-6560/abbc83] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this work, a small animal PET scanner named SIAT aPET was developed using dual-ended readout depth encoding detectors to simultaneously achieve high spatial resolution and high sensitivity. The scanner consists of four detector rings with 12 detector modules per ring; the ring diameter is 111 mm and the axial field of view (FOV) is 105.6 mm. The images are reconstructed using an ordered subset expectation maximization (OSEM) algorithm. The spatial resolution of the scanner was measured by using a 22Na point source at the center axial FOV with different radial offsets. The sensitivity of the scanner was measured at center axis of the scanner with different axial positions. The count rate performance of the system was evaluated by scanning mouse-sized and rat-sized phantoms. An ultra-micro hot-rods phantom and two mice injected with 18F-NaF and 18F-FDG were scanned on the scanner. An average depth of interaction (DOI) resolution of 1.96 mm, energy resolution of 19.1% and timing resolution of 1.20 ns were obtained for the detector. Average spatial resolutions of 0.82 mm and 1.16 mm were obtained up to a distance of 30 mm radially from the center of the FOV when reconstructing a point source in 1% and 10% warm backgrounds, respectively, using OSEM reconstruction with 16 subsets and 10 iterations. Sensitivities of 16.0% and 11.9% were achieved at center of the scanner for energy windows of 250-750 keV and 350-750 keV respectively. Peak noise equivalent count rates (NECRs) of 324 kcps and 144 kcps were obtained at an activity of 26.4 MBq for the mouse-sized and rat-sized phantoms. Rods of 1.0 mm diameter can be visually resolved from the image of the ultra-micro hot-rods phantom. The capability of the scanner was demonstrated by high quality in-vivo mouse images.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China. Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China. Authors have contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|