1
|
Kalsoom K, Din SU, Ceylan E, Hasan F, Khan S, Badshah M, Çanakçi S, Belduz AO, Shah AA. Cloning and expression of chromate reductase from Bacillus paramycoides S48 for chromium remediation. Sci Rep 2025; 15:18796. [PMID: 40442147 PMCID: PMC12123004 DOI: 10.1038/s41598-025-03412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
This study explores the production and characterization of chromium reductase from Bacillus paramycoides S48, focusing on its ability to effectively reduce toxic hexavalent chromium to less harmful chromium. The strain exhibited 65% reduction in Cr(VI) within 96 h at 30 °C. Clear morphological and functional group shifts on strain S48 cell surface treated with metal were noted using analytical tools i.e. SEM-EDX and FT-IR. The physico-chemical conditions such as temperature, pH and nutritional factors were optimized for better chromate reductase yield using Placket-Burman and Central Composite design software. The purified chromate reductase, obtained through size exclusion column chromatography, demonstrated a specific activity of 1416.5 U/mg, and 6.6-fold increase in purity, with a molecular mass of approximately 35 kDa. The enzyme exhibited stability at temperature 30-40 °C and pH 5.0-8.0. Furthermore, the purified chromium reductase achieved, 80% reduction of toxic Cr(VI) at temperature 35 °C after 96 h. The BparChR gene was successfully cloned into the pET-28a vector, expressed in E. coli BL21, and purified through Ni-Affinity ion exchange chromatography. The recombinant BparChR protein displayed a specific activity of 1680 U/mg, and a purification fold of 5.73 times. The BparChR exhibited a remarkable 90% reduction in chromium after 96 h, surpassing the efficacy of whole-cell and native chromium reductase. This study concludes that B. paramycoides S48, holds promise for the cost-effective and environmentally friendly detoxification of chromium in contaminated industrial effluents.
Collapse
Affiliation(s)
- Kalsoom Kalsoom
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
- Department of Microbiology, Faculty of Biological Sciences, University of Swabi, Anbar, Swabi, Pakistan
| | - Salah Ud Din
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Esma Ceylan
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sabriye Çanakçi
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Osman Belduz
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey.
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Faseela P, Veena M, Sen A, Anjitha KS, Aswathi KPR, Sruthi P, Puthur JT. Elicitors fortifies the plant resilience against metal and metalloid stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:372-389. [PMID: 39491331 DOI: 10.1080/15226514.2024.2420328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This review addresses plant interactions with HMs, emphasizing defence mechanisms and the role of chelating agents, antioxidants and various elicitor molecules in mitigating metal toxicity in plants. To combat soil contamination with HMs, chelate assisted phytoextraction using application of natural or synthetic aminopolycarboxylic acids is an effective strategy. Plants also employ diverse signaling pathways, including hormones, calcium, reactive oxygen species, nitric oxide, and Mitogen-Activated Protein Kinases influencing gene expression and defence mechanisms to counter HM stress. Phytohormones enhance the enzymatic and non-enzymatic antioxidant defence mechanism and the level of secondary metabolites in plants when exposed to HM stress. Also it activates genes responsible for DNA repair mechanism. In addition, the plant hormones can also regulate the activity of several transporters of HMs, thereby preventing their entry into the cell. Elicitor molecules regulate metal and metalloid absorption, sequestration and transport in plants. Combining of different elicitors like jasmonic acid, calcium, salicylic acid etc. effectively mitigates metal and metalloid stress in plants. Moreover, microbes including bacteria and fungi, offer eco-friendly and efficient solution for HM remediation. Understanding these elicitors, microbes and various signaling pathways is crucial for developing strategies to enhance plant resilience to metal and metalloid stress.
Collapse
Affiliation(s)
- Parammal Faseela
- Department of Botany, Korambayil Ahamed Haji Memorial Unity Women's College, Malappuram, Kerala, India
| | - Mathew Veena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | - Akhila Sen
- Department of Botany, Mar Athanasius College, Ernakulam, Kerala, India
| | - K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | - K P Raj Aswathi
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | | | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| |
Collapse
|
3
|
Timková I, Maliničová L, Nosáľová L, Kolesárová M, Lorková Z, Petrová N, Pristaš P, Kisková J. Genomic insights into the adaptation of Acinetobacter johnsonii RB2-047 to the heavy metal-contaminated subsurface mine environment. Biometals 2024; 37:371-387. [PMID: 37973678 PMCID: PMC11006771 DOI: 10.1007/s10534-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The subsurface mine environments characterized by high levels of toxic metals and low nutrient availability represent an extreme threat to bacterial persistence. In recent study, the genomic analysis of the Acinetobacter johnsonii strain RB2-047 isolated from the Rozália Gold Mine in Slovakia was performed. As expected, the studied isolate showed a high level of heavy metal tolerance (minimum inhibitory concentrations were 500 mg/L for copper and nickel, 1,500 mg/L for lead, and 250 mg/L for zinc). The RB2-047 strain also showed noticeable resistance to several antibiotics (ampicillin, kanamycin, chloramphenicol, tetracycline and ciprofloxacin). The genomic composition analysis demonstrated a low number of antibiotic and metal resistance coding genes, but a high occurrence of efflux transporter genes located on the bacterial chromosome. The experimental inhibition of efflux pumps resulted in decreased tolerance to Zn and Ni (but not to Cu and Pb) and to all antibiotics tested. In addition, the H33342 dye-accumulation assay confirmed the high efflux activity in the RB2-047 isolate. These findings showed the important role of efflux pumps in the adaptation of Acinetobacter johsonii strain RB2-047 to metal polluted mine environment as well as in development of multi-antibiotic resistance.
Collapse
Affiliation(s)
- Ivana Timková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lenka Maliničová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lea Nosáľová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Mariana Kolesárová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Zuzana Lorková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Nikola Petrová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovakia
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| |
Collapse
|
4
|
Akkurt Ş, Uçkun AA, Oğuz M, Uçkun M, Kahraman H. Equilibrium, kinetic, and thermodynamic studies on the biosorption of lead by human metallothionein gene-cloned bacteria as a novel biosorbent. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11000. [PMID: 38385887 DOI: 10.1002/wer.11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/31/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Heavy metals are the main pollutants in water and are an important global problem that threatens human health and ecosystems. In recent years, there has been an increasing interest in the use of genetically modified bacteria as an eco-friendly method to solve heavy metal pollution problems. The goal of this study was to generate genetically modified Escherichia coli expressing human metallothioneins (hMT2A and hMT3) and to determine their tolerance, bioaccumulation, and biosorption capacity to lead (Pb2+ ). Recombinant MT2A and MT3 strains expressing MT were successfully generated. Minimum inhibition concentrations (MIC) of Pb for MT2A and MT3 were found to be 1750 and 2000 mg L-1 , respectively. Pb2+ resistance and bioaccumulation capacity of MT3 were higher than MT2A. Therefore, only MT3 biosorbent was used in Pb2+ biosorption, and its efficiency was examined by performing experiments in a batch system. Pb2+ biosorption by MT3 was evaluated in terms of isotherms, kinetics, and thermodynamics. The results showed that Pb biosorption fits to the Langmuir isotherm model and the pseudo-first-order kinetic model, and the reaction is exothermic. The maximum Pb2+ capacity of the biosorbent was 50 mg Pb2+ g-1 . The potential of MT3 in Pb biosorption was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analyses. The desorption study showed that the sorbent had up to 74% recovery and could be effectively used four times. These findings imply that this biosorbent can be applied as a promising, precise, and effective means of removing Pb2+ from contaminated waters. PRACTITIONER POINTS: In this study, the tolerance levels, bioaccumulation, and biosorption capacities of Pb in aqueous solutions were determined for the first time in recombinant MT2A and MT3 strains in which human MT2A and MT3 genes were cloned. The biosorbent of MT3, which was determined to be more effective in Pb bioaccumulation, was synthesized and used in Pb biosorption. The Pb biosorption mechanism of MT3 biosorbent was identified using isotherm modeling, kinetic modeling, and thermodynamic studies. The maximum Pb removal percentage capacity of the biosorbent was 90%, whereas the maximum biosorption capacity was up to 50 mg Pb2+ g-1 . These results indicated that MT3 biosorbent has a higher Pb biosorption capacity than existing recombinant biosorbents. MT3 biosorbent can be used as a promising and effective biosorbent for removing Pb from wastewater.
Collapse
Affiliation(s)
- Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Merve Oğuz
- Department of Environmental Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Hüseyin Kahraman
- Department of Biology, Faculty of Science and Literature, İnönü University, Malatya, Turkey
| |
Collapse
|
5
|
Li T, Du D, Li C, Zhao J, Guo L, Wang X, Zhao J, Xiang W. Investigation on Cr(VI)-bioreduction mechanism and reduction products by a novel Microbacterium sp. strain NEAU-W11. CHEMOSPHERE 2023; 343:140232. [PMID: 37734508 DOI: 10.1016/j.chemosphere.2023.140232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cr(VI) widely exists in the environment and has highly toxic, carcinogenic and mutagenic effects on all organisms. Physical/chemical methods to remove chromium pollution are economically expensive and have disadvantages like high reagent consumption, energy requirements and so on, while bioremediation is an eco-friendly, simple and cost-effective way. In this study, a novel Cr(VI)-reducing strain, Microbacterium sp. NEAU-W11, was reported, and its reduction mechanism was investigated. Microbacterium sp. NEAU-W11 could effectively degrade Cr(VI) under the conditions of pH 7-10, 15-35 °C, and the coexistence of metal pollutants such as Pb and Ni, etc. In addition, both Fe3+ and Cu2+ could improve the reducing ability of strain NEAU-W11, and glucose and lactose as electron donors also had promoting effect. Heat treatment of resting cells confirmed that chromium removal was not biological sorption but biological reduction. The active reductase of strain NEAU-W11 to chromium(VI) mainly existed in the cell cytoplasm, which is the first report in the genus Microbacterium. Micro-characterization of strain NEAU-W11 and the reduction products identified the reduction products as Cr(III)-ligand complexes bound to extracellular polymeric substances (EPS). Collectively, this study systematically investigated the degradation mechanism of Microbacterium sp. NEAU-W11 and the distribution of degradation product Cr(III), providing a new reduction mechanism for the genus Microbacterium, providing a new perspective for a comprehensive understanding of the degradation and transport of chromium by bacteria, and providing theoretical reference for the migration of metal ions in environmental governance.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Dandan Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chenxu Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junlei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Hamid B, Majeed N, Ganai BA, Hassan S, Bashir Z, Wani PA, Perveen K, Sayyed RZ. Heavy-metal tolerant bacterial strains isolated from industrial sites and scrap yards in Kashmir, India. J Basic Microbiol 2023; 63:1361-1372. [PMID: 37712102 DOI: 10.1002/jobm.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Heavy metal pollution has posed a severe danger to environmental stability due to its high toxicity and lack of biodegradability. The present study deals with the appraisement of tolerance shown by various bacteria in varied copper and iron concentrations. Among the 20 isolates, four isolates, GN2, SC5, SC8, and SC10, exhibiting more significant iron and copper tolerance, were selected and identified by 16 S ribosomal ribonucleic acid (rRNA) gene sequence analysis as Pantoea agglomerans strain GN2, Pantoea sp. strain SC5, Bacillus sp. strain SC8 and Priestia aryabhattaistrain SC10. The minimum inhibitory concentration of molecularly identified strains revealed that P. agglomerans strain GN2 showed tolerance to iron sulfate and copper sulfate upto 600 and 400 µg/mL, whereas Bacillus sp. SC8 (OQ202165) showed tolerance of 700 and 250 µg/mL were tolerant to iron sulfate and copper sulfate up to 700 and 150 µg/mL, respectively. Pantoea sp. strain SC5 showed significant tolerance to both heavy metals. The isolates were further studied for their ability to grow at varying temperatures and pH ranges. Most of the isolates showed optimal growth at 37°C and pH 7. However, Pantoea sp. SC5 was competent to have prominent growth at 45°C and pH 8.0. Microbial remediation, which is eco-friendly, has proven the most effective method for bioremediation of heavy metal-contaminated environments. Using heavy metal-resistant bacteria for microbial remediation of iron and copper-contaminated environments could be a viable and valuable strategy. These isolates could also be used to decontaminate heavy metal-polluted agricultural soils.
Collapse
Affiliation(s)
- Burhan Hamid
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Neesa Majeed
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, India
| | - Zaffar Bashir
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Parvaze Ahmad Wani
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's Shri S I Patil Arts, G B Patel Science, and STKVS Commerce College, Shahada, India
- Asian PGPR Society, Department of Entomology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
7
|
Banerjee A, Roychoudhury A. Bio-priming with a Novel Plant Growth-Promoting Acinetobacter indicus Strain Alleviates Arsenic-Fluoride Co-toxicity in Rice by Modulating the Physiome and Micronutrient Homeostasis. Appl Biochem Biotechnol 2023; 195:6441-6464. [PMID: 36870026 DOI: 10.1007/s12010-023-04410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Sustainable remediation of arsenic-fluoride from rice fields through efficient bio-extraction is the need of the hour, since these toxicants severely challenge safe cultivation of rice and food biosafety. In the present study, we screened an arsenic-fluoride tolerant strain AB-ARC of Acinetobacter indicus from the soil of a severely polluted region of West Bengal, India, which was capable of efficiently removing extremely high doses of arsenate and fluoride from the media. The strain also behaved as a plant growth-promoting rhizobacterium, since it could produce indole-3-acetic acid and solubilize phosphate, zinc, and starch. Due to these properties of the identified strain, it was used for bio-priming the seeds of the arsenic-fluoride susceptible rice cultivar, Khitish for testing the efficacy of the AB-ARC strain to promote combined arsenic-fluoride tolerance in the rice genotype. Bio-priming with AB-ARC led to accelerated uptake of crucial elements like iron, copper, and nickel which behave as co-factors of physiological and antioxidative enzymes. Thus, the activation of superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase, and glutathione-S-transferase enabled detoxification of reactive oxygen species (ROS) and reduction of the oxidative injuries like malondialdehyde and methylglyoxal generation. Overall, due to ameliorated molecular damages and low uptake of the toxic xenobiotics, the plants were able to maintain improved growth vigor and photosynthesis, as evident from the elevated levels of Hill activity and chlorophyll content. Hence, bio-priming with the A. indicus AB-ARC strain may be advocated for sustainable rice cultivation in arsenic-fluoride co-polluted fields.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India.
| |
Collapse
|
8
|
Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, Abd Elaty AE, Elgendy IM, Etman AE, Saad KE, Tsigkou K, Ali SS, Kornaros M, Mahmoud YAG. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. TOXICS 2023; 11:580. [PMID: 37505546 PMCID: PMC10384455 DOI: 10.3390/toxics11070580] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Natural and anthropogenic sources of metals in the ecosystem are perpetually increasing; consequently, heavy metal (HM) accumulation has become a major environmental concern. Human exposure to HMs has increased dramatically due to the industrial activities of the 20th century. Mercury, arsenic lead, chrome, and cadmium have been the most prevalent HMs that have caused human toxicity. Poisonings can be acute or chronic following exposure via water, air, or food. The bioaccumulation of these HMs results in a variety of toxic effects on various tissues and organs. Comparing the mechanisms of action reveals that these metals induce toxicity via similar pathways, including the production of reactive oxygen species, the inactivation of enzymes, and oxidative stress. The conventional techniques employed for the elimination of HMs are deemed inadequate when the HM concentration is less than 100 mg/L. In addition, these methods exhibit certain limitations, including the production of secondary pollutants, a high demand for energy and chemicals, and reduced cost-effectiveness. As a result, the employment of microbial bioremediation for the purpose of HM detoxification has emerged as a viable solution, given that microorganisms, including fungi and bacteria, exhibit superior biosorption and bio-accumulation capabilities. This review deals with HM uptake and toxicity mechanisms associated with HMs, and will increase our knowledge on their toxic effects on the body organs, leading to better management of metal poisoning. This review aims to enhance comprehension and offer sources for the judicious selection of microbial remediation technology for the detoxification of HMs. Microbial-based solutions that are sustainable could potentially offer crucial and cost-effective methods for reducing the toxicity of HMs.
Collapse
Affiliation(s)
- Manar K. Abd Elnabi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biotechnology Program, Institute of Basic and Applied Science (BAS), Egypt-Japan University of Science and Technology, New Borg El-Arab City 21934, Egypt
| | - Nehal E. Elkaliny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Maha M. Elyazied
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shimaa H. Azab
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shawky A. Elkhalifa
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Sohaila Elmasry
- Microbiology Department, Faculty of science, Damanhour University, Behaira 22514, Egypt;
| | - Moustafa S. Mouhamed
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ebrahim M. Shalamesh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Naira A. Alhorieny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Abeer E. Abd Elaty
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ibrahim M. Elgendy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Alaa E. Etman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Kholod E. Saad
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Sameh S. Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Yehia A.-G. Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| |
Collapse
|
9
|
Martínez-Martínez JG, Rosales-Loredo S, Hernández-Morales A, Arvizu-Gómez JL, Carranza-Álvarez C, Macías-Pérez JR, Rolón-Cárdenas GA, Pacheco-Aguilar JR. Bacterial Communities Associated with the Roots of Typha spp. and Its Relationship in Phytoremediation Processes. Microorganisms 2023; 11:1587. [PMID: 37375088 DOI: 10.3390/microorganisms11061587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation.
Collapse
Affiliation(s)
| | - Stephanie Rosales-Loredo
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico
| | - Candy Carranza-Álvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - José Roberto Macías-Pérez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Gisela Adelina Rolón-Cárdenas
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | | |
Collapse
|
10
|
Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam ARMT, Islam T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. CHEMOSPHERE 2023; 332:138861. [PMID: 37150456 DOI: 10.1016/j.chemosphere.2023.138861] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Most Waheda Rahman Ansary
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
11
|
Sharma P, Bano A, Yadav S, Singh SP. Biocatalytic Degradation of Emerging Micropollutants. Top Catal 2023. [DOI: 10.1007/s11244-023-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Sevak P, Pushkar B, Mazumdar S. Mechanistic evaluation of chromium bioremediation in Acinetobacter junii strain b2w: A proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116978. [PMID: 36521220 DOI: 10.1016/j.jenvman.2022.116978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Growing industrialization and unchecked release of industrial waste, including heavy metals have resulted in disastrous effects on environment. Considering the problem of heavy metal pollution, the present research was designed to study the bioremediation of chromium, a highly toxic and prominent heavy metal pollutant by Acinetobacter junii strain b2w isolated from the Mithi river, Mumbai, India. The bacterial isolate could grow without affecting its growth kinetics up to a concentration of 200 ppm of chromium and showed resistance towards 400 ppm of chromium. It was able to bioremediate 83.06% of total chromium and reduces 98.24% of Cr6+ to C3+ at a concentration of 10 ppm of chromium. The bacterial isolate could grow well at a wide pH range from 5 to 9, salinity of up to 3.5% and could also tolerate heavy metals such as Cd, Zn, As, Hg, Pb and Cu. Thus, indicating its possible on-ground applicability for bioremediation of chromium. Acinetobacter junii bioaccumulate chromium without disrupting the cell integrity and biosorption. However, chromium alters the functional groups on bacterial cell surface and led to decrease in sulfate-containing molecules. Further, the protein expression study has revealed that Cr significantly up-regulates proteins broadly classified under envelope stress responses, oxidative stress responses, energy metabolism and quorum sensing and growth regulator. The possible mechanisms of Cr detoxification in Acinetobacter junii strain b2w could be reduction, bioaccumulation and efflux along with neutralization of oxidative stress generated by Cr. Thus, based on bacterial bioremediation potential and its molecular response, it can be proposed that the isolated Acinetobacter junii has potential applicability for chromium bioremediation.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, Maharashtra, India
| |
Collapse
|
13
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
14
|
Shan B, Hao R, Xu H, Zhang J, Li J, Li Y, Ye Y. Hexavalent chromium reduction and bioremediation potential of Fusarium proliferatum S4 isolated from chromium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78292-78302. [PMID: 35690705 DOI: 10.1007/s11356-022-21323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation, utilizing reduction of Cr(VI) to Cr(III), is considered a promising method for lowering toxic environmental chromium levels. In this study, a Cr(VI)-resistant fungal strain, Fusarium proliferatum S4 (F. proliferatum), was isolated from seriously chromium-polluted soil at Haibei Chemical Plant, China. This strain for treatment chromium-containing solution resulted in 100.00%, 93%, and 74% removal at initial concentrations of 10, 30, and 50 mg L-1 Cr(VI), respectively, after 12 days of treatment in a batch mode. Contributions of different cell fractions to Cr(VI) removal were explored. The Cr(VI) removal capacity of various cell components from strong to weak was as follows: cytoplasm, cell secretions, and cell debris. Observations obtained by scanning electron microscopy and transmission electron microscopy with energy dispersive X-ray spectroscopy revealed that not only the cell surfaces but also the intracellular contents were involved Cr through adsorption, reduction, or accumulation. Fourier transform infrared spectra indicated that a large number of functional groups (amino, carbonyl, carboxyl, and phosphate groups) participated in chromium binding on the cell surface. X-ray photoelectron spectroscopy confirmed the presence of Cr on the cell surface only as Cr(III). The results have important implications for an in-depth understanding of microbial chromate reduction by F. proliferatum. This study provides an insight into the microbial Cr(VI) bioreduction efficiency, and mechanisms in the chromium-contaminated environment.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yinhuang Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Microbial Remediation: A Promising Tool for Reclamation of Contaminated Sites with Special Emphasis on Heavy Metal and Pesticide Pollution: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071358] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heavy metal and pesticide pollution have become an inevitable part of the modern industrialized environment that find their way into all ecosystems. Because of their persistent nature, recalcitrance, high toxicity and biological enrichment, metal and pesticide pollution has threatened the stability of the environment as well as the health of living beings. Due to the environmental persistence of heavy metals and pesticides, they get accumulated in the environs and consequently lead to food chain contamination. Therefore, remediation of heavy metals and pesticide contaminations needs to be addressed as a high priority. Various physico-chemical approaches have been employed for this purpose, but they have significant drawbacks such as high expenses, high labor, alteration in soil properties, disruption of native soil microflora and generation of toxic by-products. Researchers worldwide are focusing on bioremediation strategies to overcome this multifaceted problem, i.e., the removal, immobilization and detoxification of pesticides and heavy metals, in the most efficient and cost-effective ways. For a period of millions of evolutionary years, microorganisms have become resistant to intoxicants and have developed the capability to remediate heavy metal ions and pesticides, and as a result, they have helped in the restoration of the natural state of degraded environs with long term environmental benefits. Keeping in view the environmental and health concerns imposed by heavy metals and pesticides in our society, we aimed to present a generalized picture of the bioremediation capacity of microorganisms. We explore the use of bacteria, fungi, algae and genetically engineered microbes for the remediation of both metals and pesticides. This review summarizes the major detoxification pathways and bioremediation technologies; in addition to that, a brief account is given of molecular approaches such as systemic biology, gene editing and omics that have enhanced the bioremediation process and widened its microbiological techniques toward the remediation of heavy metals and pesticides.
Collapse
|
16
|
Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 2022; 204:410. [PMID: 35729415 DOI: 10.1007/s00203-022-02978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.
Collapse
|
17
|
Bao Z, Feng H, Tu W, Li L, Li Q. Method and mechanism of chromium removal from soil: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35501-35517. [PMID: 35226261 DOI: 10.1007/s11356-022-19452-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution has increasingly affected human life, and the treatment of heavy metal pollution, especially chromium pollution, is still a major problem in the field of environmental governance. As a commonly used industrial metal, chromium can easily enter the environment with improperly treated industrial waste or wastewater, then pollute soil and water sources, and eventually accumulate in the human body through the food chain. Many countries and regions in the world are threatened by soil chromium pollution, resulting in the occurrence of cancer and a variety of metabolic diseases. However, as a serious threat to agriculture, food, and human health. Notwithstanding, there are limited latest and systematic review on the removal methods, mechanisms, and effects of soil chromium pollution in recent years. Hence, this article outlines some of the methods and mechanisms for the removal of chromium in soil, including physical, chemical, biological, and biochar methods, which provide a reference for the treatment and research on soil chromium pollution drawn from existing publications.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Nacer A, Boudjema S, Bouhaous M, Boudouaia N, Bengharez Z. Bioremediation of hexavalent chromium by an indigenous bacterium Bacillus cereus S10C1: optimization study using two level full factorial experimental design. CR CHIM 2021. [DOI: 10.5802/crchim.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Singh KN, Narzary D. Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63111-63126. [PMID: 34218386 DOI: 10.1007/s11356-021-15153-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/23/2021] [Indexed: 05/21/2023]
Abstract
Coal overburden strata (OBS) vary in thickness, geochemical composition, and physical properties from stratum to stratum. Here, we enumerated the cultivable bacterial diversity and their distribution in different OBS taken from the opencast mining of Tikok colliery, Assam. The pH of the coal OBS ranged from 2.46 to 7.93, but 73% of the OBS was acidic. The OBS samples were mostly of shale types except for a few that were sandstone, mudstone, and red soil. The bacterial CFUs per gram OBS samples were highly diverse ranging from 52 to 57.4×104. A total of 79 bacterial pure culture isolates belonging to 19 genera, 12 family, and 3 phyla (Actinobacteria, Firmicutes, and Proteobacteria) were recovered in nutrient agar plates. Firmicutes appeared dominant over the others. All the isolates were screened for heavy metal tolerance in broth culture augmented with five different metals (Ni2+, Cu2+, Cr6+, As3+, and Cd2+) separately. The number of isolates that showed tolerance was 95% for Cr6+, 69.6% for Ni2+, 50.6% each for As3+ and Cu2+, and 7.6% for Cd2+. The bacterial isolates with high metal tolerance, i.e., 5 to 12 mM could be promising for bioremediation of Ni2+, Cu2+, Cr6+, and As3+ from the sites contaminated with these heavy metals.
Collapse
Affiliation(s)
- Khomdram Niren Singh
- Microbiology and Molecular Systematics Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, 781014, India
| | - Diganta Narzary
- Microbiology and Molecular Systematics Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
20
|
Gong WJ, Wang XR, Zhao HP. Microbial reduction of Cr(VI) in the presence of Ni, Cu and Zn by bacterial consortium enriched from an electroplating contaminated site. Biodegradation 2021; 32:711-722. [PMID: 34528116 DOI: 10.1007/s10532-021-09962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
The bioremediation of Cr(VI) has been intensively reported in recent years, while little information about Cr(VI)-reducing consortium enriched from in-situ contaminated soil has been revealed, specifically the functional genes involved. In this study, we verified a Cr(VI) reduction process by a consortium enriched from in-situ contaminated soil through enzymatic analysis. The chromate reductase gene ChrR has been successfully amplified and further analyzed, provided solid evidence to prove the Cr(VI) bio-reduction was an enzyme-mediated process. Meanwhile, the analysis of metabolic pathways demonstrates that the consortium could detoxicate and resist Cr(VI) and co-existing metals (Ni2+, Zn2+ and Cu2+) through membrane transport and DNA repair process. The co-existing heavy metals Zn and Cu had a relatively significant negative and positive effects on Cr(VI) reduction respectively, which may play important roles in the Cr(VI) contaminated soil bioremediation.
Collapse
Affiliation(s)
- Wen-Jing Gong
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing-Run Wang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Evaluation of Cr(VI) Reduction Using Indigenous Bacterial Consortium Isolated from a Municipal Wastewater Sludge: Batch and Kinetic Studies. Catalysts 2021. [DOI: 10.3390/catal11091100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hexavalent Chromium (Cr(VI)) has long been known to be highly mobile and toxic when compared with the other stable oxidation state, Cr(III). Cr(VI)-soluble environmental pollutants have been detected in soils and water bodies receiving industrial and agricultural waste. The reduction of Cr(VI) by microbial organisms is considered to be an environmentally compatible, less expensive and sustainable remediation alternative when compared to conventional treatment methods, such as chemical neutralization and chemical precipitation of Cr. This study aims to isolate and identify the composition of the microbial consortium culture isolated from waste activated sludge and digested sludge from a local wastewater treatment plant receiving high loads of Cr(VI) from an abandoned chrome foundry in Brits (North Waste Province, South Africa). Furthermore, the Cr(VI) reduction capability and efficiency by the isolated bacteria were investigated under a range of operational conditions, i.e., pH, temperature and Cr(VI) loading. The culture showed great efficiency in reduction capability, with 100% removal in less than 4 h at a nominal loading concentration of 50 mg Cr(VI)/L. The culture showed resilience by achieving total removal at concentrations as high as 400 mg Cr(VI)/L. The consortia exhibited considerable Cr(VI) removal efficiency in the pH range from 2 to 11, with 100% removal being achieved at a pH value of 7 at a 37 ± 1 °C incubation temperature. The time course reduction data fitted well on both first and second-order exponential rate equation yielding first-order rate constants in the range 0.615 to 0.011 h−1 and second order rate constants 0.0532 to 5 × 10−5 L·mg−1·h−1 for Cr(VI) concentration of 50–400 mg/L. This study demonstrated the bacterial consortium from municipal wastewater sludge has a high tolerance and reduction ability over a wide range of experimental conditions. Thus, show promise that bacteria could be used for hexavalent chromium remediate in contaminated sites.
Collapse
|
22
|
The Catalytic Activity of Biosynthesized Magnesium Oxide Nanoparticles (MgO-NPs) for Inhibiting the Growth of Pathogenic Microbes, Tanning Effluent Treatment, and Chromium Ion Removal. Catalysts 2021. [DOI: 10.3390/catal11070821] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Magnesium oxide nanoparticles (MgO-NPs) were synthesized using the fungal strain Aspergillus terreus S1 to overcome the disadvantages of chemical and physical methods. The factors affecting the biosynthesis process were optimized as follows: concentration of Mg(NO3)2·6H2O precursor (3 mM), contact time (36 min), pH (8), and incubation temperature (35 °C). The characterization of biosynthesized MgO-NPs was accomplished using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy—energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), and dynamic light scattering (DLS). Data confirmed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with a size range of 8.0–38.0 nm at a maximum surface plasmon resonance of 280 nm. The biological activities of biosynthesized MgO-NPs including antimicrobial activity, biotreatment of tanning effluent, and chromium ion removal were investigated. The highest growth inhibition of pathogenic Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans was achieved at 200 μg mL–1 of MgO-NPs. The biosynthesized MgO-NPs exhibited high efficacy to decolorize the tanning effluent (96.8 ± 1.7% after 150 min at 1.0 µg mL–1) and greatly decrease chemical parameters including total suspended solids (TSS), total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and conductivity with percentages of 98.04, 98.3, 89.1, 97.2, and 97.7%, respectively. Further, the biosynthesized MgO-NPs showed a strong potential to remove chromium ions from the tanning effluent, from 835.3 mg L–1 to 21.0 mg L–1, with a removal percentage of 97.5%.
Collapse
|
23
|
Hu L, Liu B, Li S, Zhong H, He Z. Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. CHEMOSPHERE 2021; 269:128741. [PMID: 33127119 DOI: 10.1016/j.chemosphere.2020.128741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The bioreduction of Cr(VI) and Hg(II) has become a hot topic in the field of heavy metals bioremediation. However, the mechanism of antioxidant stress in Cr(VI) and Hg(II) reducing bacteria is still not clear. In this work, a novel Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1, was isolated from chromium landfill at a chromate factory, which was used to investigate the mechanism of antioxidant stress during the Cr(VI) and Hg(II) reduction process. The results demonstrated that the removal of Cr(VI) and Hg(II) by A. indicus yy-1 from solution was through reduction rather than biosorption. The reduction rates of Cr(VI) and Hg(II) by resting cells reached 59.71% and 31.73% at 24 h with initial concentration of 10 mg L-1, respectively. X-ray photoelectron spectroscopy (XPS) analysis further showed that Cr(III) and Hg(0) were mainly the Cr(VI)- and Hg(II)-reduced productions, respectively. Results of physiological assays showed Hg(II) was more toxic to A. indicus yy-1 than Cr(VI), and the activities of antioxidant enzymes (SOD and CAT) were significantly increased in A. indicus yy-1 for relieving the oxidative stress. The transcriptional level of genes related to Cr(VI) and Hg(II) reductases and antioxidant enzymes were up-regulated, indicating that the reductases have participated in the reduction of Cr(VI) and Hg(II), and SOD and CAT served as the vital antioxidant enzymes for defending the oxidative stress. This work provides a deep insight into the mechanism of antioxidant stress in Cr(VI) and Hg(II) reducing bacteria, which helps seek the highly resistant heavy metal reducing bacteria.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Bang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
24
|
Cheng H, Yuan M, Zeng Q, Zhou H, Zhan W, Chen H, Mao Z, Wang Y. Efficient reduction of reactive black 5 and Cr(Ⅵ) by a newly isolated bacterium of Ochrobactrum anthropi. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124641. [PMID: 33321321 DOI: 10.1016/j.jhazmat.2020.124641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
It is important to obtain bacteria with the ability for reduction of dyes and Cr(Ⅵ) since dyes and Cr(Ⅵ) are often co-exist in textile wastewater. In this study, a new strain belonging to Ochrobactrum anthropi was isolated from textile wastewater, and could efficiently reduce Reactive Black 5 (RB 5) and Cr(Ⅵ). The results showed the degradation efficiency of RB 5 could achieve 100% and reduction efficiency of Cr(Ⅵ) was up to 80% within 3 days at initial RB 5 and Cr(Ⅵ) concentration of 400 mg/L and 20 mg/L. Mn2+ and Cu2+ could enhance the removal of RB 5 and Cr(Ⅵ), respectively. Glycerin, as electron donor, improved reduction efficiencies of RB 5 and Cr(Ⅵ). In addition, reduction mechanisms were further investigated. The results demonstrated that decreasing of RB 5 and Cr(Ⅵ) concentration were mainly through extracellular bioreduction rather than by adsorption. The FTIR and XPS analyses revealed that the O‒H, C‒C and C‒H groups on the cell surface might be involved in the reduction of RB 5 and Cr(Ⅵ). The information gives useful insights into understanding of how the bacterium reduce RB 5 and Cr(Ⅵ). The results indicated that the strain had excellent application prospect for treating industrial wastewater.
Collapse
Affiliation(s)
- Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China
| | - Mingzhu Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Hui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Zhenhua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China.
| |
Collapse
|
25
|
Sharma B, Shukla P. Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123285. [PMID: 32659573 DOI: 10.1016/j.jhazmat.2020.123285] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
This study explores the soil microorganisms for their Lead bioremediation capability. The MIC values of the six Lead resistant bacteria were evaluated, and the AAS studies of these isolates estimated their Lead accumulation percentage. The results showed that the isolate namely Bacillus cereus BPS-9 as identified based on 16S rDNA gene sequences was shown to have the highest Lead accumulation potential (79.26 %) and also selected for bioaccumulation studies. Despite the reduction in growth rate, the superoxide dismutase activity of B. cereus BPS-9 was increased with a rise in the concentration of Lead manifested through increased nitro-blue tetrazolium (NBT) reduction from 3.94 % to 77.48 %. Moreover, the biosorption capacity of B. cereus BPS-9 was 193.93 mg/g and the Langmuir isotherm model showed a value of R2 = 0.9. Furthermore, the FTIR analysis also established the role of C-H, C=C, N=N, N-H, and C-O functional groups in Lead adsorption and the SEM micrographs showed that the cells of B. cereus BPS-9 became dense, adhered and distorted after Lead adsorption. Finally, the In-silico results obtained by functional analysis through SEED viewer of the whole genome of B. cereus deciphered the presence of genes encoding heavy metal resistant proteins and transporters for the efflux of heavy metals.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
26
|
Sharma B, Shukla P. A comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. BIORESOURCE TECHNOLOGY 2021; 320:124330. [PMID: 33202345 DOI: 10.1016/j.biortech.2020.124330] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The present study describes the heavy metal bioaccumulation potential of Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. A total of 27 isolates were retrieved from the soils of industrial areas and these two were selected based on their maximum metal tolerance. They can resist up to 2400 mg/L and 2000 mg/L of Lead and 850 mg/L and 1200 mg/L of Nickel respectively. The atomic absorption spectroscopic analysis showed considerably good bioaccumulation by O. intermedium BPS-20 (85.34% and 74.87%) and O. ciceri BPS-26 (71.20% and 88.48%) for Lead and Nickel respectively. The growth rate studies also demonstrated no inhibitory effects of heavy metals in the medium. Further the SEM analysis showed the presence of extracellular polymeric substances around bacterial cells. Moreover, the functional gene annotation confirmed the presence of ATPase, ABC, and HoxN/HupN/NixA families of transporters. Thus, both the isolates provide a better solution for the removal of metal pollutants.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
27
|
Fernandez M, Pereira PP, Agostini E, González PS. Impact assessment of bioaugmented tannery effluent discharge on the microbiota of water bodies. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:973-986. [PMID: 32556791 DOI: 10.1007/s10646-020-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 05/09/2023]
Abstract
Effluents are commonly discharged into water bodies, and in order for the process to be as environmentally sound as possible, the potential effects on native water communities must be assessed alongside the quality parameters of the effluents themselves. In the present work, changes in the bacterial diversity of streamwater receiving a tannery effluent were monitored by high-throughput MiSeq sequencing. Physico-chemical and microbiological parameters and acute toxicity were also evaluated through different bioassays. After the discharge of treated effluents that had been either naturally attenuated or bioaugmented, bacterial diversity decreased immediately in the streamwater samples, as evidenced by the over-representation of taxa such as Brachymonas, Arcobacter, Marinobacterium, Myroides, Paludibacter and Acinetobacter, typically found in tannery effluents. However, there were no remarkable changes in diversity over time (after 1 day). In terms of the physico-chemical and microbiological parameters analyzed, chemical oxygen demand and total bacterial count increased in response to discharge of the treated effluents. No lethal effects were observed in Lactuca sativa L. seeds or Rhinella arenarum embryos exposed to the streamwater that had received the treated effluents. All of these results contribute to the growing knowledge about the environmental safety of effluent discharge procedures.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
28
|
Cai S, Pan H, González-Vila Á, Guo T, Gillan DC, Wattiez R, Caucheteur C. Selective detection of cadmium ions using plasmonic optical fiber gratings functionalized with bacteria. OPTICS EXPRESS 2020; 28:19740-19749. [PMID: 32672244 DOI: 10.1364/oe.397505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Environmental monitoring and potable water control are key applications where optical fiber sensing solutions can outperform other technologies. In this work, we report a highly sensitive plasmonic fiber-optic probe that has been developed to determine the concentration of cadmium ions (Cd2+) in solution. This original sensor was fabricated by immobilizing the Acinetobacter sp. around gold-coated tilted fiber Bragg gratings (TFBGs). To this aim, the immobilization conditions of bacteria on the gold-coated optical fiber surface were first experimentally determined. Then, the coated sensors were tested in vitro. The relative intensity of the sensor response experienced a change of 1.1 dB for a Cd2+ concentration increase from 0.1 to 1000 ppb. According to our test procedure, we estimate the experimental limit of detection to be close to 1 ppb. Cadmium ions strongly bind to the sensing surface, so the sensor exhibits a much higher sensitivity to Cd2+ than to other heavy metal ions such as Pb2+, Zn2+ and CrO42- found in contaminated water, which ensures a good selectivity.
Collapse
|
29
|
Yu C, Zhang Y, Fang Y, Tan Y, Dai K, Liu S, Huang Q. Shewanella oneidensis MR-1 impregnated Ca-alginate capsule for efficient Cr(VI) reduction and Cr(III) adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16745-16753. [PMID: 32130632 DOI: 10.1007/s11356-019-06832-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Shewanella oneidensis MR-1 (MR-1)-impregnated alginate capsules with 3D porous structure were prepared through cation crossing-linking and was used for the Cr(VI) reduction and removal. After being encapsulated by alginate, the endurance of the MR-1 was largely enhanced under conditions of high Cr(VI) concentrations (up to 4 mM) and low pH (pH 5). The Cr(VI) reduction over the MR-1-impregnated alginate capsules could be fitted by pseudo first-order kinetic model. With the Cr(VI) initial concentration increasing from 1 to 4 mM, the first-order rate constant for the encapsulated MR-1 (kcapsules) and free cells (kcells) fell by 26.3% and 82.4%, respectively. At pH 5, the kcapsules value was 0.19 h- 1, which was about 3.7 times higher than kcells. Moreover, the encapsulated MR-1 held 90.5% of the Cr(VI) reduction ability after 15 days of resting time, while the free MR-1 held 19.7%. After bioreduction, 73.6% of total chromium was adsorbed on the MR-1 impregnated Ca-alginate capsules. XPS results showed 85% of the adsorbed chromium was Cr(III). The mechanism for chromium removal over the MR-1-impregnated Ca-alginate capsules was proposed with the following steps: (1) Cr(VI) was bioreduced via the encapsulated MR-1; (2) the reduced soluble Cr(III) was adsorbed by alginate selectively. In the study, the Ca-alginate shell of the cabbage-like MR-1 impregnated capsules could be a shelter for encapsulated MR-1 to endure unfavorable conditions (e.g., low pH and high concentration of Cr(VI)) and immobilize the soluble chromium. Considering the obtained capsules derived from biomolecules were environment-friendly, the MR-1-impregnated Ca-alginate capsules were potential for the application in the remediation of environmental pollution. Graphical abstract.
Collapse
Affiliation(s)
- Cheng Yu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Zhang
- College of Resources and Environment, Huazhong Agricultural University, P R, Wuhan, 430070, China
| | - Yu Fang
- College of Resources and Environment, Huazhong Agricultural University, P R, Wuhan, 430070, China
| | - Yujie Tan
- College of Resources and Environment, Huazhong Agricultural University, P R, Wuhan, 430070, China
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, P R, Wuhan, 430070, China.
| | - Shilin Liu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, P R, Wuhan, 430070, China
| |
Collapse
|
30
|
Mohamed A, Yu L, Fang Y, Ashry N, Riahi Y, Uddin I, Dai K, Huang Q. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1. CHEMOSPHERE 2020; 247:125902. [PMID: 31978657 DOI: 10.1016/j.chemosphere.2020.125902] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Microorganisms, iron minerals, and humic acid are widely common in the soil and water environment and closely interact within environmental processes. In this study, the Cr(VI) removal by Shewanella oneidensis MR-1 (S. oneidensis) was examined in the presence of goethite and humic acid (HA) to mimic the real environment situation. Scanning electron microscopy (SEM) combined with energy disperse spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) technologies were used to probe the Cr(VI) reduction mechanism. Our results showed that S. oneidensis alone could reduce 65% of 1.0 mM Cr(VI) after 8 h of the reduction process. Meanwhile, Cr(VI) reduction rate was declined to 56% in the presence of goethite or humic acid. Contrary, the Cr(VI) reduction rate was mightily increased to 79% by the ternary complex of S. oneidensis-goethite-HA where reduced humic acid (HAred) acted as electron shuttles and diminished the bacterial adhesion to the goethite surface thereby enhanced electron transfer and increased the extent of Cr(VI) reduction by 1.3 fold. XPS analysis indicated that Cr(VI) was reduced to Cr(III), and the final yields were Cr(OH)3 and Cr2O3 precipitated on the surface of bacterial cells. S. oneidensis could also reduce Fe(III) in goethite to Fe(II), which in turn reduced Cr(VI). These results suggested that iron mineral-humic acid complex could enhance the microbial reduction of Cr(VI) and revealed the promotion role of HA in the Cr(VI) bioreduction process. This study affords inclusive insights on the Cr(VI) reduction kinetics and mechanisms in the most complicated systems.
Collapse
Affiliation(s)
- Abdelkader Mohamed
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Abou Zaabl, 13759, Egypt
| | - Lu Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yu Fang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Noha Ashry
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yassine Riahi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Intisar Uddin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ke Dai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
31
|
Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121628. [PMID: 31744729 DOI: 10.1016/j.jhazmat.2019.121628] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
This study reported an efficient novel chromium reducing bacteria (Bacillus sp. CRB-B1) and investigated its removal mechanism. Bacillus sp. CRB-B1 could effectively reduce high level Cr(VI), under a wide range of shaking velocity (125-200 rpm), temperature (33-41 °C), pH (6-9). The co-existing ions Cd2+ and NO3- inhibited its Cr(VI) reduction capacity, while Cu2+ enhanced the reduction efficiency. In addition, Bacillus sp. CRB-B1 could reduce Cr(VI) using glucose and fructose as an electron donor. Micro-characterization analysis confirmed the Cr(VI) reduction and adsorption ability of Bacillus sp. CRB-B1. Cells degeneration result indicated that Cr(VI) removal was mainly bioreduction rather than biosorption. The cell-free suspension had a Cr(VI) removal rate of 68.5.%, which was significantly higher than that of cell-free extracts and cell debris, indicating Cr(VI) reduction mainly occurs extracellularly, and possibly mediated by extracellular reductase. The reduced Cr was mainly distributed in the extracellular suspension, and a small amount was accumulated in the cells. In conclusion, Bacillus sp. CRB-B1 was a highly efficient Cr(VI) reducing bacteria, which has potential in the remediation of Cr(VI)-containing water and soil.
Collapse
Affiliation(s)
- Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Can Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Yao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China.
| |
Collapse
|
32
|
Li X, Fan M, Liu L, Chang J, Zhang J. Treatment of high-concentration chromium-containing wastewater by sulfate-reducing bacteria acclimated with ethanol. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:2362-2372. [PMID: 32245928 DOI: 10.2166/wst.2020.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to solve the problem of difficult treatment of high-concentration chromium-containing wastewater, sulfate-reducing bacteria (SRB) with a high tolerance of hexavalent chromium and a strong ability to reduce the compound were isolated from sludge from a sedimentation tank in a leather industrial park and was identified as Desulfovibrio by morphological observation, routine physiological and biochemical determination, 16S rDNA sequencing and phylogenetic tree construction. After ethanol acclimation, a strain of SRB that could reduce chromium (CR-1) was selected as the research object. The optimum growth conditions for hexavalent chromium removal by the strain were determined by single-factor analysis. The chromium removal mechanism of the strain was analyzed, and a kinetic model of the reduction process was established. The chromium-reducing ability of the strain was 500 mg/L, the optimum pH value was 7, the optimum temperature was 35 °C, the optimum cultivation time was 24 h, and the optimum ratio of bacteria to waste (volume ratio of bacterial solution dosage and chromium-containing wastewater) was 1:5. The mechanism of treatment of Cr(VI) by this strain is mainly based on the reduction of Cr(VI) by H2S accumulated in the cultured bacterial solution and the small amount of H2S generated by bacterial reductase, bacterial growth and SO4 2- reduction in the waste liquid.
Collapse
Affiliation(s)
- Xilin Li
- School of Civil Engineering, Liaoning Technical University, No. 88 Yulong Road, Xihe District, Fuxin, Liaoning Province 123000, China E-mail:
| | - Ming Fan
- School of Civil Engineering, Liaoning Technical University, No. 88 Yulong Road, Xihe District, Fuxin, Liaoning Province 123000, China E-mail:
| | - Ling Liu
- School of Civil Engineering, Liaoning Technical University, No. 88 Yulong Road, Xihe District, Fuxin, Liaoning Province 123000, China E-mail:
| | - Jinghua Chang
- School of Science, Liaoning Technical University, 47 Zhonghua Road, Xihe District, Fuxin, Liaoning Province 123000, China
| | - Jiawen Zhang
- School of Civil Engineering, Liaoning Technical University, No. 88 Yulong Road, Xihe District, Fuxin, Liaoning Province 123000, China E-mail:
| |
Collapse
|
33
|
Fernandez M, Pereira PP, Agostini E, González PS. How the bacterial community of a tannery effluent responds to bioaugmentation with the consortium SFC 500-1. Impact of environmental variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:46-56. [PMID: 31229785 DOI: 10.1016/j.jenvman.2019.06.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Bioaugmentation with the consortium SFC 500-1 is a promising alternative to remediate wastewaters, such as tannery effluents. With the aim of assessing the changes produced in response to bioaugmentation, bacterial 16S rDNA genes were sequenced with Illumina MiSeq Platform. Additionally, bacterial and fungal groups were analyzed through standard culture dependent methods. The impact of diverse physico-chemical and microbiological parameters on the prokaryotic diversity was also evaluated throughout. Bacteroidetes, Firmicutes and Proteobacteria, represented together up to 91% of the total number of sequences obtained from the tannery effluent. Diversity decreased immediately after inoculation, due to an increase in the representation of the taxa to which the added consortium belongs. However, bioaugmentation produced no greater variations since only a 10% of unique operational taxonomic units were found in the inoculated treatment. An increase in the abundance of Myroides and a reduction in the representation of Proteiniclasticum and Halomonas were major observed variations. On the other hand, pH and dissolved oxygen constituted main environmental factors affecting the structure of the prokaryotic communities. In all treatments yeasts increased over time, to the detriment of filamentous fungi. Together, data from this report may contribute to the development of improved bioremediation strategies of industrial wastewaters.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
34
|
Chang J, Deng S, Liang Y, Chen J. Cr(VI) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: characterization of both Cr(VI) bioreduction and total Cr biosorption processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28135-28145. [PMID: 31363968 DOI: 10.1007/s11356-019-06017-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Microbial methods are promising and environmentally friendly methods for remediating heavy metal contamination. In this study, a Cr(VI)-resistant bacterial strain, DC-B3, which was identified as Pseudomonas sp. by 16S rDNA gene sequencing, was isolated from heavy metal-contaminated mine soil, and its performance in Cr(VI) removal from wastewater in terms of Cr(VI) reduction and total Cr adsorption was assessed. This strain exhibited a high capability to reduce Cr(VI) to less toxic Cr(III) without the addition of an external electron donor at low pH (2.0). The Cr(VI) reduction capacity and rate both increased linearly with increasing Cr(VI) concentration, with a reduction capacity of 32.0 mg Cr(VI)·g-1 achieved at an initial concentration of 135.0 mg L-1 over 75 h. In addition, 41.0% of the total Cr was removed from the solution by biosorption, and equilibrium was reached within approximately 5 h. The total Cr sorption process was well described by the pseudo-second-order kinetic and Langmuir isotherm models. Desorption assays indicated that NaOH was the most efficient agent for total Cr desorption, and Cr(VI) and generated Cr(III) were both loaded on the DC-B3 biomass. The bacterial cells after Cr treatment were characterized by scanning electron microscopy-energy dispersive X-ray spectrometer and Fourier transform infrared spectroscopy analyses. Strain DC-B3 showed high potential for possible application in the remediation of Cr(VI) contamination in mine areas.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shengjiong Deng
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yun Liang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jinquan Chen
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
35
|
Shah S, Damare S. Proteomic response of marine-derived Staphylococcus cohnii #NIOSBK35 to varying Cr(vi) concentrations. Metallomics 2019; 11:1465-1471. [PMID: 31237606 DOI: 10.1039/c9mt00089e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromium in its hexavalent state is a water-soluble and toxic element to living organisms present in the environment. However, some organisms are resistant and reduce the toxic forms of Cr(vi) to less toxic or non-toxic forms. A global proteomic analysis of Staphylococcus sp. #NIOSBK35 under different chromate concentrations (0, 100, 200 and 300 mg L-1) at different time points in its growth stages (6, 9, 12, 18, 24 and 36 h) resulted in the identification of 878 proteins. Of all the proteins expressed, 13 proteins [23 rDNA (uracil-5-) methyltransferase RumA, multidrug ABC transporter ATP binding protein, dihydroxy acid dehydratase, polysaccharide biosynthesis protein, etc.] were expressed only in the presence of chromium. 14 proteins were up-regulated in response to chromium(vi), namely, alkyl hydroperoxide reductase, ATP-dependent Zn metallopeptidase, hsp90- like protein, NAD (P)-dependent oxidoreductase, etc. Most of the proteins involved in normal cell functioning like 1-pyrroline-5-carboxylate dehydrogenase, ribosomal proteins (30S ribosomal protein S11, 30S ribosomal protein S2, and 50S ribosomal protein L32), aconitate hydratase, DNA primase, serine-tRNA ligase, phosphoenolpyruvate-protein phosphotransferase, enolase, sulfur transferase FdhD, etc. were found to be down-regulated. On grouping these proteins into their COG (cluster of orthologous groups) functional categories, they were found to be involved in translation, carbohydrate metabolism, stress proteins, amino acid transport and membrane transport mechanisms. The proteomic response given by Staphylococcus sp. #NIOSBK35 did not show expression of Cr-specific proteins, indicating a different mechanism of Cr-tolerance as the organism was able to survive and grow at high concentrations of Cr(vi).
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Samir Damare
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Goa 403004, India.
| |
Collapse
|
36
|
Zeng Q, Hu Y, Yang Y, Hu L, Zhong H, He Z. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:149-155. [PMID: 30677647 DOI: 10.1016/j.jhazmat.2019.01.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The Cr(Ⅵ) removal way and Cr(Ⅵ) reducing site of Oceanobacillus oncorhynchi W4, a novel Cr(Ⅵ) reducing bacterium, were investigated in this study. Results showed that about 74.2% of Cr(Ⅵ) was removed from solution by growing cells within 72 h. Moreover, heating-killed resting cells had little Cr(Ⅵ) removal capacity, which was significantly lower than that of resting cells, which reached nearly 80% removal rate, suggesting that the way of Cr(Ⅵ) removal mainly relied on biological reduction rather than biosorption. And the Cr(Ⅵ) reduction was found to be significantly enhanced by some electron donors, especially glycerin, which further verified enzyme-mediated biological reduction as the way for Cr(Ⅵ) removal. Experiments of Cr(Ⅵ) removal by permeable cells indicated that there was no significant difference in chromium reduction between the impermeable cells and the permeable cells. The cell envelop fraction had a Cr(Ⅵ) removal rate of 82.9%, apparently higher than cytoplasmic fraction (11.1%), indicating that the cell envelop was the main location for Cr(Ⅵ) reduction, which were further demonstrated by Scanning Electron Microscope and Transmission electron microscopy plus EDS analysis. Furthermore, analysis of X-ray photoelectron spectroscopy manifested that CO, C-OH and C-OC groups on the surfaces played major roles in correlation with chromium species.
Collapse
Affiliation(s)
- Qiang Zeng
- School of Minerals Processing and Bioengineering, MOE Key Laboratory of Biohydrometallurgy, Central South University, Changsha, 410083, China
| | - Yuting Hu
- School of Minerals Processing and Bioengineering, MOE Key Laboratory of Biohydrometallurgy, Central South University, Changsha, 410083, China
| | - Yiran Yang
- School of Minerals Processing and Bioengineering, MOE Key Laboratory of Biohydrometallurgy, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, MOE Key Laboratory of Biohydrometallurgy, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410083, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, MOE Key Laboratory of Biohydrometallurgy, Central South University, Changsha, 410083, China.
| |
Collapse
|
37
|
Bhattacharya A, Gupta A, Kaur A, Malik D. Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:411-424. [PMID: 30924796 DOI: 10.2166/wst.2019.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Excessive industrialization and anthropogenic activities have resulted in widespread prevalence of heavy metals including hexavalent chromium in the environment. In addition to toxic properties, Cr(VI) possesses high stability and mobility, which in total makes it included in the list of priority heavy metals; thus it needs to be managed urgently. Among different methods available for remediation of Cr(VI), bioremediation is considered as one of the sustainable methods which could effectively be utilized for controlling Cr(VI) pollution. In this aspect, the treatment of Cr(VI)-containing wastewater originating from industries is noteworthy. The present review thus is an attempt to present a systematic overview dealing with studies on remediation of hexavalent chromium by using microorganisms and their application in treatment of Cr(VI)-containing industrial wastewaters. Various factors affecting the Cr(VI) removal and methods to enhance the bio-treatment are highlighted, which might act as a basis for researchers developing Cr(VI) bioremediation techniques.
Collapse
Affiliation(s)
- Amrik Bhattacharya
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India E-mail:
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India E-mail:
| | - Amarjeet Kaur
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India E-mail:
| | - Darshan Malik
- Shivaji College, University of Delhi, New Delhi 110027, India
| |
Collapse
|
38
|
Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J Toxicol 2018; 2018:2568038. [PMID: 30363677 PMCID: PMC6180975 DOI: 10.1155/2018/2568038] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/17/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
The discharge of untreated tannery wastewater containing biotoxic substances of heavy metals in the ecosystem is one of the most important environmental and health challenges in our society. Hence, there is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation of inorganic metals (Cr, Hg, Cd, and Pb) released into the environment and to safeguard the ecosystem. In this regard, recent advances in microbes-base heavy metal have propelled bioremediation as a prospective alternative to conventional techniques. Heavy metals are nonbiodegradable and could be toxic to microbes. Several microorganisms have evolved to develop detoxification mechanisms to counter the toxic effects of these inorganic metals. This present review offers a critical evaluation of bioremediation capacity of microorganisms, especially in the context of environmental protection. Furthermore, this article discussed the biosorption capacity with respect to the use of bacteria, fungi, biofilm, algae, genetically engineered microbes, and immobilized microbial cell for the removal of heavy metals. The use of biofilm has showed synergetic effects with many fold increase in the removal of heavy metals as sustainable environmental technology in the near future.
Collapse
Affiliation(s)
- Bernard E. Igiri
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Stanley I. R. Okoduwa
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
- Infohealth Awareness Department, SIRONigeria Global Limited, Abuja 900001, FCT, Nigeria
| | - Grace O. Idoko
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Ebere P. Akabuogu
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Abraham O. Adeyi
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Ibe K. Ejiogu
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| |
Collapse
|
39
|
Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. World J Microbiol Biotechnol 2018; 34:126. [DOI: 10.1007/s11274-018-2510-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/28/2018] [Indexed: 11/26/2022]
|
40
|
Bhattacharya A, Naik SN, Khare SK. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 215:143-152. [PMID: 29567554 DOI: 10.1016/j.jenvman.2018.03.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 05/27/2023]
Abstract
In the present study, urease positive Serratia marcescens (NCIM2919) and Enterobacter cloacae EMB19 (MTCC10649) were individually evaluated for remediation of cadmium (II) using ureolysis-induced calcium carbonate precipitation. Both the cultures were observed to efficiently remove cadmium from the media through co-precipitation of Cd (II) and Ca (II). S. marcescens and E. cloacae EMB19, respectively showed 96 and 98% removal of initial 5.0 mg L-1 soluble Cd (II) from the urea and CaCl2 laden media at 96 h of incubation period. At higher Cd (II) concentrations of 10 and 15 mg L-1, cadmium removal efficiency was much higher in case of E. cloacae EMB19 compared to S. marcescens. In-vitro cadmium (II) remediation study using urease containing cell-free culture supernatant of S. marcescens and E. cloacae EMB19 showed respective 98 and 53% removal of initial 50 mg L-1 Cd (II) from the reaction mixtures in co-presence of Ca (II). While in sole presence of Cd (II), only 16 and 8% removal of Cd (II) were detected for S. marcescens and E. cloacae EMB19, respectively. The elemental analysis of the co-precipitated mineral products using Energy Dispersive X-ray spectroscopy (EDX) clearly showed the prevalence of Ca and Cd ions. The morphology Cd-Ca composites formed with respect to both the cultures were observed to be of different shape and size as revealed through Scanning Electron Microscopy (SEM). Entire study hence comes out with a sustainable bioremediation option which could be effectively used to tackle Cd (II) or other heavy metal pollution.
Collapse
Affiliation(s)
- Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 11016, India; Center for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - S N Naik
- Center for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - S K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 11016, India.
| |
Collapse
|
41
|
Complete Genome Sequence of Cd(II)-Resistant Arthrobacter sp. PGP41, a Plant Growth-Promoting Bacterium with Potential in Microbe-Assisted Phytoremediation. Curr Microbiol 2018; 75:1231-1239. [PMID: 29804207 DOI: 10.1007/s00284-018-1515-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Microbe-assisted phytoremediation has great potential for practical applications. Plant growth-promoting bacteria (PGPB) with heavy metal (HM) resistance are important for the implementation of PGPB-assisted phytoremediation of HM-contaminated environments. Arthrobacter sp. PGP41 is a Cd(II)-resistant bacterium isolated from the rhizosphere soils of a Cd(II) hyperaccumulator plant, Solanum nigrum. Strain PGP41 can significantly improve plant seedling and root growth under Cd(II) stress conditions. This bacterium exhibited the ability to produce high levels of indole-3-acetic acid (IAA), as well as the ability to fix nitrogen and solubilize phosphate, and it possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Here, we present the complete genome sequence of strain PGP41. The genome consists of a single chromosome with a G+C content of 65.38% and no plasmids. The genome encodes 3898 genes and contains 49 tRNA and 12 rRNA genes. Multiple genes associated with plant growth promotion were identified in the genome. The whole genome sequence of PGP41 provides information useful for further clarifying the molecular mechanisms behind plant growth promotion by PGPB and facilitates its potential use as an inoculum in the bioremediation of HM-contaminated environments.
Collapse
|
42
|
Fernández M, Morales GM, Agostini E, González PS. An approach to study ultrastructural changes and adaptive strategies displayed by Acinetobacter guillouiae SFC 500-1A under simultaneous Cr(VI) and phenol treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20390-20400. [PMID: 28707241 DOI: 10.1007/s11356-017-9682-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Acinetobacter guillouiae SFC 500-1A, a native bacterial strain isolated from tannery sediments, is able to simultaneously remove high concentrations of Cr(VI) and phenol. In this complementary study, high-resolution microscopy techniques, such as atomic force microscopy (AFM) and transmission electron microscopy (TEM), were used to improve our understanding of some bacterial adaptive mechanisms that enhance their ability to survive. AFM contributed in gaining insight into changes in bacterial size and morphology. It allowed the unambiguous identification of pollutant-induced cellular disturbances and the visualization of bacterial cells with depth sensitivity. TEM analysis revealed that Cr(VI) produced changes mainly at the intracellular level, whereas phenol produced alterations at the membrane level. This strain tended to form more extensive biofilms after phenol treatment, which was consistent with microscopy images and the production of exopolysaccharides (EPSs). In addition, other exopolymeric substances (DNA, proteins) significantly increased under Cr(VI) and phenol treatment. These exopolymers are important for biofilm formation playing a key role in bacterial aggregate stability, being especially useful for bioremediation of environmental pollutants. This study yields the first direct evidences of a range of different changes in A. guillouiae SFC 500-1A which seems to be adaptive strategies to survive in stressful conditions.
Collapse
Affiliation(s)
- Marilina Fernández
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Gustavo M Morales
- Departamento de Química-FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
43
|
Tadishetty Hanumanth Rao S, Papathoti NK, Gundeboina R, Mohamed YK, Mudhole GR, Bee H. Hexavalent Chromium Reduction from Pollutant Samples by Achromobacter xylosoxidans SHB 204 and its Kinetics Study. Indian J Microbiol 2017; 57:292-298. [PMID: 28904413 DOI: 10.1007/s12088-017-0654-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/30/2017] [Indexed: 11/30/2022] Open
Abstract
Cr(VI) is most toxic heavy metal and second most widespread hazardous metal compound worldwide. Present work focused on Cr(VI) reduction from synthetic solutions and polluted samples by Achromobacter xylosoxidans SHB 204. It could tolerate Cr(VI) up to 1600 ppm and reduce 500 ppm with 4.5 chromium reductase enzyme units (U) having protein size 30 kDa. Changes in morphology of cells on interaction with Cr(VI) metal ion was also studied using SEM-EDX and FTIR. Microcosm studies in pollutant samples for Cr(VI) reduction and adsorption isotherm with biomass of bacterium was best fitted with Langmuir model along with kinetic studies. This study focuses on significance of Cr reduction from synthetic solutions and polluted samples by A. xylosoxidans SHB 204 and its potential for bioremediation.
Collapse
Affiliation(s)
| | - Narendra Kumar Papathoti
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, 500 007 India
| | - Ravi Gundeboina
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007 India
| | - Yahya Khan Mohamed
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, 500 007 India
| | - Gopal Reddy Mudhole
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, 500 007 India
| | - Hameeda Bee
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, 500 007 India
| |
Collapse
|
44
|
Kang C, Wu P, Li L, Yu L, Ruan B, Gong B, Zhu N. Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5949-5963. [PMID: 28070813 DOI: 10.1007/s11356-016-8356-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the mechanism of Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa using batch experiments and analysis techniques. Data showed that resting cells of this strain (3.2 g/L dry weight) reduced 10 mg/L of Cr(VI) by 86% in Tris-HCl buffer solution under optimized conditions of 5 g/L of sodium acetate as an electron donor, pH of 7.0 and temperature of 37 °C within 24 h. Cr(VI) was largely converted to nontoxic Cr(III), and both soluble crude cell-free extracts and membrane-associated fractions were responsible for Cr(VI) reduction. While remnant Cr(VI) existed only in the supernatant, the content of resultant Cr(III) in supernatant, on cell surface and inside cells was 2.62, 1.06, and 5.07 mg/L, respectively, which was an indicative of extracellular and intracellular reduction of chromate. Scanning electron microscopy analysis combined with energy dispersive X-ray spectroscopy revealed the adsorption of chromium on the bacterial surface. Interaction between Cr(III) and cell surface functional groups immobilized Cr(III) as indicated by Fourier transform infrared analyses and X-ray photoelectron spectroscopy. Transmission electron microscopy revealed Cr(III) precipitates in bacterial interior suggesting that Cr(II) could also be intracellularly accumulated. Thus, it can be concluded that interior and exterior surfaces of resting P. aeruginosa cells were sites for reduction and immobilization of Cr(VI) and Cr(III), respectively. This is further insight into the underlying mechanisms of microbial chromate reduction.
Collapse
Affiliation(s)
- Chunxi Kang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 51006, People's Republic of China.
- Guangdong Environmental Protection Key Lab of Solid Waste Treatment and Recycling, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
| | - Liping Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Langfeng Yu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Beini Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 51006, People's Republic of China
- Guangdong Environmental Protection Key Lab of Solid Waste Treatment and Recycling, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
45
|
Heravi MRF, Gharibi H, Jaafari J, Mesdaghinia A, Mahvi AH. Performance evaluation of sulfate reducing bacteria in removing lead, chromium and nickel by anaerobic packed bed reactor. DESALINATION AND WATER TREATMENT 2017; 59:154-159. [DOI: 10.5004/dwt.2016.1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
46
|
Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals. J Microbiol 2016; 54:602-610. [DOI: 10.1007/s12275-016-5295-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
|
47
|
Fabrication of Unique Magnetic Bionanocomposite for Highly Efficient Removal of Hexavalent Chromium from Water. Sci Rep 2016; 6:31090. [PMID: 27502074 PMCID: PMC4977471 DOI: 10.1038/srep31090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Biotreatment of hexavalent chromium has attracted widespread interest due to its cost effective and environmental friendliness. However, the difficult separation of biomass from aqueous solution and the slow hexavalent chromium bioreduction rate are bottlenecks for biotechnology application. In this approach, a core-shell structured functional polymer coated magnetic nanocomposite was prepared for enriching the hexavalent chromium. Then the nanocomposite was connected to the bacteria via amines on bacterial (Bacillus subtilis ATCC-6633) surface. Under optimal conditions, a series of experiments were launched to degrade hexavalent chromium from the aqueous solution using the as-prepared bionanocomposite. Results showed that B. subtilis@Fe3O4@mSiO2@MANHE (BFSM) can degrade hexavalent chromium from the water more effectively (a respectable degradation efficiency of about 94%) when compared with pristine B. subtilis and Fe3O4@mSiO2@MANHE (FSM). Moreover, the BFSM could be separated from the wastewater by magnetic separation technology conveniently due to the Fe3O4 core of FSM. These results indicate that the application of BFSM is a promising strategy for effective treating wastewater containing hexavalent chromium.
Collapse
|
48
|
Chen C, Lei W, Lu M, Zhang J, Zhang Z, Luo C, Chen Y, Hong Q, Shen Z. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6861-6872. [PMID: 26670028 DOI: 10.1007/s11356-015-5926-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Soil that is co-contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) is difficult to bioremediate due to the ability of toxic metals to inhibit PAH degradation by bacteria. We demonstrated the resistance mechanisms to Cu(II) and Cd(II) of two newly isolated strains of Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and further tested their potential application in the bioremediation of HM-phenanthrene (PhA) co-contaminated sites. The PHE-SPH and PHE-OCH strains tolerated 4.63 and 4.34 mM Cu(II) and also showed tolerance to 0.48 and 1.52 mM Cd(II), respectively. Diverse resistance patterns were detected between the two strains. In PHE-OCH cells, the maximum accumulation of Cu(II) occurred in the cell wall, while the maximum accumulation was in the cytoplasm of PHE-SPH cells. This resulted in a sudden suppression of growth in PHE-OCH and a gradual inhibition in PHE-SPH as the concentration of Cu(II) increased. Organic acid production was markedly higher in PHE-OCH than in PHE-SPH, which may also have a role in the resistance mechanisms, and contributes to the higher Cd(II) tolerance of PHE-OCH. The factors involved in the absorption of Cu(II) or Cd(II) in PHE-SPH and PHE-OCH were identified as proteins and carbohydrates by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, both strains showed the ability to efficiently degrade PhA and maintained this high degradation efficiency under HM stress. The high tolerance to HMs and the PhA degradation capacity make Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH excellent candidate organisms for the bioremediation of HM-PhA co-contaminated sites.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenrui Lei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Min Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhou Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Hong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
49
|
Kang C, Wu P, Li Y, Ruan B, Li L, Tran L, Zhu N, Dang Z. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. World J Microbiol Biotechnol 2015; 31:1765-79. [PMID: 26296415 DOI: 10.1007/s11274-015-1928-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/17/2015] [Indexed: 11/30/2022]
Abstract
Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.
Collapse
Affiliation(s)
- Chunxi Kang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China. .,The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China. .,Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 51006, People's Republic of China.
| | - Yuewu Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Liping Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lytuong Tran
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.,QuangBinh University, QuangBinh, Vietnam
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.,The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 51006, People's Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.,The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 51006, People's Republic of China
| |
Collapse
|
50
|
Latha S, Vinothini G, Dhanasekaran D. Chromium [Cr(VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22. 3 Biotech 2015; 5:423-432. [PMID: 28324541 PMCID: PMC4522735 DOI: 10.1007/s13205-014-0237-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/18/2014] [Indexed: 11/05/2022] Open
Abstract
The present work demonstrates the heavy metal resistance and detoxification of Cr(VI) by the probiotic actinobacterial cultures isolated from chicken and goat feces. The actinobacterial isolates were screened for heavy metal resistance by qualitative, semiquantitative assays and Cr(VI) biosorption was determined by analytical techniques such as atomic absorption spectrophotometry and Fourier transform infrared spectrometry (FT-IR). All the tested actinobacterial isolates (n = 20) showed resistance toward K2Cr2O7, NiCl2, ZnCl2, CuSO4 and PbNO3 at 20 mg L−1 concentration. The maximum tolerance concentration values were found to be 200–250 mg L−1 for K2Cr2O7, 100–250 mg L−1 for PbNO3 and <50–250 mg L−1 for NiCl2, ZnCl2 and CuSO4. Among the five tested heavy metals, Cr(VI) was resisted by 95 % of the tested actinobacterial cultures up to 250 mg L−1 concentration; particularly, the isolate LD22 exhibited a high degree of tolerance to all the tested heavy metals. Thus, the isolate was justifiably chosen for Cr(VI) biosorption study and the biosorption efficacy was found maximum at 100 mg L−1 of metal ion concentration (3 g L−1 of biomass dosage and pH 7.0). FT-IR spectrum revealed the chemical interactions between the hydroxyl, amine and carboxyl groups of the biomass and the metal ions. On the basis of phenotypic, physiological, biochemical and molecular characteristics the isolate LD22 was identified as Streptomyces werraensis LD22 (JX524481) which could be used to develop a biosorbent for adsorbing Cr(VI) metal ions.
Collapse
|