1
|
Wang X, Ma J, Li W, Hou Z, Li H, Li Y, Wang S, Tie Y. BPA Exacerbates Zinc Deficiency-Induced Testicular Tissue Inflammation in Male Mice Through the TNF-α/NF-κB/Caspase8 Signaling Pathway. Biol Trace Elem Res 2024:10.1007/s12011-024-04464-2. [PMID: 39638945 DOI: 10.1007/s12011-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is toxic to reproduction. Zinc (Zn) plays an important role in male reproductive health. Zn deficiency (ZD) can co-exist with BPA. In order to investigate the specific mechanism of reproductive damage caused by BPA exposure in ZD male mice, a mouse model of ZD, BPA exposure, and their combined exposure was established in this study. Forty 4-week-old SPF male ICR mice with an average body weight of 31.7 ± 4.2 g were divided into four groups including normal Zn diet group 30 mg/(kg•d), BPA exposure group 150 mg/(kg•d), zinc deficiency diet group 7.5 mg/(kg•d), and BPA + ZD combined exposure group (BPA 150 mg/(kg•d) + ZD 7.5 mg/(kg•d)). The mice were kept for 8 weeks. The results showed that the testicular tissue structure was disturbed, and semen quality, serum Zn, testicular tissue Zn, and testicular tissue free Zn ions were decreased in the BPA-exposed and ZD groups. The expression of zinc transporters (ZIP7, ZIP8, ZIP13, and ZIP14) in testicular tissue was changed. The expressions of pro-inflammatory cytokines including TNF-α and IL-1β as well as inflammatory pathway-related proteins (IKB-α, p-IKB-α, NF-κB, p-NF-κB, Caspase8, and Caspase3) were increased, while the expressions of anti-inflammatory cytokines (TGF-β and IL-10) were decreased. The changes in the above indexes in the BPA + ZD group were more obvious. Both BPA exposure and ZD can induce testicular tissue inflammation through the TNF-α/NF-κB/Caspase8 signaling pathway, and BPA further aggravates zinc deficiency-induced testicular tissue inflammation and apoptosis damage.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, 063210, Hebei Province, China.
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Wen Li
- Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Zhan Hou
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - Yuanjing Li
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Yanqing Tie
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| |
Collapse
|
2
|
Cao H, Li Z, Jin T, He S, Liu S, Li L, Wang Y, Gong Y, Wang G, Yang F, Dong W. Maslinic acid supplementation prevents di(2-ethylhexyl) phthalate-induced apoptosis via PRDX6 in peritubular myoid cells of Chinese forest musk deer. J Environ Sci (China) 2024; 143:47-59. [PMID: 38644023 DOI: 10.1016/j.jes.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 04/23/2024]
Abstract
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Gang Wang
- Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
3
|
Curi TZ, Passoni MT, Lima Tolouei SE, de Araújo Ramos AT, França de Almeira SC, Scinskas ABAF, Romano RM, de Oliveira JM, Spercoski KM, Carvalho Dos Santos A, Dalsenter PR, Koch HM, Martino-Andrade AJ. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol Sci 2023; 197:1-15. [PMID: 37788136 DOI: 10.1093/toxsci/kfad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Samara Christina França de Almeira
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anna Beatriz Abreu Ferraz Scinskas
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | | | - Ariany Carvalho Dos Santos
- Histopathology Laboratory, Department of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS 9804-970, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Holger Martin Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bochum 44789, Germany
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| |
Collapse
|
4
|
Assessing human exposure to phthalate esters in drinking water migrated from various pipe materials and water filter elements during water treatments and storage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47832-47843. [PMID: 36749517 DOI: 10.1007/s11356-023-25633-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
Plastic water-supply pipes and filter element are frequently used in municipal water supply systems. Leaching of phthalate esters (PAEs) from these pipes and filter elements to drinking water has become a common concern among the public. In this study, the migrations of 16 phthalate esters (PAEs) in seven different kinds of water-supply product materials were investigated. Di-n-butyl phthalate (DBP) had the highest detection frequency of 54.4% in the water leaching samples of various water supply pipes and water filter elements samples, followed by Diisobutyl phthalate (DIBP, 46/90, 51.1%). The maximum detected concentration level for di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), and DBP in the leaching experiment was below the regulatory limit values of 8 µg/L, 300 µg/L, and 3 µg/L for each compound in China standards for drinking water quality. The increasing of the water temperature, the lower pH of the water, and the increasing of the leaching time will increase the migration of PAEs from plastic pipes into water. The chronic daily intake of children aged < 1-12 years to PAEs through drinking water was higher than the rest of the population groups. Carcinogenic risks (CR) of DEHP via drinking water were neglectable for most groups of people, while for young children with age of 1-2 years old, the CR is an acceptable risk.
Collapse
|
5
|
Balcı A, Özkemahlı G, Erkekoglu P, Zeybek D, Yersal N, Kocer-Gumusel B. Effects of prenatal and lactational bisphenol a and/or di(2-ethylhexyl) phthalate exposure on male reproductive system. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:902-915. [PMID: 32787440 DOI: 10.1080/09603123.2020.1805416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and phthalates are abundantly used endocrine disrupting chemicals (EDCs). The aim of this study was to evaluate the effects of single and combined exposures to BPA and/or di(2-ethylhexyl) phthalate (DEHP) in prenatal and lactational period on rat male reproductive system in later stages of life. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (corn oil); DEHP (30 mg/kg/day); BPA (50 mg/kg/day); and BPA+ DEHP (30 mg/kg/day DEHP and 50 mg/kg/day BPA). Groups exposed to EDCs through 6-21 gestational days and lactation period by intragastric lavage. Male offspring (n = 6/group) from each mother were fed till adulthood and were then euthanized. Later, reproductive hormones, sperm parameters, and oxidative stress parameters were determined. In conclusion, we can suggest that prenatal and lactational exposure to BPA and DEHP may cause adverse effects in male reproductive system in later stages of life especially after combined exposure.
Collapse
Affiliation(s)
- Aylin Balcı
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Özkemahlı
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Pınar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgün Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
6
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|
7
|
Çetin S, Özaydın T. The effects of bisphenol A given in ovo on bursa of Fabricius development and percentage of acid phosphatase positive lymphocyte in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41688-41697. [PMID: 33791960 DOI: 10.1007/s11356-021-13640-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), one of the endocrine disrupting chemicals, is the object of great concern because of its widespread use throughout the world. In this study, it was aimed to determine the effects of in ovo administrated BPA on the bursa of Fabricius and percentage of acid phosphatase positive lymphocyte in peripheral blood by means of histological and enzyme histochemical methods. For this purpose, 310 fertile eggs of Isa Brown laying parent stock were used. The eggs were divided into 5 groups as control, vehicle control, 50, 100, and 250μg/egg BPA. At days 13, 18, and 21 of incubation, eggs were opened until 10 living embryos were obtained from each group. Tissue samples were taken from the obtained embryos and processed for enzyme histochemical methods in addition to routine histological techniques. It was observed that, in BPA-treated groups, embryonic development of bursa of Fabricius was retarded. It was also indicated that the percentage of peripheral blood ACP-ase positive lymphocytes was significantly decreased. These results suggested that a limited maternal transfer of BPA into the eggs might be lead to immunosuppression in chicks.
Collapse
Affiliation(s)
- Selvinaz Çetin
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey
| | - Tuğba Özaydın
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey.
| |
Collapse
|
8
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Wu LJ, Teng XM, Yao YC, Liu C, Du YY, Deng TR, Yuan XQ, Zeng Q, Li YF, Guo N. Maternal preconception phthalate metabolite concentrations in follicular fluid and neonatal birth weight conceived by women undergoing in vitro fertilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115584. [PMID: 33254621 DOI: 10.1016/j.envpol.2020.115584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Exposure to phthalates during gestation has been associated with decreased birth weight among offspring. However, the associations between preconception phthalate metabolites in follicular fluid (FF) and offspring birth weight among women undergoing in vitro fertilization (IVF) remain largely unknown. Here, we explored the associations between preconception phthalate metabolite concentrations in FF and the birth weights of singletons and twins among women undergoing IVF. We recruited 147 female participants who gave birth to 90 singletons and 57 twin infants at the Reproductive Medicine Center, Tongji Hospital, Wuhan, between November and December 2016. Each participant was asked to complete a questionnaire at the time of recruitment and provide a FF sample on the day of oocyte retrieval. The FF concentrations of eight phthalate metabolites were determined using high-performance liquid chromatography and tandem mass spectrometry. Birth outcomes were abstracted from medical records. The associations between phthalate metabolites in FF and birth weights of the singleton and twin groups were evaluated using generalized linear models (GLMs). We found that birth weight in the twin group had negative dose-response associations with maternal preconception monobenzyl phthalate (MBzP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) in FF (both P for trends < 0.05) and that birth weight in the singleton group had positive dose-response associations with monoethyl phthalate (MEP) and mono(2-ethyl-5 hydroxyhexyl) phthalate (MEHHP) in FF (both P for trends < 0.05). These associations persisted when we modeled as continuous variables. In addition, we observed male-specific association between decreased twin birth weight and MEOHP and MBzP and a female-specific associations between increased singleton birth weight and MEP, MEHHP and the sum of di(2-ethylhexyl) phthalate (∑DEHP) (all P for interactions < 0.05). Preconception phthalate metabolites in maternal FF may affect the birth weights of both singleton and twin newborns.
Collapse
Affiliation(s)
- Lin-Jing Wu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Mei Teng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang-Cheng Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yao-Yao Du
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tao-Ran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Balci A, Ozkemahli G, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. Histopathologic, apoptotic and autophagic, effects of prenatal bisphenol A and/or di(2-ethylhexyl) phthalate exposure on prepubertal rat testis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20104-20116. [PMID: 32239407 DOI: 10.1007/s11356-020-08274-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine-disrupting chemicals (EDCs) used in a wide variety of industrial products as plasticizers. Exposure to EDCs, particularly in mixtures, in prenatal and early postnatal periods may lead to unwanted effects and can cause both developmental and reproductive problems. In this study, we aimed to determine the individual and combined effects of prenatal and lactational exposure to BPA and/or DEHP on testicular histology, apoptosis, and autophagic proteins. Pregnant Sprague-Dawley rats (n = 3) were divided into four groups (control, BPA (50 mg/kg/day), DEHP (30 mg/kg/day), and BPA (50 mg/kg/day) + DEHP (30 mg/kg/day)) and dosed by oral gavage during pregnancy and lactation. The male offspring (n = 6) from each group were chosen randomly, and their testicular examinations were performed on the twelfth week. The results showed that fetal and neonatal exposure to BPA and DEHP could lead to significant testicular histopathological alterations and cause increases in apoptosis markers (as evidenced by increases in caspase 3 and caspase 8 levels; increased TUNEL-positive spermatogonia and TUNEL-positive testicular apoptotic cells) and autophagic proteins (as evidenced by increased LC3 and Beclin levels and decreased p62 levels) in testicular tissue. We can suggest that EDCs cause more dramatic changes in both testicular structure and cell death when there is combined exposure.
Collapse
Affiliation(s)
- Aylin Balci
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
11
|
Zhang X, Tang S, Qiu T, Hu X, Lu Y, Du P, Xie L, Yang Y, Zhao F, Zhu Y, Giesy JP. Investigation of phthalate metabolites in urine and daily phthalate intakes among three age groups in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114005. [PMID: 31995769 DOI: 10.1016/j.envpol.2020.114005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Phthalates are widely used as binders and plasticizers in industrial and consumer products but show diverse toxicity. We investigated the level of human exposure to phthalates in Beijing, one of the most densely populated cities in the world. In this study, 12 metabolites of phthalates were measured in 70 spot urine samples collected from Beijing residents from August 2017 to April 2018 using ultra high-performance liquid chromatography tandem mass spectrometry. We found that metabolites of phthalates were ubiquitous in all urine samples. Total concentrations of phthalate metabolites ranged from 39.6 to 1931 ng mL-1, with median concentrations were in decreasing order of children (371 ng mL-1)> younger adults (332 ng mL-1)> older adults (276 ng mL-1). Mono-n-butyl phthalate (MnBP) was the predominant compound, and occurred at concentrations greater than those reported for people in other countries. The mean values of estimated daily intakes (EDIs) of ∑phthalate were 35.2, 10.3 and 10.9 ng (kg-bm)-1 d-1 for children, younger adults and older adults, respectively. EDIs of di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP) and di-(2-ethylhexyl) phthalate (DEHP) exceeded reference values suggested by the US Environmental Protection Agency and the European Food Safety Authority. When concentrations were normalized to volume or creatinine-adjusted, hazard quotients (HQs) for 40 of 70 participants exhibited larger HQs >1 for individual phthalates, which was indicative of potential for adverse effects. Thus, exposure to phthalates might be a critical factor contributing to adverse health effects in Beijing residents. To the best of our knowledge, this is the first study to establish a pre-baseline level of urinary phthalate metabolites among residents in Beijing.
Collapse
Affiliation(s)
- Xu Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Qiu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojian Hu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yifu Lu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Du
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Linna Xie
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwei Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Zhu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biomedical and Veterinary Biosciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|
12
|
Li X, Wen Z, Wang Y, Mo J, Zhong Y, Ge RS. Bisphenols and Leydig Cell Development and Function. Front Endocrinol (Lausanne) 2020; 11:447. [PMID: 32849262 PMCID: PMC7411000 DOI: 10.3389/fendo.2020.00447] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the production and use of plastics and the degradation of wastes related to industrial plastics. Evidence from laboratory animal and human studies supports the view that BPA has an endocrine disrupting effect on Leydig cell development and function. To better understand the adverse effects of BPA, we reviewed its role and mechanism by analyzing rodent data in vivo and in vitro and human epidemiological evidence. BPA has estrogen and anti-androgen effects, thereby destroying the development and function of Leydig cells and causing related reproductive diseases such as testicular dysgenesis syndrome, delayed puberty, and subfertility/infertility. Due to the limitation of BPA production, the increased use of BPA analogs has also attracted attention to these new chemicals. They may share actions and mechanisms similar to or different from BPA.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zina Wen
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
- *Correspondence: Ying Zhong
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Ren-Shan Ge
| |
Collapse
|
13
|
Manfo FPT, Harthé C, Nantia EA, Dechaud H, Tchana AN, Zabot MT, Pugeat M, Fewou Moundipa P. Bisphenol A differentially affects male reproductive function biomarkers in a reference population and agro pesticides users from Djutitsa, Cameroon. Toxicol Ind Health 2019; 35:324-335. [DOI: 10.1177/0748233719838437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The consequences of bisphenol A (BPA) exposure on male reproductive function were studied in two populations from Cameroon, farmers using agro pesticides in Djutitsa (rural area) and townsmen in Yaoundé (urban area, Centre region). Urinary BPA concentration from all participants was measured, and the values were correlated with biochemical markers of male reproductive function. The data showed that BPA could be detected in 92.6% of urine participants, with an average concentration of 2.18 ± 1.97 µg/g creatinine but with no significant difference between the urinary BPA concentration from rural and urban populations. From BPA urinary concentration, the BPA average daily intake was estimated to be 0.06 ± 0.05 μg/kg/day (3.51 µg/day per individual) in the Cameroon population. Interestingly, free and bioavailable testosterone concentrations and estradiol/testosterone ratio correlated with BPA levels in the overall population. When data were analysed according to residence, BPA correlated with total testosterone levels ( r = −0.433) and estradiol/testosterone ratio ( r = 0.338) in the urban residents only, while the rural population exhibited significant increases in sex-hormone-binding globulin with increased BPA exposure. Our data showed that the male Cameroon population is exposed to BPA but that inconstant BPA association to endocrine reproductive markers suggests that other environmental factors in combination with BPA exposure might influence testicular function.
Collapse
Affiliation(s)
| | - Cathérine Harthé
- Laboratoire d’Hormonologie, Centre de Biologie et de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, France
| | - Edouard Akono Nantia
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Henri Dechaud
- Laboratoire d’Hormonologie, Centre de Biologie et de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, France
- INSERM U1060, France
- Université de Lyon, Lyon, France
| | - Angèle Nkouatchoua Tchana
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marie-Tthérèse Zabot
- INSERM U1060, France
- Université de Lyon, Lyon, France
- Centre de Biotechnologie Cellulaire, Groupement Hospitalier Est, France
| | - Michel Pugeat
- INSERM U1060, France
- Université de Lyon, Lyon, France
- Institut National de la Recherche Médicale U1060 CaRMen, Fédération d’Endocrinologie, Hospices Civils de Lyon, Université Lyon-1, Bron, France
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
14
|
Shi YQ, Fu GQ, Zhao J, Cheng SZ, Li Y, Yi LN, Li Z, Zhang L, Zhang ZB, Dai J, Zhang DY. Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats. Toxicol Ind Health 2019; 35:228-238. [DOI: 10.1177/0748233718824911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is a typical endocrine-disrupting chemical and reproductive toxicant. Although previous studies have attempted to describe the mechanism by which DEHP exposure results in reproductive dysfunction, few studies focused on puberty, a critical period of reproductive development, and the increased susceptibility to injury in adolescents. To elucidate the mechanism underpinning the testicular effects of DEHP in puberty, we sought to investigate the JAZF1/TR4 pathway in the testes of pubertal rats. Specifically, we focused on the role of the JAZF1/TR4 pathway in male reproduction, including the genes JAZF1, TR4, Sperm 1, and Cyclin A1. In the present study, rats were exposed to increasing concentrations of DEHP (0, 250, 500, and 1000 mg/kg/day) by oral gavages for 30 days. Then we assayed testicular zinc and oxidative stress levels. Our results indicated that DEHP exposure could lead to oxidative stress and decrease the contents of testicular zinc. Additionally, significant morphological changes and cell apoptosis were observed in testes exposed to DEHP, as identified by hematoxylin and eosin staining and the terminal deoxynucleotidyl transferase-mediated nick and labeling assay. By measuring the expression levels of the above relevant genes by qPCR, we found the DEHP-induced increased expression of JAZF1 and decreased expression of TR4, Sperm 1, and Cyclin A1. Therefore, we have demonstrated that in vivo exposure to DEHP might induce reproductive toxicity in pubertal male rats through the JAZF1/TR4 pathway and oxidative stress.
Collapse
Affiliation(s)
- Yu-Qin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| | - Guo-Qing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Shen-Zhou Cheng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - You Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Na Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Bing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Juan Dai
- Wuhan Centers for Disease Prevention and Control, Wuhan, People’s Republic of China
| | - Da-Yi Zhang
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Aviles A, Boulogne I, Durand N, Maria A, Cordeiro A, Bozzolan F, Goutte A, Alliot F, Dacher M, Renault D, Maibeche M, Siaussat D. Effects of DEHP on post-embryonic development, nuclear receptor expression, metabolite and ecdysteroid concentrations of the moth Spodoptera littoralis. CHEMOSPHERE 2019; 215:725-738. [PMID: 30347366 DOI: 10.1016/j.chemosphere.2018.10.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is recognized in vertebrates as an Endocrine Disrupting Chemical (EDC). DEHP can alter steroid hormones production, development, reproduction and behavior in vertebrates. Only few studies investigated DEHP effects on insects. However, some recent studies on aquatic insects showed that DEHP could also act as an EDC by interfering with the signaling pathways of ecdysteroids, the main hormones involved in the control of insect post-embryonic development and physiology. The aim of the study was to investigate (1) the fate of DEHP within a terrestrial insect species by exposing larvae to food containing a wide range of DEHP concentrations and (2) the effects of this chemical on their post-embryonic development and metamorphosis, by using a multi-level approach. DEHP was shown to be present both in larvae and resulting stages, with higher concentrations in chrysalises and adults than in larvae. DEHP concentrations also decreased at the end of the last larval instar, suggesting the metabolic transformation or excretion of this chemical during this time. Only the two highest DEHP doses induced higher insect mortality, whereas low and intermediate concentrations increased larval food consumption without affecting body weight. Metabolic profiles showed that in control insects, the last three days before metamorphosis correspond to a metabolic transition, but with time-dependent changes in treated insects. Interestingly, DEHP treatments also alter both hemolymphatic ecdysteroid titers and expression levels of ecdysteroid response genes. These results confirm that DEHP can alter insect post-embryonic development and metamorphosis, by interfering with ecdysteroid pathways.
Collapse
Affiliation(s)
- Amandine Aviles
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Isabelle Boulogne
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France; Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED 4277, 76000 Rouen, France
| | - Nicolas Durand
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Alexandra Cordeiro
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Aurélie Goutte
- École Pratique des Hautes Études (EPHE), PSL Research University, UMR 7619 METIS, Sorbonne Université, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études (EPHE), PSL Research University, UMR 7619 METIS, Sorbonne Université, Paris, France
| | - Matthieu Dacher
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France; Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - David Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, 263 Avenue du Gal Leclerc, CS 74205, 35042 Rennes Cedex, France; Institut Universitaire de France, 1 Rue Descartes, Paris, France
| | - Martine Maibeche
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - David Siaussat
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France.
| |
Collapse
|
16
|
Liu H, Guo Y, Yang T, Fan Z, Huang M, Liang S, Liu C. Intervention effect of gamma aminobutyric acid on anxiety behavior induced by phthalate (2-ethylhexyl ester) in rats. Int J Neurosci 2018; 128:928-934. [PMID: 29191066 DOI: 10.1080/00207454.2017.1405952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/21/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Di(2-ethylhexyl) phthalate (DEHP) is one of the most widely used phthalate esters. The application of DEHP has caused serious environmental pollution and posed a threat to human health. METHODS A total of 30 male Sprague-Dawley rats were randomly divided into control group, DEHP group (500 mg/kg DEHP), low GABA (Gama-aminobutyric acid) group (500 mg/kg DEHP and 1 mg/kg GABA), medium GABA group (500 mg/kg DEHP and 2 mg/kg GABA) and high GABA group (500 mg/kg DEHP and 4 mg/kg GABA). The interventions continued for 30 consecutive days. Open-field test and elevated plus-maze test were used to detect behavioral changes of rats before and after interventions. RESULTS The levels of nitric oxide and nitric oxide synthase in prefrontal cortex of rats were measured using enzyme-linked immunosorbent assay. DEHP and GABA treatment had no significant effects on the body weight of rats. GABA restored food utilization rate of rats impaired by DEHP to the level of healthy rats. According to open-field test and elevated plus-maze test, GABA alleviated the effects of DEHP on rat behaviors. Enzyme-linked immunosorbent assay showed that GABA was effective in reducing the levels of nitric oxide and nitric oxide synthase in rats treated with DEHP. CONCLUSION DEHP exposure induced anxiety in rats, which may be achieved through elevating nitric oxide and nitric oxide synthase levels in prefrontal cortex of rats. However, the effects caused by DEHP could be alleviated by GABA.
Collapse
Affiliation(s)
- Huan Liu
- a College of Food Science , South China Agricultural University , Guangzhou , P.R. China
| | - Youting Guo
- a College of Food Science , South China Agricultural University , Guangzhou , P.R. China
| | - Tongwang Yang
- a College of Food Science , South China Agricultural University , Guangzhou , P.R. China
| | - Zhicheng Fan
- a College of Food Science , South China Agricultural University , Guangzhou , P.R. China
| | - Minhao Huang
- a College of Food Science , South China Agricultural University , Guangzhou , P.R. China
| | - Shuqin Liang
- a College of Food Science , South China Agricultural University , Guangzhou , P.R. China
| | - Chunhong Liu
- a College of Food Science , South China Agricultural University , Guangzhou , P.R. China
- b Key Laboratory of Food Quality and Safety of Guangdong Province , South China Agricultural University , Guangzhou , P.R. China
| |
Collapse
|
17
|
Liu T, Wang Y, Yang M, Shao P, Duan L, Li M, Zhu M, Yang J, Jiang J. Di-(2-ethylhexyl) phthalate induces precocious puberty in adolescent female rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:848-855. [PMID: 30186573 PMCID: PMC6118085 DOI: 10.22038/ijbms.2018.28489.6905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Nowadays, Di-(2-ethylhexyl) phthalate (DEHP) is widely used in different kinds of commercial products as a plasticizer. Previous studies have revealed that exposures to DEHP could be associated with precocious puberty in teenagers, but the exact mechanism is yet to be known. MATERIALS AND METHODS In this study, 48 prepubertal Wistar female rats were randomly apportioned into 4 groups and orally treated with 0, 250, 500, and 1000 mg/kg/d DEHP from postnatal day 21 up to 4 weeks. Subsequently, we examined the indicators related to the initiation of sexual development. RESULTS DEHP was able to shorten the vaginal opening time and prolong the estrous cycles of female rats. IGF-1 expression was significantly upregulated by 1000 mg/kg/d DEHP in the hypothalamus, and the hypothalamic, as well as serum levels of GH, were also upregulated by DEHP. It also caused decrements in serum levels of FSH, LH, and T and the increment in level of progesterone. Meanwhile, DEHP was able to exert its effect on the mRNA and protein expression levels of Kiss-1, GPR54, and GnRH in the hypothalamus in pubertal female rats. CONCLUSION These findings are revealing that DEHP exposure more likely causes imbalances of hypothalamus functioning in pubertal female rats and thus induces precautious puberty in these animals.
Collapse
Affiliation(s)
- Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuzhuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Lian Duan
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Meng Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Mingji Zhu
- Department of Dermatological, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jie Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| |
Collapse
|
18
|
Eladak S, Moison D, Guerquin MJ, Matilionyte G, Kilcoyne K, N’Tumba-Byn T, Messiaen S, Deceuninck Y, Pozzi-Gaudin S, Benachi A, Livera G, Antignac JP, Mitchell R, Rouiller-Fabre V, Habert R. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis. PLoS One 2018; 13:e0191934. [PMID: 29385186 PMCID: PMC5791995 DOI: 10.1371/journal.pone.0191934] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/15/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. METHODS Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. RESULTS With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. CONCLUSIONS Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.
Collapse
Affiliation(s)
- Soria Eladak
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Delphine Moison
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Marie-Justine Guerquin
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Gabriele Matilionyte
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Karen Kilcoyne
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Thierry N’Tumba-Byn
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Sébastien Messiaen
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Yoann Deceuninck
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique (ONIRIS), Nantes, France
| | - Stéphanie Pozzi-Gaudin
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Alexandra Benachi
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Gabriel Livera
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - Jean-Philippe Antignac
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique (ONIRIS), Nantes, France
| | - Rod Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Virginie Rouiller-Fabre
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| | - René Habert
- Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- INSERM, Unité 967, Fontenay aux Roses, France
| |
Collapse
|
19
|
Li N, Li Y, Meng H, Sun H, Wu D. Associations between Urinary Phthalate Metabolites and Serum Anti-Müller Hormone Levels in U.S. Men Based on National Health and Nutrition Examination Survey 2003-2004. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121513. [PMID: 29206197 PMCID: PMC5750931 DOI: 10.3390/ijerph14121513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
Abstract
Anti-Müller hormone (AMH) plays an important role in reproductive development and has a wide potential clinical application value. Phthalates have been widely found in human living environment and have negative effects on human reproduction. This study aimed to explore the relationship between urinary phthalate metabolites and serum AMH level in the general male population. Cross-sectional analyses were performed with a population of 489 men aged more than 12 years who participated in National Health and Nutrition Examination Survey (NHANES) 2003-2004 by Centers for Disease Control and Prevention, the United States. NHANES public data (demographic and socioeconomic information, examinations, and laboratory tests) were analyzed using Kruskal-Wallis test, Wilcoxon test and multivariable regression. Results showed that the urine concentration of mono (3-carboxypropyl) phthalate (MCPP) of 12-20 age group was significantly positively correlated with serum AMH concentration in the model without any covariates (p < 0.05). In the 60-year-old group, the monomethyl phthalate (MEP), mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) concentrations were significantly correlated with serum AMH concentrations in models both with and without covariates (all p < 0.05). It could be concluded that exposure to phthalates might have negative effects on AMH level, especially in seniors. AMH could be used as a marker of exposure to phthalates in aged males. How exposure to phthalates affected AMH level and what the potential long-term health consequences of their relationship are needs more investigation.
Collapse
Affiliation(s)
- Ningning Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yaqi Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Hao Meng
- School of Geography and Oceanography Sciences, Nanjing University, Nanjing 210023, China.
| | - Hanqing Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
20
|
Wang X, Zhang X, Xia P, Zhang J, Wang Y, Zhang R, Giesy JP, Shi W, Yu H. A high-throughput, computational system to predict if environmental contaminants can bind to human nuclear receptors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:609-616. [PMID: 27810749 DOI: 10.1016/j.scitotenv.2016.10.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Some pollutants can bind to nuclear receptors (NRs) and modulate their activities. Predicting interactions of NRs with chemicals is required by various jurisdictions because these molecular initiating events can result in adverse, apical outcomes, such as survival, growth or reproduction. The goal of this study was to develop a high-throughput, computational method to predict potential agonists of NRs, especially for contaminants in the environment or to which people or wildlife are expected to be exposed, including both persistent and pseudo-persistent chemicals. A 3D-structure database containing 39 human NRs was developed. The database was then combined with AutoDock Vina to develop a System for Predicting Potential Effective Nuclear Receptors (SPEN), based on inverse docking of chemicals. The SPEN was further validated and evaluated by experimental results for a subset of 10 chemicals. Finally, to assess the robustness of SPEN, its ability to predict potentials of 40 chemicals to bind to some of the most studied receptors was evaluated. SPEN is rapid, cost effective and powerful for predicting binding of chemicals to NRs. SPEN was determined to be useful for screening chemicals so that pollutants in the environment can be prioritized for regulators or when considering alternative compounds to replace known or suspected contaminants with poor environmental profiles.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Pu Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Junjiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | - Rui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; School of Resources and Environment, University of Jinan, Jinan, Shandong 250022, PR China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan SK S7N5A2, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR 999077, PR China; Zoology Dept. and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.
| |
Collapse
|
21
|
Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24642-24693. [PMID: 27714658 DOI: 10.1007/s11356-016-7648-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/07/2016] [Indexed: 05/23/2023]
Abstract
Di (ethylhexyl) phthalate (DEHP) is a global environmental pollutant. This study aims to systematically review the literature on health effects of exposure to DEHP including effects on reproductive health, carcinogenesis, pregnancy outcome, and respiratory system. The literature search was done through Scopus, ISI Web of Science, Google Scholar, PubMed, Medline, and the reference lists of previous review articles to identify relevant articles published to June 2016 in each subject area. The inclusion criteria were as follows: original research, cross-sectional studies, case-control studies, cohort studies, interventional studies, and review articles. Both human and animal studies were included. The search was limited to English language papers. Conference papers, editorials, and letters were not included. The systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Overall, 152 of the 407 papers met the inclusion criteria. We provided an up-to-date comprehensive and critical assessment of both human and animal studies undertaken to explore the effects of DEHP. It revealed that in experimental studies, exposure to DEHP mainly targeted the reproductive, neurodevelopment, and respiratory systems. Human studies reported that exposure to this contaminant had carcinogenic effects and influenced neurodevelopment in early life. This systematic review underscored the adverse health effects of DEHP for pregnant women and the pediatric age group. It summarizes different response of humans and experimental animals to DEHP exposure, and some suggested underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Zarean
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Keikha
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Khalighinejad
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Kimia Gostar Saba, Isfahan, Iran
| | - Mohammadmehdi Amin
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Liu N, Wang Y, Yang Q, Lv Y, Jin X, Giesy JP, Johnson AC. Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:482-488. [PMID: 26970873 DOI: 10.1016/j.envpol.2016.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Diethylhexyl phthalate (DEHP) is considered to be an endocrine disruptor, which unlike other chemicals that have either non-specific (e.g., narcotics) or more generalized reactive modes of action, affect the Hypothalamic-pituitary-gonadal (HPG) axis and tend to have specific interactions with particular molecular targets within biochemical pathways. Responding to this challenge, a novel method for deriving predicted no-effect concentration (PNEC) and probabilistic ecological risk assessment (PERAs) for DEHP based on long-term exposure to potentially sensitive species with appropriate apical endpoints was development for protection of Chinese surface waters. PNECs based on potencies to cause lesions in reproductive tissues of fishes, which ranged from 0.04 to 0.20 μg DEHP L(-1), were significantly less than those derived based on other endpoints or other taxa, such as invertebrates. An assessment of risks posed by DEHP to aquatic organisms in surface waters of China showed that 88.17% and 78.85% of surface waters in China were predicted to pose risks to reproductive fitness of fishes with thresholds of protection for aquatic organisms based on 5% (HC5) and 10% (HC10), respectively. Assessment of risks of effects based on effects mediated by the HPG-axis should consider effects on chronic, non-lethal endpoints for specific taxa, especially for reproductive fitness of fishes.
Collapse
Affiliation(s)
- Na Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yeyao Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; China National Environmental Monitoring Center, Beijing, 100012, China
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yibing Lv
- China National Environmental Monitoring Center, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing, 100012, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | | |
Collapse
|
23
|
Prenatal Exposure to DEHP Affects Spermatogenesis and Sperm DNA Methylation in a Strain-Dependent Manner. PLoS One 2015; 10:e0132136. [PMID: 26244509 PMCID: PMC4526524 DOI: 10.1371/journal.pone.0132136] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/10/2015] [Indexed: 12/03/2022] Open
Abstract
Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms.
Collapse
|
24
|
Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol 2015; 219:74-88. [PMID: 25448254 DOI: 10.1016/j.ygcen.2014.11.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Due to their versatility, robustness, and low production costs, plastics are used in a wide variety of applications. Plasticizers are mixed with polymers to increase flexibility of plastics. However, plasticizers are not covalently bound to plastics, and thus leach from products into the environment. Several studies have reported that two common plasticizers, bisphenol A (BPA) and phthalates, induce adverse health effects in vertebrates; however few studies have addressed their toxicity to non-mammalian species. The aim of this review is to compare the effects of plasticizers in animals, with a focus on aquatic species. In summary, we identified three main chains of events that occur in animals exposed to BPA and phthalates. Firstly, plasticizers affect development by altering both the thyroid hormone and growth hormone axes. Secondly, these chemicals interfere with reproduction by decreasing cholesterol transport through the mitochondrial membrane, leading to reduced steroidogenesis. Lastly, exposure to plasticizers leads to the activation of peroxisome proliferator-activated receptors, the increase of fatty acid oxidation, and the reduction in the ability to cope with the augmented oxidative stress leading to reproductive organ malformations, reproductive defects, and decreased fertility.
Collapse
Affiliation(s)
- Justine Mathieu-Denoncourt
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Sarah J Wallace
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Shane R de Solla
- Wildlife and Landscape Science Directorate, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
25
|
Prenatal exposure to di-(2-ethylhexyl) phthalate (DEHP) affects reproductive outcomes in female mice. Reprod Toxicol 2015; 53:23-32. [PMID: 25765777 DOI: 10.1016/j.reprotox.2015.02.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that prenatal DEHP exposure affects female reproduction. To test this hypothesis, pregnant female CD-1 mice were orally dosed daily with tocopherol-stripped corn oil (vehicle control) or DEHP (20 μg/kg/day-750 mg/kg/day) from gestation day 11-birth. Pups were counted, weighed, and sexed at birth, ovaries were subjected to evaluations of follicle numbers on postnatal days (PNDs) 8 and 21, and fertility was evaluated at 3-9 months. The results indicate that prenatal DEHP exposure increased male-to-female ratio compared to controls. Prenatal DEHP exposure also increased preantral follicle numbers at PND 21 compared to controls. Further, 22.2% of the 20 μg/kg/day treated animals took longer than 5 days to get pregnant at 3 months and 28.6% of the 750 mg/kg/day treated animals lost some of their pups at 6 months. Thus, prenatal DEHP exposure alters F1 sex ratio, increases preantral follicle numbers, and causes some breeding abnormalities.
Collapse
|
26
|
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3978] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Weber DN, Hoffmann RG, Hoke ES, Tanguay RL. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:50-66. [PMID: 25424546 PMCID: PMC4246420 DOI: 10.1080/15287394.2015.958419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1, or 1 μM) or one of two control compounds (0.1 μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into three computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1-3 (= AM) and 5-8 (= PM) h postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, percent of time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced nonmonotonic effects (response curve changes direction within range of concentrations examined) on male percent of time at mirror only in AM. All treatments produced increased percent of time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions, and time of day of observation affected results.
Collapse
Affiliation(s)
- Daniel N. Weber
- Children’s Environmental Health Sciences Core Center, University of Wisconsin-Milwaukee
- To Whom Correspondence Should Be Addressed: , 600 E. Greenfield Ave, Milwaukee, WI 53204, (414) 382-1726
| | | | | | - Robert L. Tanguay
- College of Agricultural Sciences, Department of Environmental & Molecular Toxicology, Oregon State University
| |
Collapse
|
28
|
Pellegrini M, Bulzomi P, Lecis M, Leone S, Campesi I, Franconi F, Marino M. Endocrine disruptors differently influence estrogen receptor β and androgen receptor in male and female rat VSMC. J Cell Physiol 2014; 229:1061-8. [PMID: 24347325 DOI: 10.1002/jcp.24530] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
Abstract
Sex steroid hormones differently control the major physiological processes in male and female organisms. In particular, their effects on vascular smooth muscle cells (VSMCs) migration are at the root of sex/gender-related differences reported in the cardiovascular system. Several exogenous substances, defined endocrine disruptor chemicals (EDCs), could interfere with these androgen and estrogen effects; however, the sex/gender-related susceptibility of VSMC motility to EDCs is completely unknown. Here, the effect of naturally occurring (naringenin, Nar) and synthetic (bisphenol A, BPA) EDCs on male and female VSMC motility has been evaluated. 17β-estradiol (E2, 0.1 nM-1 µM) induced a dose-dependent inhibition of motility in female-derived VSMC. In contrast, neither dihydrotestosterone (DHT, 0.01-100 nM) nor the common precursor of sex steroid hormones, testosterone (Tes, 0.01-100 nM) modified male-derived VSMC motility. Estrogen receptor (ER) β subtype-dependent activation of p38 was necessary for the E2 effect on cell motility. High BPA concentration prevented E2 effects in female-derived cells being without any effect in male-derived cells. Nar mimicked E2 effects on female-derived cells even in the presence of E2 or BPA. Intriguingly, Nar also inhibited the male-derived VSMC mobility. This latter effect was prevented by ERβ inhibitor, but not by the androgen receptor (AR) inhibitor. As a whole, ERβ-dependent signals in VSMC results more susceptible to the impact of EDCs than AR signals suggesting a possible high and overall susceptibility of female to EDCs. However, several male-derived cells, including VSMC, express ERβ, which could also serve as target of EDC disruption in male organisms.
Collapse
|
29
|
Liu T, Li N, Zhu J, Yu G, Guo K, Zhou L, Zheng D, Qu X, Huang J, Chen X, Wang S, Ye L. Effects of di-(2-ethylhexyl) phthalate on the hypothalamus-pituitary-ovarian axis in adult female rats. Reprod Toxicol 2014; 46:141-7. [DOI: 10.1016/j.reprotox.2014.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 03/06/2014] [Accepted: 03/15/2014] [Indexed: 02/01/2023]
|
30
|
Williams C, Bondesson M, Krementsov DN, Teuscher C. Gestational bisphenol A exposure and testis development. ACTA ACUST UNITED AC 2014; 2. [PMID: 26167515 DOI: 10.4161/endo.29088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Virtually all humans are exposed to bisphenol A (BPA). Since BPA can act as a ligand for estrogen receptors, potential hazardous effects of BPA should be evaluated in the context of endogenous estrogenic hormones. Because estrogen is metabolized in the placenta, developing fetuses are normally exposed to very low endogenous estrogen levels. BPA, on the other hand, passes through the placenta and might have distinct adverse consequences during the sensitive stages of fetal development. Testicular gametogenesis and steroidogenesis begin early during fetal development. These processes are sensitive to estrogens and play a role in determining the number of germ stem cells, sperm count, and male hormone levels in adulthood. Although studies have shown a correlation between BPA exposure and perturbed reproduction, a clear consensus has yet to be established as to whether current human gestational BPA exposure results in direct adverse effects on male genital development and reproduction. However, studies in animals and in vitro have provided direct evidence for the ability of BPA exposure to influence male reproductive development. This review discusses the current knowledge of potential effects of BPA exposure on male reproductive health and whether gestational exposure adversely affects testis development.
Collapse
Affiliation(s)
- Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling; Department of Biology and Biochemistry; University of Houston, Houston, TX USA
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling; Department of Biology and Biochemistry; University of Houston, Houston, TX USA
| | - Dimitry N Krementsov
- Department of Medicine; Immunobiology Program; University of Vermont; Burlington, VT USA
| | - Cory Teuscher
- Department of Medicine; Immunobiology Program; University of Vermont; Burlington, VT USA ; Department of Pathology; University of Vermont; Burlington, VT USA
| |
Collapse
|
31
|
Manfo FPT, Jubendradass R, Nantia EA, Moundipa PF, Mathur PP. Adverse effects of bisphenol A on male reproductive function. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 228:57-82. [PMID: 24162092 DOI: 10.1007/978-3-319-01619-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BPA is a ubiquitous environmental contaminant, resulting mainly from manufacturing,use or disposal of plastics of which it is a component, and the degradation of industrial plastic-related wastes. Growing evidence from research on laboratory animals, wildlife, and humans supports the view that BPA produces an endocrine disrupting effect and adversely affects male reproductive function. To better understand the adverse effects caused by exposure to BPA, we performed an up-to-date literature review on the topic, with particular emphasis on in utero exposure, and associated effects on spermatogenesis, steroidogenesis, and accessory organs.BPA studies on experimental animals show that effects are generally more detrimental during in utero exposure, a critical developmental stage for the embryo. BPA has been found to produce several defects in the embryo, such as feminization of male fetuses, atrophy of the testes and epididymides, increased prostate size, shortening of AGD, disruption of BTB, and alteration of adult sperm parameters (e.g.,sperm count, motility, and density). BPA also affects embryo thyroid development.During the postnatal and pubertal periods and adulthood, BPA affects the hypothalamic-pituitary-testicular axis by modulating hormone (e.g., LH and FSH,androgen and estrogen) synthesis, expression and function of respective receptors(ER, AR). These effects alter sperm parameters. BPA also induces oxidative stress in the testis and epididymis, by inhibiting antioxidant enzymes and stimulating lipid peroxidation. This suggests that employing antioxidants may be a promising strategy to relieve BPA-induced disturbances.Epidemiological studies have also provided data indicating that BPA alters male reproductive function in humans. These investigations revealed that men occupationally exposed to BPA had high blood/urinary BPA levels, and abnormal semen parameters. BPA-exposed men also showed reduced libido and erectile ejaculatory difficulties; moreover, the overall BPA effects on male reproduction appear to be more harmful if exposure occurs in utero. The regulation of BPA and BPA-related products should be reinforced, particularly where exposure during the fetal period can occur. The current TDI for BPA is proposed as 25 and 50 1-1g/kg bwt/day (European Food Safety Authority and Health Canada, respectively). Based on the evidence available, we believe that a TDI value of 5 1-1g/kg bwt/day is more appropriate (the endpoint is modulation of rat testicular function). Certain BPA derivatives are being considered as alternatives to BPA. However, certain of these related products display adverse effects that are similar to those of BPA. These effects should be carefully considered before using them as final alternatives to BPA in plastic production.
Collapse
Affiliation(s)
- Faustin Pascal Tsagué Manfo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, 63, Buea, Cameroon
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Peretz J, Neese SL, Flaws JA. Mouse strain does not influence the overall effects of bisphenol a-induced toxicity in adult antral follicles. Biol Reprod 2013; 89:108. [PMID: 24025742 DOI: 10.1095/biolreprod.113.111864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) widely used in common consumer products containing polycarbonate plastics and epoxy resins. Previous studies indicate that other EDCs have species-dependent effects. Furthermore, some EDCs are known to have different effects in different strains within the same species. Little information, however, is known about whether the effects of BPA on the ovary differ by strain. Previous studies have shown that BPA inhibits follicle growth, induces atresia, and inhibits steroidogenesis and expression of steroidogenic enzymes in antral follicles from adult FVB mice. Thus, this study was designed to expand previous work by testing the hypothesis that mouse strain may differentially affect the susceptibility of adult antral follicles to BPA-induced toxicity. To test this hypothesis, antral follicles were mechanically isolated from adult FVB, CD-1, and C57BL/6 mice, individually cultured for 6-120 h and treated with either vehicle control (dimethylsulfoxide) or various concentrations of BPA (1.0 μg/ml, 10 μg/ml, or 100 μg/ml). After culture, media were subjected to measurements of hormone production via ELISA, and follicles were subjected to real-time PCR for analysis of genes known to regulate steroidogenesis, the cell cycle, and atresia. Overall, BPA inhibited follicle growth and steroidogenesis in all tested strains, but CD-1 follicles were slightly more sensitive to BPA at early time points than FVB and C57BL/6 follicles. These data suggest that CD-1, FVB, and C57BL/6 mice can all be used to investigate the effects of BPA on ovarian follicles.
Collapse
Affiliation(s)
- Jackye Peretz
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | | |
Collapse
|
34
|
Krementsov DN, Katchy A, Case LK, Carr FE, Davis B, Williams C, Teuscher C. Studies in experimental autoimmune encephalomyelitis do not support developmental bisphenol a exposure as an environmental factor in increasing multiple sclerosis risk. Toxicol Sci 2013; 135:91-102. [PMID: 23798566 DOI: 10.1093/toxsci/kft141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS), a demyelinating immune-mediated central nervous system disease characterized by increasing female penetrance, is the leading cause of disability in young adults in the developed world. Epidemiological data strongly implicate an environmental factor, acting at the population level during gestation, in the increasing incidence of female MS observed over the last 50 years, yet the identity of this factor remains unknown. Gestational exposure to bisphenol A (BPA), an endocrine disruptor used in the manufacture of polycarbonate plastics since the 1950s, has been reported to alter a variety of physiological processes in adulthood. BPA has estrogenic activity, and we hypothesized that increased gestational exposure to environmental BPA may therefore contribute to the increasing female MS risk. To test this hypothesis, we utilized two different mouse models of MS, experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice (chronic progressive) and in SJL/J mice (relapsing-remitting). Dams were exposed to physiologically relevant levels of BPA in drinking water starting 2 weeks prior to mating and continuing until weaning of offspring. EAE was induced in adult offspring. No significant changes in EAE incidence, progression, or severity were observed with BPA exposure, despite changes in cytokine production by autoreactive T cells. However, endocrine disruption was evidenced by changes in testes development, and transcriptomic profiling revealed that BPA exposure altered the expression of several genes important for testes development, including Pdgfa, which was downregulated. Overall, our results do not support gestational BPA exposure as a significant contributor to the increasing female MS risk.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Naville D, Pinteur C, Vega N, Menade Y, Vigier M, Le Bourdais A, Labaronne E, Debard C, Luquain‐Costaz C, Bégeot M, Vidal H, Le Magueresse‐Battistoni B. Low‐dose food contaminants trigger sex‐specific, hepatic metabolic changes in the progeny of obese mice. FASEB J 2013; 27:3860-70. [DOI: 10.1096/fj.13-231670] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Danielle Naville
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Claudie Pinteur
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Nathalie Vega
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Yoan Menade
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Michèle Vigier
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Alexandre Le Bourdais
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Emmanuel Labaronne
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Cyrille Debard
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Céline Luquain‐Costaz
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
- Institut National des Sciences Appliquées (INSA)‐LyonInstitut Multidisciplinaire de Biochimie des Lipides (IMBL)VilleurbanneFrance
| | - Martine Bégeot
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| | - Hubert Vidal
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
- Institut National des Sciences Appliquées (INSA)‐LyonInstitut Multidisciplinaire de Biochimie des Lipides (IMBL)VilleurbanneFrance
| | - Brigitte Le Magueresse‐Battistoni
- Institut National de la Santé et de la Recherche Médicale (INSERM)U1060Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) LaboratoryOullinsFrance
- Institut National de la Recherche Agronomique (INRA) U1362OullinsFrance
- Université Lyon 1VilleurbanneFrance
| |
Collapse
|
36
|
Wan HT, Mruk DD, Wong CKC, Cheng CY. Targeting testis-specific proteins to inhibit spermatogenesis: lesson from endocrine disrupting chemicals. Expert Opin Ther Targets 2013; 17:839-55. [PMID: 23600530 DOI: 10.1517/14728222.2013.791679] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Exposure to endocrine disrupting chemicals (EDCs) has recently been linked to declining fertility in men in both developed and developing countries. Since many EDCs possess intrinsic estrogenic or androgenic activities, thus, the gonad is one of the major targets of EDCs. AREAS COVERED For the past 2 decades, studies found in the literature regarding the disruptive effects of these EDCs on reproductive function in human males and also rodents were mostly focused on oxidative stress-induced germ cell apoptosis, disruption of steroidogenesis, abnormal sperm production and disruption of spermatogenesis in particular cell adhesion function and the blood-testis-barrier (BTB) function. Herein, we highlight recent findings in the field illustrating testis-specific proteins are also targets of EDCs. EXPERT OPINION This information should be helpful in developing better therapeutic approach to manage ECD-induced reproductive toxicity. This information is also helpful to identify potential targets for male contraceptive development.
Collapse
Affiliation(s)
- H T Wan
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|