1
|
Derman W, Badenhorst M, Eken MM, Ezeiza-Gomez J, Fitzpatrick J, Gleeson M, Kunorozva L, Mjosund K, Mountjoy M, Sewry N, Schwellnus M. Incidence of acute respiratory illnesses in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2022; 56:630-638. [PMID: 35260411 DOI: 10.1136/bjsports-2021-104737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the incidence of acute respiratory illness (ARill) in athletes and by method of diagnosis, anatomical classification, ages, levels of performance and seasons. DESIGN Systematic review and meta-analysis. DATA SOURCES Electronic databases: PubMed-Medline, EbscoHost and Web of Science. ELIGIBILITY CRITERIA Original research articles published between January 1990 and July 2020 in English reporting the incidence of ARill in athletes, at any level of performance (elite/non-elite), aged 15-65 years. RESULTS Across all 124 studies (n=1 28 360 athletes), the incidence of ARill, estimated by dividing the number of cases by the total number of athlete days, was 4.7 (95% CI 3.9 to 5.7) per 1000 athlete days. In studies reporting acute respiratory infections (ARinf; suspected and confirmed) the incidence was 4.9 (95% CI 4.0 to 6.0), which was similar in studies reporting undiagnosed ARill (3.7; 95% CI 2.1 to 6.7). Incidences of 5.9 (95% CI 4.8 to 7.2) and 2.8 (95% CI 1.8 to 4.5) were found for studies reporting upper ARinf and general ARinf (upper or lower), respectively. The incidence of ARinf was similar across the different methods to diagnose ARinf. A higher incidence of ARinf was found in non-elite (8.7; 95% CI 6.1 to 12.5) vs elite athletes (4.2; 95% CI 3.3 to 5.3). SUMMARY/CONCLUSIONS These findings suggest: (1) the incidence of ARill equates to approximately 4.7 per athlete per year; (2) the incidence of upper ARinf was significantly higher than general (upper/lower) ARinf; (3) elite athletes have a lower incidence of ARinf than non-elite athletes; (4) if pathogen identification is not available, physicians can confidently use validated questionnaires and checklists to screen athletes for suspected ARinf. For future studies, we recommend that a clear diagnosis of ARill is reported. PROSPERO REGISTRATION NUMBER CRD42020160472.
Collapse
Affiliation(s)
- Wayne Derman
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa .,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Marelise Badenhorst
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Maaike Maria Eken
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Josu Ezeiza-Gomez
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Jane Fitzpatrick
- Centre for Health and Exercise Sports Medicine, Faculty of Medicine Dentistry and Health Science, University of Melbourne, Parkville, Victoria, Australia
| | - Maree Gleeson
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lovemore Kunorozva
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Katja Mjosund
- Paavo Nurmi Centre, Sport and Exercise Medicine Unit, University of Turku, Turku, Finland
| | - Margo Mountjoy
- Department of Family Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicola Sewry
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| | - Martin Schwellnus
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| |
Collapse
|
2
|
Snyders C, Pyne DB, Sewry N, Hull JH, Kaulback K, Schwellnus M. Acute respiratory illness and return to sport: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2021; 56:223-231. [PMID: 34789459 DOI: 10.1136/bjsports-2021-104719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine the days until return to sport (RTS) after acute respiratory illness (ARill), frequency of time loss after ARill resulting in >1 day lost from training/competition, and symptom duration (days) of ARill in athletes. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, EBSCOhost, Web of Science, January 1990-July 2020. ELIGIBILITY CRITERIA Original research articles published in English on athletes/military recruits (15-65 years) with symptoms/diagnosis of an ARill and reporting any of the following: days until RTS after ARill, frequency (%) of time loss >1 day after ARill or symptom duration (days) of ARill. RESULTS 767 articles were identified; 54 were included (n=31 065 athletes). 4 studies reported days until RTS (range: 0-8.5 days). Frequency (%) of time loss >1 day after ARill was 20.4% (95% CI 15.3% to 25.4%). The mean symptom duration for all ARill was 7.1 days (95% CI 6.2 to 8.0). Results were similar between subgroups: pathological classification (acute respiratory infection (ARinf) vs undiagnosed ARill), anatomical classification (upper vs general ARill) or diagnostic method of ARinf (symptoms, physical examination, special investigations identifying pathogens). CONCLUSIONS In 80% of ARill in athletes, no days were lost from training/competition. The mean duration of ARill symptoms in athletes was 7 days. Outcomes were not influenced by pathological or anatomical classification of ARill, or in ARinf diagnosed by various methods. Current data are limited, and future studies with standardised approaches to definitions, diagnostic methods and classifications of ARill are needed to obtain detailed clinical, laboratory and specific pathogen data to inform RTS. PROSPERO REGISTRATION NUMBER CRD42020160479.
Collapse
Affiliation(s)
- Carolette Snyders
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - David B Pyne
- Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, Canberra, Australia
| | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,IOC Research Centre, Pretoria, Gauteng, South Africa
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Kelly Kaulback
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa .,IOC Research Centre, Pretoria, Gauteng, South Africa
| |
Collapse
|
3
|
Chesson L, Whitehead S, Flanagan K, Deighton K, Matu J, Backhouse SH, Jones B. Illness and infection in elite full-contact football-code sports: A systematic review. J Sci Med Sport 2020; 24:435-440. [PMID: 33303368 DOI: 10.1016/j.jsams.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 11/01/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Full-contact football-code team sports offer a unique environment for illness risk. During training and match-play, players are exposed to high-intensity collisions which may result in skin-on-skin abrasions and transfer of bodily fluids. Understanding the incidence of all illnesses and infections and what impact they cause to time-loss from training and competition is important to improve athlete care within these sports. This review aimed to systematically report, quantify and compare the type, incidence, prevalence and count of illnesses across full-contact football-code team sports. DESIGN/METHODS A systematic search of Cochrane Library, MEDLINE, SPORTDiscus, PsycINFO and CINAHL electronic databases was performed from inception to October 2019; keywords relating to illness, athletes and epidemiology were used. Studies were excluded if they did not quantify illness or infection, involve elite athletes, investigate full-contact football-code sports or were review articles. RESULTS Twenty-eight studies met the eligibility criteria. Five different football-codes were reported: American football (n=10), Australian rules football (n=3), rugby league (n=2), rugby sevens (n=3) and rugby union (n=9). One multi-sport study included both American football and rugby union. Full-contact football-code athletes are most commonly affected by respiratory system illnesses. There is a distinct lack of consensus of illness monitoring methodology. CONCLUSIONS Full-contact football-code team sport athletes are most commonly affected by respiratory system illnesses. Due to various monitoring methodologies, illness incidence could only be compared between studies that used matching incidence exposure measures. High-quality illness surveillance data collection is an essential component to undertake effective and targeted illness prevention in athletes.
Collapse
Affiliation(s)
- Lucy Chesson
- Leeds Beckett University, Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, United Kingdom; Leeds Rhinos Rugby League Club, United Kingdom.
| | - Sarah Whitehead
- Leeds Beckett University, Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, United Kingdom; Leeds Rhinos Rugby League Club, United Kingdom; Leeds Rhinos Netball, United Kingdom
| | - Kirsten Flanagan
- Leeds Beckett University, Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, United Kingdom
| | - Kevin Deighton
- Leeds Beckett University, Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, United Kingdom; Delta Hat Limited, United Kingdom
| | - Jamie Matu
- Leeds Beckett University, School of Clinical and Applied Sciences, United Kingdom
| | - Susan H Backhouse
- Leeds Beckett University, Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, United Kingdom
| | - Ben Jones
- Leeds Beckett University, Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, United Kingdom; Leeds Rhinos Rugby League Club, United Kingdom; England Performance Unit, The Rugby Football League, United Kingdom; School of Science and Technology, University of New England, Australia; Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, The University of Cape Town and the Sports Science Institute of South Africa, South Africa
| |
Collapse
|
4
|
The Effect of Olive Leaf Extract on Upper Respiratory Illness in High School Athletes: A Randomised Control Trial. Nutrients 2019; 11:nu11020358. [PMID: 30744092 PMCID: PMC6412187 DOI: 10.3390/nu11020358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/05/2023] Open
Abstract
Upper respiratory illness (URI) has a major impact on both training and competition in an athletic setting. High school athletes are a sub-category who have reported higher illness rates than professional and sub-elite high school athletes of the same sport. Olive leaf extract (OLE) is an over-the-counter supplement that contains polyphenols, notably oleuropein and hydroxytyrosol, that have antiviral, antibacterial, anti-inflammatory and antioxidant properties that may reduce URI rates. Thirty-two high school students who play sport for the elite team at their school were recruited to a randomised controlled trial and allocated to a daily placebo or OLE (extent equivalent to 20 g of olive leaf, containing 100 mg oleuropein) supplementation for nine weeks during their competitive season. Twice weekly measures of wellbeing, training load and respiratory illness (sporting upper respiratory illness (SUPPRESS) questionnaire) were recorded at trainings, meetings or games. There was no significant difference in illness incidence (odds ratio (OR): 1.02 (95% confidence interval (CI) 0.21–4.44)), but there was a significant 28% reduction in sick days (OR: 0.72 (95% CI 0.56–0.93) p-value = 0.02) when supplemented with OLE. The dietary intakes of the athletes were sub-optimal with regard to immune support. OLE supplementation over a season did not significantly reduce URI incidence, but did decrease duration in high school athletes, potentially aiding return to play.
Collapse
|