1
|
Melefa TD, Andong FA, Hinmikaiye FF, Ozota EE, Nwoko MC, Ubah VCS, Ugwu GN, Nwani CD. Psychoactive drug propranolol modulates behavioral, acetylcholinesterase, and oxidative stress parameters in freshwater African Sharptooth Catfish Clarias gariepinus. JOURNAL OF AQUATIC ANIMAL HEALTH 2025:vsaf004. [PMID: 40327048 DOI: 10.1093/jahafs/vsaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/01/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE Propranolol is a beta-blocker psychoactive drug used for the management of high blood pressure, tremors, atrial fibrillation, and migraine headaches. This study investigated the effect of propranolol on behavior, acetylcholinesterase, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the brain of African Sharptooth Catfish Clarias gariepinus juveniles. METHODS A total of 180 African Sharptooth Catfish were exposed to 7.00-, 9.00-, 11.00-, 13.00-, and 15.00-mg/L acute propranolol concentrations and a control (0.00 mg/L) for 24, 48, 72, and 96 h, and the 96-h LC50 value was 9.48 mg/L. For sublethal study, 120 juvenile African Sharptooth Catfish were divided into four groups of 30 fish each and exposed to 1.90-, 0.95-, and 0.47-mg/L propranolol concentrations and a control for 21 d and allowed to recover for 7 d. All the treatment groups and control were set in triplicates, with 10 fish in each. The behavioral changes due to propranolol exposure were monitored by direct observation and scoring during the exposure and withdrawal period. The brains of fish were sampled every week for 4 weeks in order to evaluate the effects of propranolol on acetylcholinesterase, lipid peroxidation, and oxidative stress parameters. RESULTS Behavioral changes were evidenced by alterations in swimming rates, air gulping activities, and opercula beats in the propranolol-exposed fish during the acute exposure. Sublethal exposure resulted in a significant decrease in superoxide dismutase and catalase but increase in glutathione peroxidase and reductase values. Significant increase in lipid peroxidation and acetylcholinesterase enzyme levels were observed as exposure duration increased from day 7 compared with the control. The effects of propranolol on the observed parameters appeared to wane after fish withdrawal from the drug for 7 d. CONCLUSIONS The drug propranolol, as demonstrated by these alterations, may negatively impact nontarget aquatic species and may have ecological consequences.
Collapse
Affiliation(s)
| | - Felix Atawal Andong
- Department of Zoology and Environment Biology, University of Nigeria, Nsukka, Nigeria
| | | | - Edwin Ejike Ozota
- Department of Zoology and Environment Biology, University of Nigeria, Nsukka, Nigeria
| | - Mary-Claret Nwoko
- Department of Zoology and Environment Biology, University of Nigeria, Nsukka, Nigeria
| | | | | | | |
Collapse
|
2
|
Shaalan WM, Idriss SKA, Lee JS, Mohamed NH, Sayed AEDH. Evaluating the effects of pharmaceutical pollutants on common carp ( Cyprinus carpio): histopathological and antioxidant responses. Front Physiol 2025; 16:1557647. [PMID: 40365086 PMCID: PMC12069368 DOI: 10.3389/fphys.2025.1557647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The release of pharmaceutical chemicals into aquatic environments has emerged as a significant ecological concern, originating from agricultural runoff, sewage effluents, and improper disposal of medications. Methods This study investigates the impacts of four common pharmaceuticals (bromazepam, naproxen, metoprolol, and sotalol) on common carp (Cyprinus carpio), a vital bioindicator species. We evaluated neurological, immunological, and histopathological responses in carp exposed to these pharmaceuticals over 15 days. Results Neurological assessments showed significant reductions in acetylcholinesterase (AChE) and monoamine oxidase (MAO) activities, and nitric oxide (NO) levels, indicating potential disruptions in neurotransmission and enzyme function. Immunological analysis revealed elevated levels of pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6), suggesting an inflammatory response. Histopathological examinations identified tissue alterations in the liver, kidney which correlated with the observed biochemical and immune responses. Discussion These findings highlight the adverse effects of pharmaceutical contaminants on aquatic species, emphasizing the necessity for comprehensive environmental risk assessments and strategies to mitigate their impact. This study enhances the understanding of pharmaceutical pollutants' ecological effects, informing policy and conservation efforts to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Walaa M. Shaalan
- Zoology Department, Faculty of Science, Benha University, Benha, Egypt
- Bioinformatics Group, Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University, Bochum, Germany
| | - Shaimaa K. A. Idriss
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nadia H. Mohamed
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Sibiya A, Selvaraj C, Singh SK, Baskaralingam V. Toxicological study on ibuprofen and selenium in freshwater mussel Lamellidens marginalis and exploring the microbial cytochrome through modelling and quantum mechanics approaches for its toxicity degradation in contaminated environment. ENVIRONMENTAL RESEARCH 2024; 257:119331. [PMID: 38851371 DOI: 10.1016/j.envres.2024.119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Toxicological stress in aquatic organisms is caused by the discharge of hundreds of toxic pollutants and contaminants among which the current study concentrates on the toxic effect of non-steroidal anti-inflammatory drug ibuprofen (IBF) and the trace element selenium (Se). In this study, IBF and Se toxicity on freshwater mussel Lamellidens marginalis was studied for 14 days, and in silico predictions for their degradation were made using Molecular modelling and Quantum Mechanical approaches. The degrading propensity of cytochrome c oxidase proteins from Trametes verticillatus and Thauera selenatis (Turkey tail fungi and Gram-negative bacteria) is examined into atom level. The results of molecular modelling study indicate that ionic interactions occur in the T. selenatis-HEME bound complex by Se interacting directly with HEME, and in the T. versicolor-HEME bound complex by IBF bound to a nearby region of HEME. Experimental and theoretical findings suggest that, the toxicological effects of Se and IBF pollution can be reduced by bioremediation with special emphasis on T. versicolor, and T. selenatis, which can effectively interact with Se and IBF present in the environment and degrade them. Besides, this is the first time in freshwater mussel L. marginalis that ibuprofen and selenium toxicity have been studied utilizing both experimental and computational methodologies for their bioremediation study.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD LAB, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu 602105, India
| | - Sanjeev Kumar Singh
- CADD and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, Tamil Nadu, 630004, India
| | - Vaseeharan Baskaralingam
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
4
|
Rodríguez SO, Coy-Aceves LE, Morales JED, Sanchez-Salas JL, Martínez-Huitle CA, Ramirez-Rodrigues MM, Cerro-Lopez M. Ketorolac removal through photoelectrocatalysis using TiO 2 nanotubes in water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118536-118544. [PMID: 37917255 DOI: 10.1007/s11356-023-30510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Ketorolac, a highly persistent NSAID of environmental concern, was significantly removed from water (80% removal) through photoelectrocatalysis where titanium dioxide nanotubes prepared by Ti foil electrochemical anodization at 30 V were used as photoanodes. Fifteen milligrams per liter of ketorolac solutions in a 0.05 M Na2SO4 aqueous medium was subjected to irradiation from a 365-nm light with an intensity of 1 mWcm-2 and under an applied potential of 1.3 V (vs. Hg/Hg2SO4/sat.K2SO4) at pH 6.0. When each process (photo and electrocatalysis) was carried out separately, less than 20% drug removal was achieved as monitored through UV-vis spectrophotometry. Through scavenging experiments, direct oxidation on the photogenerated holes and oxidation by hydroxyl radical formation were found to play a key role on ketorolac's degradation. Chemical oxygen demand (COD) analyses also showed a significant COD decreased (68%) since the initial COD value was 31.3 mg O2/L and the final COD value was 10.1 mg O2/L. A 48% mineralization was also achieved, as shown by total organic carbon (TOC) analyses. These results showed that electrodes based on titania nanotubes are a promising alternative material for simultaneous photocatalytic and electrocatalytic processes in water remediation.
Collapse
Affiliation(s)
- Sebastián Oyarzabal Rodríguez
- Electrocatalysis Laboratory, Chemical and Biological Sciences Department, Universidad de Las Américas Puebla, Sta. Catarina Mártir S/N, Cholula, 72810, Puebla, Mexico
| | - Luis Erick Coy-Aceves
- Electrocatalysis Laboratory, Chemical and Biological Sciences Department, Universidad de Las Américas Puebla, Sta. Catarina Mártir S/N, Cholula, 72810, Puebla, Mexico
| | - Jesus Eduardo Daniel Morales
- Electrocatalysis Laboratory, Chemical and Biological Sciences Department, Universidad de Las Américas Puebla, Sta. Catarina Mártir S/N, Cholula, 72810, Puebla, Mexico
| | - Jose Luis Sanchez-Salas
- Electrocatalysis Laboratory, Chemical and Biological Sciences Department, Universidad de Las Américas Puebla, Sta. Catarina Mártir S/N, Cholula, 72810, Puebla, Mexico
| | - Carlos Alberto Martínez-Huitle
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Universidade Federale Do Río Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal, RN, 59056-400, Brazil
| | - Milena Maria Ramirez-Rodrigues
- Department of Bioengineering, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Vía Atlixcáyotl 5718Puebla, 72453, Puebla, Mexico
| | - Monica Cerro-Lopez
- Electrocatalysis Laboratory, Chemical and Biological Sciences Department, Universidad de Las Américas Puebla, Sta. Catarina Mártir S/N, Cholula, 72810, Puebla, Mexico.
| |
Collapse
|
5
|
Falfushynska H, Poznanskyi D, Kasianchuk N, Horyn O, Bodnar O. Multimarker Responses of Zebrafish to the Effect of Ibuprofen and Gemfibrozil in Environmentally Relevant Concentrations. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1010-1017. [PMID: 36074127 DOI: 10.1007/s00128-022-03607-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical pollution of water bodies is among the top-notch environmental health risks all over the world. The aim of the present study was to investigate the effects of two common pharmaceuticals namely ibuprofen and gemfibrozil on zebrafish at environmentally relevant concentrations. In zebrafish liver, gemfibrozil caused a decrease in glutathione and glutathione transferase and an increase in catalase but had no effect on lipid peroxidation and protein carbonylation. Ibuprofen altered the antioxidant defense system, promoted protein carbonylation in zebrafish liver, and increased vitellogenin-like protein in the blood. Ibuprofen and particularly gemfibrozil induced lysosomes biogenesis. Lactate dehydrogenase in the blood was also found to be higher in the studied groups. Studied pharmaceuticals did not affect complex II of the electron respiratory chain. Ibuprofen affects zebrafish health status more profoundly than gemfibrozil. Our results showed that pharmaceuticals even in low, environmentally realistic concentrations, induced profound changes in the stress-responsive systems of zebrafish.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine.
| | - Dmytro Poznanskyi
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| | - Nadiia Kasianchuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| | - Oksana Horyn
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| | - Oksana Bodnar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| |
Collapse
|
6
|
García-Medina S, Galar-Martínez M, Cano-Viveros S, Ruiz-Lara K, Gómez-Oliván LM, Islas-Flores H, Gasca-Pérez E, Pérez-Pastén-Borja R, Arredondo-Tamayo B, Hernández-Varela J, Chanona-Pérez JJ. Bioaccumulation and oxidative stress caused by aluminium nanoparticles and the integrated biomarker responses in the common carp (Cyprinus carpio). CHEMOSPHERE 2022; 288:132462. [PMID: 34626656 DOI: 10.1016/j.chemosphere.2021.132462] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles (NPs) in various industries has experienced significant growth due to the advantages they offer, so the increase in their use has generated the continuous discharge of these products in numerous water bodies, which can affect the organisms that inhabit them. Previous studies have shown that Al is capable of producing oxidative stress in aquatic organisms; however, so far the impact of AlNP on hydrobionts is limited. Therefore, the objective of this work was to determine the oxidative stress produced by AlNP in liver, gill and blood of Cyprinus carpio, as well as their bioconcentration factor (BCF) in various tissues. For this purpose, the organisms were exposed to 50 μg L-1 AlNP for 12-96 h. Subsequently, the tissues were obtained and the activity of antioxidant enzymes, oxidative damage to lipids and proteins were determined, and the BCF was calculated for liver, brain, gill and muscle. The results showed alterations in the activity of antioxidant enzymes and increased levels of lipoperoxidation, hydroperoxides and oxidized proteins. When establishing the integrated biomarker response, it was observed that the liver is the most affected organ and these effects are related to the Al content in the tissue. Finally, it was observed that muscle and gills presented a higher BCF, compared to brain and liver. These findings show that AlNP are capable of generating oxidative stress in carp, affecting tissue function and accumulating, which represents an important risk for the health of fish such as common carp.
Collapse
Affiliation(s)
- Sandra García-Medina
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| | - Selene Cano-Viveros
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Karina Ruiz-Lara
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col, Residencial Colón, Toluca, Estado de México, 50120, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col, Residencial Colón, Toluca, Estado de México, 50120, Mexico
| | - Eloy Gasca-Pérez
- Cátedra CONACYT, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Ricardo Pérez-Pastén-Borja
- Laboratorio de Toxicología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Benjamín Arredondo-Tamayo
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Josué Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| |
Collapse
|
7
|
Zhang N, Liu X, Pan L, Zhou X, Zhao L, Mou X, Zhou H, Liu J, Wang X. Evaluation of ibuprofen contamination in local urban rivers and its effects on immune parameters of juvenile grass carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1405-1413. [PMID: 34291405 DOI: 10.1007/s10695-021-00987-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 06/19/2023]
Abstract
Ibuprofen as a non-steroidal anti-inflammatory drug can be detected in the aquatic environments all over the world. This study evaluated the effects of ibuprofen on the immune parameters of juvenile grass carp at the concentration in real environments which were determined by detecting its concentrations in the surface water of local rivers. The concentration of ibuprofen ranged from 13.2 to 95.5 ng/L with a mean value of 47.9 ng/L in the surface water of local rivers detected by solid-phase extraction followed by LC-MS/MS analysis. Accordingly, juvenile grass carp were exposed to 4.8, 48.0 and 480.0 ng/L of ibuprofen for 14 days. The serum lysozyme activity of these fish decreased, while the serum creatinine levels were not affected after the exposure. Moreover, the mRNA expression of interleukin 6 in the skin and interleukin 1 beta and tumor necrosis factor alpha in the gills was enhanced by this exposure. These results collectively suggest that ibuprofen at environmentally relevant concentration can affect the immune parameters of juvenile grass carp, providing an insight into the possibility of this contaminant to modify the immunostatus of fish.
Collapse
Affiliation(s)
- Na Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xuelian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Longjing Pan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiang Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Liang Zhao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xinyi Mou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jianyu Liu
- Xpiscoric Inc., Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
8
|
Sánchez-Aceves L, Pérez-Alvarez I, Gómez-Oliván LM, Islas-Flores H, Barceló D. Long-term exposure to environmentally relevant concentrations of ibuprofen and aluminum alters oxidative stress status on Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109071. [PMID: 33992815 DOI: 10.1016/j.cbpc.2021.109071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Despite the ubiquitous presence of multiple pollutants in aqueous environments have been extensively demonstrated, the ecological impact of chemical cocktails has not been studied in depth. In recent years, environmental studies have mainly focused on the risk assessment of individual chemical substances neglecting the effects of complex mixtures even though it has been demonstrated that combined effects exerted by pollutants might represent a greater hazard to the biocenosis. The current study evaluates the effects on the oxidative stress status induced by individual forms and binary mixtures of ibuprofen (IBU) and aluminum (Al) on brain, gills, liver and gut tissues of Danio rerio after long-term exposure to environmentally relevant concentrations (0.1-11 μg L-1 and 0.05 mg L-1- 6 mg L-1, respectively). Lipid peroxidation (LPO), Protein carbonyl content (PCC) and activity of Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPX) were evaluated. Moreover, concentrations of both toxicants and the metabolite 2-OH-IBU were quantified on test water and tissues. Results show that ibuprofen (IBU) and aluminum (Al) singly promote the production of radical species and alters the oxidative stress status in all evaluated tissues of zebrafish, nevertheless, higher effects were elicited by mixtures as different interactions take place.
Collapse
Affiliation(s)
- Livier Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| |
Collapse
|
9
|
Gallego-Ríos SE, Atencio-García VJ, Peñuela GA. Effect of ibuprofen in vivo and in vitro on the sperm quality of the striped catfish Pseudoplatystoma magdaleniatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36133-36141. [PMID: 33683592 DOI: 10.1007/s11356-021-13245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Because ibuprofen is a high consumption drug, which has the waters as its final destination, causing alterations in the aquatic environment, specifically in fish. However, there is not enough knowledge about the effect it can have on neotropical fish. This study aimed to evaluate the impact of different concentrations of ibuprofen on sperm quality, both in vivo and in vitro, of the striped catfish Pseudoplatystoma magdaleniatum, and analyze its effects on the reproduction of this critical extinction endangered species. For this purpose, three groups of fish, with a mean weight of 2.3 ± 0.6 kg and mean total length of 62.9 ± 6.1 cm, were placed in tanks (3 fish/tank) with water at concentrations of 0 (control), 25, and 50 μg/L of ibuprofen for 4 months. For the analysis of sperm quality for each treatment (in vivo), the males were selected in the spermiation phase. Also, the semen from the control group was used for in vitro tests and activated with type I water solutions containing 0, 25, and 50 μg/L of ibuprofen. In the in vivo and in vitro tests, when fish and semen were treated to 50 μg/l, the seminal quality of striped catfish was statistically different from the other treatments. For this study, it was shown that ibuprofen at concentrations of 50 μg/L can cause a significant reduction in sperm quality and, therefore, a threat to the reproduction of P. magdaleniatum.
Collapse
Affiliation(s)
- Sara E Gallego-Ríos
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.
| | - Víctor Julio Atencio-García
- Fishculture Research Institute (CINPIC)/FMVZ/DCA, University of Córdoba, Carrera 6 No. 77-305, Montería, Colombia
| | - Gustavo Antonio Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| |
Collapse
|
10
|
Antioxidant markers in gills, liver and muscle tissue of the African Sharptooth Catfish (Clarias gariepinus) exposed to subchronic levels of Ibuprofen and Dibutyl phthalate. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
He L, Gao Y, Han L, Yu Q, Zang R. Enhanced gelling performance of oxhide gelatin prepared from cowhide scrap by high pressure-assisted extraction. J Food Sci 2021; 86:2525-2538. [PMID: 34056721 DOI: 10.1111/1750-3841.15769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 02/04/2023]
Abstract
In this study, the feasibility of preparing oxhide gelatin from cowhide scrap by high pressure assisted-liquid extraction was verified. Different processing conditions, including high pressure time (15 to 25 min), pressure (250 to 350 MPa), and liquid-to-solid ratio (1:3 to 1:5), were optimized through response surface methodology. Under the optimum manufacturing conditions, when the high-pressure processing (HPP) time was 22 min, the pressure was 289 MPa, and the liquid-to-solid ratio was 1:4, the highest extraction yield (36%) and gel strength (224 g) were achieved. Based on DSC, XRD, FTIR, SEM, gelling and melting temperatures, HPP led to the structural modification of the gelatinized collagen, which enhanced the rearrangement of the gel structure during the gelation process and made it have better gelling properties. In addition, compared with the commercial sample, they do not differ significantly in the relaxation time and peak area of prepared oxhide gelatin. These findings provide new insights into the practicability of HPP during the preparation of oxhide gelatin, which can noticeably reduce the processing time and be applied to industrial production. PRACTICAL APPLICATION: Compared with traditional processing, a high pressure-assisted extraction process can noticeably reduce the processing time while producing cowhide gelation with similar physicochemical and functional properties. Meanwhile, high pressure processing (HPP) led to the structural destruction of the cowhide and gelatinized collagen, which enhanced the rearrangement of the gelatin structure during the gelation process and made it have better gelling properties. Importantly, high pressure-assisted extraction can facilitate the use of a low-cost raw material and improve the preparation efficiency of oxhide gelatin, which shows great potential in large-scale and efficient industrial production and the quality control of oxhide gelatin.
Collapse
Affiliation(s)
- Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongfang Gao
- Laboratory of Agricultural & Food Biomechanics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Rongyu Zang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Bao S, He C, Ku P, Xie M, Lin J, Lu S, Nie X. Effects of triclosan on the RedoximiRs/Sirtuin/Nrf2/ARE signaling pathway in mosquitofish (Gambusia affinis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105679. [PMID: 33227666 DOI: 10.1016/j.aquatox.2020.105679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) has been widely used in daily life for its broad-spectrum antibacterial property and subsequently detected frequently in aquatic waterborne. Environmental relevant concentrations of TCS in water (ng-μg/L) may pose potential unexpected impact on non-target aquatic organisms. In the present work, we investigated the transcriptional responses of Nrf2 as well as its downstream genes, sirtuins and redox-sensitive microRNAs (RedoximiRs) in livers of the small freshwater fish mosquitofish (Gambusia affinis) which were exposed to environmental relevant concentrations of TCS (0.05 μg/L, 0.5 μg/L and 5 μg/L for 24 h and 168 h). Results showed there were similar up-regulations in Nrf2 and its target genes (e. g. NQO1, CAT and SOD) at transcriptional, enzymatic and protein levels, reflecting oxidative stress of TCS to mosquitofish. Meanwhile, up-regulations of Sirt1, Sirt2 and down-regulations of miR-34b, miR-200b-5p and miR-21 could modulate antioxidant system via the Nrf2/ARE signaling pathway by the post-transcriptional regulations. Some oxidative stress-related biomarkers displayed in concentration-dependent manners (e. g. NQO1 mRNA, CAT mRNA) and/or time-dependent manners (e. g. GSH contents). This study indicated that the RedoximiRs/Sirtuin/Nrf2/ARE signaling pathway played a crucial role in mosquitofish exposed to TCS, and there might be potentially profound effects for TCS on the aquatic ecological safety.
Collapse
Affiliation(s)
- Shuang Bao
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Cuiping He
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Peijia Ku
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Meinan Xie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Jiawei Lin
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, 510632, China.
| | - Xiangping Nie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Ramesh M, Angitha S, Haritha S, Poopal RK, Ren Z, Umamaheswari S. Organophosphorus flame retardant induced hepatotoxicity and brain AChE inhibition on zebrafish (Danio rerio). Neurotoxicol Teratol 2020; 82:106919. [DOI: 10.1016/j.ntt.2020.106919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
|
14
|
Nataraj B, Maharajan K, Hemalatha D, Rangasamy B, Arul N, Ramesh M. Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134546. [PMID: 31839308 DOI: 10.1016/j.scitotenv.2019.134546] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we explored the adverse effects of Octyl methoxycinnamate (OMC), and its photoproducts, namely 2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA) on the developmental stages of zebrafish using various biomarkers such as developmental toxicity, oxidative stress, antioxidant response, neurotoxicity and histopathological changes. The 96 h effective concentrations (EC50) of OMC, 2-EH and 4-MBA were found to be 64.0, 34.0 and 3.5 µg/mL, respectively in the embryo toxicity test. Embryos exposed to the EC50 of OMC, 2-EH and 4-MBA showed time-dependent increases in the malformation, heart rate and hatching delay. The lipid peroxidation (LPO) level was significantly (p < 0.05) increased and both induction and inhibition of SOD, CAT, GPx and GST activities were observed in the zebrafish embryos exposed to OMC, 2-EH and 4-MBA. GSH activity was significantly (p < 0.05) decreased in the highest exposure groups, when compared with the control. AChE activity was increased in lower concentrations of OMC, 2-EH and 4-MBA exposed embryos whereas, the activity was found to be decreased in highest concentration. Moreover, the histopathological studies showed severe damage to the muscle fibers and yolk sac regions of the larvae with 4-MBA treatment. The photoproduct 4-MBA has the highest toxic effect, followed by 2-EH and OMC. Our results provide useful insights into the impacts of OMC and its photoproducts on zebrafish development.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University, Coimbatore, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; PG and Research Department of Zoology, PSG College of Arts and Science, Coimbatore, 641014, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Narayanasamy Arul
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
15
|
Ogueji E, Nwani C, Mbah C, Iheanacho S, Nweke F. Oxidative stress, biochemical, lipid peroxidation, and antioxidant responses in Clarias gariepinus exposed to acute concentrations of ivermectin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16806-16815. [PMID: 32141005 DOI: 10.1007/s11356-019-07035-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The short-term effects of ivermectin (IVMT) on the oxidative stress and biochemical parameters of Clarias gariepinus juvenile was assessed under semi-static conditions at concentrations of 9 to 25 μg L-1 for up to 4 days. Juveniles were highly sensitive to ivermectin, with an LC50 of 15 μg L-1.The antioxidant enzyme profile assessed included glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). General stress biomarkers such as serum glucose, protein, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were also determined at 24-h, 48-h, 72-h, and 96-h exposure durations. Lipid peroxidation showed significant (p < 0.05) decreases in higher concentrations (21 μg L-1and 25 μg L-1) and durations of exposure (72 h and 96 h). Significant concentration-dependent increases (p < 0.05) were recorded in the liver function enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) when compared to the control. GPx decreased significantly (p < 0.05) in higher concentrations (21 μg L-1and 25 μg L-1) and durations of exposure (48-96 h). Protein showed significant concentration-dependent decreases, while glucose recorded a mixed trend. The changes in the hepatic antioxidant enzyme activities and serum metabolites were indicative of oxidative stress induced by IVMT. This showed that IVMT is toxic to fish and should be used with utmost caution.
Collapse
Affiliation(s)
- Emmanuel Ogueji
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, Abakaliki, Ebonyi State, Nigeria.
| | - Christopher Nwani
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Christian Mbah
- Department of Zoology, Ahmadu Bello University, Zaria, Nigeria
| | - Stanley Iheanacho
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Friday Nweke
- Department of Biology/Microbiology/Biotechnology, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
16
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Ramírez-Montero MDC, Islas-Flores H, Galar-Martínez M, Dublán-García O, Romero R. Ibuprofen at environmentally relevant concentrations alters embryonic development, induces teratogenesis and oxidative stress in Cyprinus carpio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136327. [PMID: 31923683 DOI: 10.1016/j.scitotenv.2019.136327] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory (NSAIDs) that is used in various conditions. The prescriptions and the global consumption of this drug are very high and its annual production oscillates in millions of tons, this generates that the IBU is present in many waterbodies because it is discharged through the municipal, hospital and industrial effluents. For the above, the purpose of this work was to determine if IBU at environmentally relevant concentrations was capable of inducing alterations to embryonic development, teratogenic effects and oxidative stress in oocytes and embryos of Cyprinus carpio. Oocytes of common carp were exposed to IBU concentrations between 1.5 and 11.5 μg L-1 (environmentally relevant). LC50 and EC50 of malformations were determined to calculate the teratogenic index (TI). Also, main alterations to embryonic development and teratogenic effects were evaluated. Oxidative stress was evaluated by determining biomarkers of cellular oxidation and antioxidation using the same concentrations at 72 and 96 hpf in embryos of Cyprinus carpio. The results showed a LC50 of 4.17 μg L-1, EC50 of 1.39 μg L-1 and TI of 3.0. The main embryonic development disorders and teratogenic effects were delayed hatching, hypopigmentation, pericardial edema, yolk deformation, and developmental delay. Biomarkers of cellular oxidation and antioxidants were increased with respect to the control in a concentration-dependent manner. The results of the study allow us to conclude that IBU at environmentally relevant concentrations is capable of inducing embryotoxicity and teratogenicity in a fish of commercial interest like Cyprinus carpio.
Collapse
Affiliation(s)
- Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - María Del Carmen Ramírez-Montero
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Rubi Romero
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Universidad Autónoma del Estado de México, Km 14.5 Carretera Toluca-Atlacomulco, CP 50200 Toluca, Mexico
| |
Collapse
|
17
|
SanJuan-Reyes N, Gómez-Oliván LM, Pérez-Pastén Borja R, Luja-Mondragón M, Orozco-Hernández JM, Heredia-García G, Islas-Flores H, Galar-Martínez M, Escobar-Huérfano F. Survival and malformation rate in oocytes and larvae of Cyprinus carpio by exposure to an industrial effluent. ENVIRONMENTAL RESEARCH 2020; 182:108992. [PMID: 31830696 DOI: 10.1016/j.envres.2019.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals are used for the prevention or treatment of diseases, and due to their manufacturing process they are continuously released to water bodies. One of the pharmacological groups detected in aquatic environments is non-steroidal anti-inflammatory drugs (NSAIDs) at trace concentrations. This study evaluated the survival and malformation rate in oocytes and larvae of Cyprinus carpio (C. carpio) after exposure to different proportions of an industrial effluent. Initially, the industrial effluent was sampled from an NSAID manufacturing plant located in the city of Toluca, State of Mexico, subsequently the physicochemical characterization and determination of the concentration of chemical compounds present were carried out. On the other hand, the lethal concentration 50 (LC50) and the effective concentration 50 (EC50) were calculated to determine the teratogenic index (TI), as well as the alterations to the embryonic development and the teratogenic effects on oocytes and larvae of C. carpio at the following proportions of the industrial effluent: 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1%, following the Test Guideline 236, which describes a Fish Embryo Acute Toxicity test, the exposure times were 12, 24, 48, 72 and 96 h post-fertilization. The contaminants detected were NaClO (2.6 mg L-1) and NSAIDs such as diclofenac, ibuprofen, naproxen and paracetamol in the range of 1.09-2.68 mg L-1. In this study the LC50 was 0.275%, the EC50 0.133% and the TI 2.068. Several malformations were observed in all proportions of the industrial effluent evaluated, however the most severe such as spina bifida and paravertebral hemorrhage were observed at the highest effluent proportion. The industrial effluent evaluated in this study represents a risk for organisms that are in contact with it, since it contains chemical compounds that induce embryotoxic and teratogenic effects as observed in oocytes and larvae of C. carpio.
Collapse
Affiliation(s)
- Nely SanJuan-Reyes
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico.
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Marlenne Luja-Mondragón
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - José Manuel Orozco-Hernández
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Gerardo Heredia-García
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Hariz Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Francisco Escobar-Huérfano
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| |
Collapse
|
18
|
Luja-Mondragón M, Gómez-Oliván LM, SanJuan-Reyes N, Islas-Flores H, Orozco-Hernández JM, Heredia-García G, Galar-Martínez M, Dublán-García O. Alterations to embryonic development and teratogenic effects induced by a hospital effluent on Cyprinus carpio oocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:751-764. [PMID: 30743961 DOI: 10.1016/j.scitotenv.2019.01.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Hospital functioning generates a great quantity of contaminants, among which organic materials, heavy metals, and diverse pharmaceuticals are noteworthy that can affect organisms if they are not properly removed from the effluents. The hospital effluent evaluated in the present study came from IMSS (Instituto Mexicano del Seguro Social) Clinic 221 in downtown Toluca, State of Mexico, a secondary care facility. The contaminants identified in hospitals have been associated with deleterious effects on aquatic organisms; however, it is necessary to continue with more studies in order to be able to regulate the production of said contaminants which are generally dumped into the city sewage system. The present study had the purpose of evaluating the alterations to embryonic development and teratogenic effects on oocytes Cyprinus carpio after exposure to different proportions of hospital effluent. For said purpose, the physicochemical properties of the effluent were determined. Concentrations of the main microcontaminants were also determined. An embryolethality study out and the determination of the main alterations to embryonic development and teratogenic effects produced, due to exposure of C. carpio at different proportions of the effluent, were carried out. The results showed that the physicochemical properties were within the values permitted by Mexican regulation; however, the presence of contaminants such as NaClO, metals, anti-biotics, anti-diabetics, non-steroidal anti-inflammatory drugs, hormones and beta-blockers, was detected. Lethal concentration 50 was 5.65% and the effective concentration for malformations was 3.85%, with a teratogenic index of 1.46. The main teratogenic alterations were yolk deformation, scoliosis, modified chorda structure, tail malformation, fin deformity and mouth hyperplasia. A high rate of hatching delay was observed. The results suggest that the hospital effluent under study is capable of inducing embryotoxicity and teratogenicity in oocytes of C. carpio.
Collapse
Affiliation(s)
- Marlenne Luja-Mondragón
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico.
| | - Nely SanJuan-Reyes
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Hariz Islas-Flores
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - José Manuel Orozco-Hernández
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Gerardo Heredia-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Marcela Galar-Martínez
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Octavio Dublán-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| |
Collapse
|
19
|
Banihani SA. Effect of ibuprofen on semen quality. Andrologia 2019; 51:e13228. [DOI: 10.1111/and.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences Jordan University of Science and Technology Irbid Jordan
| |
Collapse
|
20
|
Abujaber F, Avendaño L, Jodeh S, Ríos Á, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC. Magnetic multi-walled carbon nanotubes as a valuable option for the preconcentration of non-steroidal anti-inflammatory drugs in water. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feras Abujaber
- Environmental Sciences Institute; University of Castilla-La Mancha; Toledo Spain
| | - Laura Avendaño
- Environmental Sciences Institute; University of Castilla-La Mancha; Toledo Spain
| | - Shehdeh Jodeh
- Department of Chemistry; An-Najah National University; Nablus Palestine
| | - Ángel Ríos
- Faculty of Chemical Sciences and Technologies; University of Castilla-La Mancha; Ciudad Real Spain
| | | | | |
Collapse
|
21
|
Guadalupe Martínez-Viveros EM, Islas-Flores H, Dublán-García O, Galar-Martínez M, SanJuan-Reyes N, García-Medina S, Hernández-Navarro MD, Gómez-Oliván LM. Environmentally relevant concentrations of glibenclamide induce oxidative stress in common carp (Cyprinus carpio). CHEMOSPHERE 2018; 197:105-116. [PMID: 29334650 DOI: 10.1016/j.chemosphere.2018.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/12/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
The hypoglycemic pharmaceutical glibenclamide (GLB) is widely used around the world. This medication is released into the environment by municipal, hospital and industrial wastewater discharges. Although there are reports of its environmental occurrence in the scientific literature, toxicity studies on aquatic species of commercial interest such as the common carp Cyprinus carpio are scarce. The present study aimed to evaluate the oxidative stress induced on C. carpio by environmentally relevant concentrations of GLB. Biomarkers of oxidative damage such as hydroperoxide content, lipid peroxidation and protein carbonyl content were evaluated as well as the activity of the antioxidant enzymes superoxide dismutase and catalase. The concentration of GLB was determined in water as well as in gill, liver, muscle, brain and blood of carp at 12, 24, 48, 72 and 96 h. The findings obtained in the study prove that GLB induces increases in biomarkers of oxidative damage and antioxidant enzyme activity in the teleost C. carpio, that this response is not concentration dependent and that the organs evaluated bioconcentrate this hypoglycemic agent. These findings permit us to conclude that the presence of GLB in water bodies represents a risk for aquatic species.
Collapse
Affiliation(s)
- Ericka María Guadalupe Martínez-Viveros
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero. México, DF, C.P.07738, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero. México, DF, C.P.07738, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
22
|
Mathias FT, Fockink DH, Disner GR, Prodocimo V, Ribas JLC, Ramos LP, Cestari MM, Silva de Assis HC. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:105-113. [PMID: 29558665 DOI: 10.1016/j.etap.2018.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Ibuprofen is a pharmaceutical drug widely used by the global population and it has been found in aquatic ecosystems in several countries. This study evaluated the effects of ibuprofen in environmental concentrations (0, 0.1, 1 and 10 μg/L) on the freshwaterspecies Rhamdia quelen exposed for 14 days. In the posterior kidney, ibuprofen increased glutathione-S-transferase activity in all groups exposed. Furthermore, increased glutathione peroxidase activity and the levels of reduced glutathione in the group exposed to 10 μg/L. Ibuprofen decreased the carbonic anhydrase activity in the posterior kidney in all exposed groups, and increased the activity in the gills in group exposed to 0.1 μg/L. The levels of plasma magnesium increased in groups exposed to 0.1 and 1 μg/L. In the blood, ibuprofen decreased the white blood cell count in groups exposed to 0.1 e 1.0 μg/L. Therefore, these results indicated that ibuprofen caused nephrotoxicity and demonstrated immunosuppressive effect in Rhamdia quelen.
Collapse
Affiliation(s)
| | - Douglas Henrique Fockink
- Department of Chemistry, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Geonildo Rodrigo Disner
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Viviane Prodocimo
- Department of Physiology, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - João Luiz Coelho Ribas
- Department of Pharmacology, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | | |
Collapse
|
23
|
Abujaber F, Zougagh M, Jodeh S, Ríos Á, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC. Magnetic cellulose nanoparticles coated with ionic liquid as a new material for the simple and fast monitoring of emerging pollutants in waters by magnetic solid phase extraction. Microchem J 2018. [DOI: 10.1016/j.microc.2017.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Cortes-Diaz MJA, Rodríguez-Flores J, Castañeda-Peñalvo G, Galar-Martínez M, Islas-Flores H, Dublán-García O, Gómez-Oliván LM. Sublethal effects induced by captopril on Cyprinus carpio as determined by oxidative stress biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:811-823. [PMID: 28683425 DOI: 10.1016/j.scitotenv.2017.06.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
To our knowledge, this is the first study to evaluate captopril-induced oxidative stress in fish, and specifically in the common carp Cyprinus carpio. At present, very few studies in the international literature evaluate the sublethal effects of captopril on aquatic organisms such as fish, and available ones focus on determination of median lethal concentration in crustaceans and algae. Also, studies evaluating these effects do not make reference to the mechanism of action of this pharmaceutical or its toxicokinetics. This limits our knowledge of the characterization of the sublethal effects of this medication and of its potential ecological impact. The present study aimed to evaluate the sublethal effects induced by three different concentrations of captopril, on C. carpio), by determination of activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as indicators of cellular oxidation: hydroperoxide content (HPC), lipid peroxidation (LPX) and protein carbonyl content (PCC). Specimens were exposed for 12, 24, 48, 72 and 96h to three different captopril concentrations: 1μgL-1, 1mgL-1 and 100mgL-1 (the first one has been detected environmentally, the other two have been associated with diverse toxic effects in aquatic species), and brain, gill, liver, kidney and blood samples were evaluated. Significant increases in HPC and LPX were observed mainly in kidney and gill, while PCC also increased in brain. Modifications were found in the activity of SOD (mostly in kidney, brain and blood), CAT (all organs) and GPx (kidney and gill). In conclusion, captopril induces oxidative stress in C. carpio.
Collapse
Affiliation(s)
- María Julieta Azalea Cortes-Diaz
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Juana Rodríguez-Flores
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072 Ciudad Real, España
| | - Gregorio Castañeda-Peñalvo
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072 Ciudad Real, España
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México, DF C.P.07738, México
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México.
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México.
| |
Collapse
|
25
|
Pérez-Coyotl I, Martínez-Vieyra C, Galar-Martínez M, Gómez-Oliván LM, García-Medina S, Islas-Flores H, Pérez-Pasten Borja R, Gasca-Pérez E, Novoa-Luna KA, Dublán-García O. DNA damage and cytotoxicity induced on common carp by pollutants in water from an urban reservoir. Madín reservoir, a case study. CHEMOSPHERE 2017; 185:789-797. [PMID: 28734215 DOI: 10.1016/j.chemosphere.2017.07.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Madín Reservoir provides a substantial amount of drinking water to two municipalities close to Mexico City metropolitan area. However, it receives untreated wastewater discharges from domestic sources in the towns of Nuevo Madín and others, as well as diverse pollutants which are hauled by the Río Tlalnepantla from its upper reaches, so that the xenobiotics in the reservoir are highly diverse in terms of type and quantity. Previous studies showed that MR is contaminated with xenobiotics such as Al, Hg and Fe, as well as NSAIDs, at concentrations exceeding the limits established for aquatic life protection. These pollutants have been shown to induce oxidative stress on Cyprinus carpio and may therefore also damage the genetic material of exposed organisms, eliciting cytotoxicity as well. The present study aimed to determine the genotoxicity and cytotoxicity induced on blood, liver and gill of C. carpio by the pollutants present in MR water. Specimens were exposed to water from five sampling sites and the following biomarkers were evaluated: DNA damage by comet assay, frequency of micronuclei, apoptosis by TUNEL assay and caspase-3 activity. Significant increases relative to the control group (P < 0.05) were found with all biomarkers in all tissues evaluated, with the level of damage differing between sampling sites. In conclusion, pollutants present in MR water are genotoxic and cytotoxic to C. carpio, and this sentinel species, coupled with the biomarkers evaluated herein, is a reliable tool for assessing the health risk to wildlife posed by exposure to pollutants in freshwater bodies.
Collapse
Affiliation(s)
- I Pérez-Coyotl
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - C Martínez-Vieyra
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - M Galar-Martínez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico.
| | - L M Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - S García-Medina
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - H Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - R Pérez-Pasten Borja
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - E Gasca-Pérez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - K A Novoa-Luna
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - O Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
26
|
Islas-Flores H, Manuel Gómez-Oliván L, Galar-Martínez M, Michelle Sánchez-Ocampo E, SanJuan-Reyes N, Ortíz-Reynoso M, Dublán-García O. Cyto-genotoxicity and oxidative stress in common carp (Cyprinus carpio) exposed to a mixture of ibuprofen and diclofenac. ENVIRONMENTAL TOXICOLOGY 2017; 32:1637-1650. [PMID: 28101901 DOI: 10.1002/tox.22392] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/14/2023]
Abstract
Thirty million people worldwide consume each day nonsteroidal anti-inflammatory drugs (NSAIDs), a heterogeneous group of pharmaceuticals used for its analgesic, antipyretic, and anti-inflammatory properties. Recent studies report high NSAID concentrations in wastewater treatment plant effluents, in surface, ground, and drinking water, and in sediments. NSAIDs are also known to induce toxicity on aquatic organisms. However, toxicity in natural ecosystems is not usually the result of exposure to a single substance but to a mixture of toxic agents, yet only a few studies have evaluated the toxicity of mixtures. The aim of this study was to evaluate the toxicity induced by diclofenac (DCF), ibuprofen (IBP), and their mixture on a species of commercial interest, the common carp Cyprinus carpio. The median lethal concentration of IBP and DCF was determined, and oxidative stress was evaluated using the following biomarkers: lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. Cyto-genotoxicity was evaluated by micronucleus test, comet assay, and the specific activity of caspase-3. Results show that DCF, IBP, and a mixture of these pharmaceuticals induced free radical production, oxidative stress and cyto-genotoxicity in tissues of C. carpio. However, a greater effect was elicited by the mixture than by either pharmaceutical alone in some biomarkers evaluated, particularly in gill. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1637-1650, 2017.
Collapse
Affiliation(s)
- Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, México, D.F, 11340, México
| | - Esmeralda Michelle Sánchez-Ocampo
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Mariana Ortíz-Reynoso
- Laboratorio de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| |
Collapse
|
27
|
Elizalde-Velázquez A, Martínez-Rodríguez H, Galar-Martínez M, Dublán-García O, Islas-Flores H, Rodríguez-Flores J, Castañeda-Peñalvo G, Lizcano-Sanz I, Gómez-Oliván LM. Effect of amoxicillin exposure on brain, gill, liver, and kidney of common carp (Cyprinus carpio): The role of amoxicilloic acid. ENVIRONMENTAL TOXICOLOGY 2017; 32:1102-1120. [PMID: 27403921 DOI: 10.1002/tox.22307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/05/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world due to its broad-spectrum activity against different bacterial strains as well as its use as a growth promoter in animal husbandry. Although residues of this antibacterial agent have been found in water bodies in diverse countries, there is not enough information on its potential toxicity to aquatic organisms such as the common carp Cyprinus carpio. This study aimed to evaluate AMX-induced oxidative stress in brain, gill, liver and kidney of C. carpio. Carp were exposed to three different concentrations of AMX (10 ng/L, 10 μg/L, 10 mg/L) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX), hydroperoxide content (HPC), protein carbonyl content (PCC) and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Amoxicillin and its main degradation product amoxicilloic acid (AMA) were determined by high performance liquid chromatography coupled with electrochemical detection and UV detection (HPLC-EC-UV). Significant increases in LPX, HPC, and PCC (P < 0.05) were found in all study organs, particularly kidney, as well as significant changes in antioxidant enzymes activity. Amoxicilloic acid in water is concluded to induce oxidative stress in C. carpio, this damage being highest in kidney. The biomarkers used are effective for the assessment of the environmental impact of this agent on aquatic species. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1102-1120, 2017.
Collapse
Affiliation(s)
- Armando Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Héctor Martínez-Rodríguez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero. México, DF, México. C.P., 07738
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Juana Rodríguez-Flores
- Departamento de Química Analítica y Tecnología de Los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072, Ciudad Real, Spain
| | - Gregorio Castañeda-Peñalvo
- Departamento de Química Analítica y Tecnología de Los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072, Ciudad Real, Spain
| | - Isabel Lizcano-Sanz
- Departamento de Química Analítica y Tecnología de Los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072, Ciudad Real, Spain
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| |
Collapse
|
28
|
Marsik P, Sisa M, Lacina O, Motkova K, Langhansova L, Rezek J, Vanek T. Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:383-392. [PMID: 27720542 DOI: 10.1016/j.envpol.2016.09.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/10/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
The uptake and metabolism of ibuprofen (IBU) by plants at the cellular level was investigated using a suspension culture of A. thaliana. Almost all IBU added to the medium (200 μM) was metabolized or bound to insoluble structures in 5 days. More than 300 metabolites were determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis, and most of these are first reported for plants here. Although hydroxylated derivatives formed by oxidation on the isobutyl side chain were the main first-step products of IBU degradation, conjugates of these products with sugar, methyl and amino acid groups were the dominant metabolites in the culture. The main portion of total added IBU (81%) was accumulated in the extractable intracellular pool, whereas the cultivation medium fraction contained only 19%. The amount of the insoluble cell-wall-bound IBU was negligible (0.005% of total IBU).
Collapse
Affiliation(s)
- P Marsik
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague, Czech Republic
| | - M Sisa
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague, Czech Republic
| | - O Lacina
- HPST, s.r.o., Písnická 372/20, 142 00 Prague, Czech Republic
| | - K Motkova
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague, Czech Republic
| | - L Langhansova
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague, Czech Republic
| | - J Rezek
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague, Czech Republic
| | - T Vanek
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague, Czech Republic.
| |
Collapse
|
29
|
Saucedo-Vence K, Elizalde-Velázquez A, Dublán-García O, Galar-Martínez M, Islas-Flores H, SanJuan-Reyes N, García-Medina S, Hernández-Navarro MD, Gómez-Oliván LM. Toxicological hazard induced by sucralose to environmentally relevant concentrations in common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:347-357. [PMID: 27744200 DOI: 10.1016/j.scitotenv.2016.09.230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Sucralose (SUC) is an artificial sweetener that is now widely used in North American and Europe; it has been detected in a wide variety of aquatic environments. It is considered safe for human consumption but its effects in the ecosystem have not yet been studied in depth, since limited ecotoxicological data are available in the peer-reviewed literature. This study aimed to evaluate potential SUC-induced toxicological hazard in the blood, brain, gill, liver and muscle of Cyprinus carpio using oxidative stress biomarkers. Carps were exposed to two different environmentally relevant concentrations (0.05 and 155μgL-1) for different exposure times (12, 24, 48, 72 and 96h). The following biomarkers were evaluated: lipid peroxidation (LPX), hydroperoxide content (HPC) and protein carbonyl content (PCC), as well as the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). SUC was determined by high pressure liquid chromatography tandem mass spectrometry techniques (HPLC)-MS/MS. Results show a statically significant increase in LPX, HPC, PCC (P<0.05) especially in gill, brain and muscle, as well as significant changes in the activity of antioxidant enzymes in gill and muscle. Furthermore, the biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.
Collapse
Affiliation(s)
- Karinne Saucedo-Vence
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Armando Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México, DF CP 07738, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México, DF CP 07738, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
30
|
Novoa-Luna KA, Mendoza-Zepeda A, Natividad R, Romero R, Galar-Martínez M, Gómez-Oliván LM. Biological hazard evaluation of a pharmaceutical effluent before and after a photo-Fenton treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:830-840. [PMID: 27392336 DOI: 10.1016/j.scitotenv.2016.06.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to evaluate the biological hazard of a pharmaceutical effluent before and after treatment. For the former, the determined 96h-LC50 value was 1.2%. The photo-Fenton treatment catalyzed with an iron-pillared clay reduced this parameter by 341.7%. Statistically significant increases with respect to the control group (P<0.05) were observed at 12, 24, 48 and 72h in HPC (50.2, 30.4, 66.9 and 43.3%), LPX (22, 83.2, 62.7 and 59.5%) and PCC (14.6, 23.6, 24.4 and 25.6%) and antioxidant enzymes SOD (29.4, 38.5, 32.7 and 49.5%) and CAT (48.4, 50.3, 38.8 and 46.1%) in Hyalella azteca before treatment. Also increases in damage index were observed before treatment of 53.1, 59.9, 66.6 and 72.1% at 12, 24, 48 and 72h, respectively. After treatment the same biomarkers of oxidative stress decreased with respect to before treatment being to HPC (29.3, 22.5, 41.6 and 31.7%); LPX (14.2, 43.1, 30.7 and 35.5%); PCC (12.6, 21.3, 24.2 and 23.9%); SOD (39.2, 33.9, 49.5 and 37.9%) and CAT (28.6, 35.8, 33.7 and 31.7) at 12, 24, 48 and 72h, respectively (P<0.05). The damage index were decreased at 12, 24, 48 and 72h in 48.9, 57.8, 67.3 and 72.1%, respectively. In conclusion, the obtained results demonstrate the need of performing bioassays in order to characterize an effluent before discharge and not base such a decision only upon current normativity. In addition, it was also concluded that the heterogeneous photo-Fenton process decreases the presence of PCT, oxidative stress, genotoxic damage and LC50 in Hyalella azteca.
Collapse
Affiliation(s)
- Karen Adriana Novoa-Luna
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Arisbeht Mendoza-Zepeda
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200, Mexico
| | - Reyna Natividad
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200, Mexico
| | - Rubi Romero
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700 México, D.F., Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
31
|
Galar-Martínez M, García-Medina S, Gómez-Olivan LM, Pérez-Coyotl I, Mendoza-Monroy DJ, Arrazola-Morgain RE. Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio. ENVIRONMENTAL TOXICOLOGY 2016; 31:1035-1043. [PMID: 25899151 DOI: 10.1002/tox.22113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The nonsteroidal anti-inflammatory drug ketorolac is extensively used in the treatment of acute postoperative pain. This pharmaceutical has been found at concentrations of 0.2-60 µg/L in diverse water bodies around the world; however, its effects on aquatic organisms remain unknown. The present study, evaluated the oxidative stress and genotoxicity induced by sublethal concentrations of ketorolac (1 and 60 µg/L) on liver, brain, and blood of the common carp Cyprinus carpio. This toxicant induced oxidative damage (increased lipid peroxidation, hydroperoxide content, and protein carbonyl content) as well as changes in antioxidant status (superoxide dismutase, catalase, and glutathione peroxidase activity) in liver and brain of carp. In blood, ketorolac increased the frequency of micronuclei and is therefore genotoxic for the test species. The effects observed were time and concentration dependent. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1035-1043, 2016.
Collapse
Affiliation(s)
- M Galar-Martínez
- Departamento de Farmacia, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - S García-Medina
- Unidad Analítica de la Unidad de Farmacología Clínica, Facultad de Medicina - UNAM, Nezahualcóyotl, Edo de México
| | - L M Gómez-Olivan
- Departamento de Farmacia, Facultad de Química, Laboratorio de Toxicología Ambiental, Universidad Autónoma del Estado de México, Toluca, México
| | - I Pérez-Coyotl
- Departamento de Farmacia, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - D J Mendoza-Monroy
- Departamento de Farmacia, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - R E Arrazola-Morgain
- Departamento de Farmacia, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
32
|
Jeffries KM, Brander SM, Britton MT, Fangue NA, Connon RE. Chronic exposures to low and high concentrations of ibuprofen elicit different gene response patterns in a euryhaline fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17397-413. [PMID: 25731088 DOI: 10.1007/s11356-015-4227-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/11/2015] [Indexed: 05/16/2023]
Abstract
Ibuprofen is one of the most commonly detected pharmaceuticals in wastewater effluent; however, the effects of ibuprofen on aquatic organisms are poorly understood. This study presents the transcriptome-wide response of the inland silverside, Menidia beryllina, to chronic exposure to ibuprofen. At the lowest exposure concentration (0.0115 mg/L), we detected a downregulation of many genes involved in skeletal development, aerobic respiration, and immune function. At the highest exposure concentration (1.15 mg/L), we detected increased expression of regulatory genes in the arachidonic acid metabolism pathway and several immune genes involved in an inflammatory response. Additionally, there was differential expression of genes involved in oxidative stress responses and a downregulation of genes involved in osmoregulation. This study provides useful information for monitoring the effects of this common wastewater effluent contaminant in the environment and for the generation of biomarkers of exposure to ibuprofen that may be transferable to other fish species.
Collapse
Affiliation(s)
- Ken M Jeffries
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Wildlife, Fish and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Susanne M Brander
- Biology and Marine Biology, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC, 28403, USA
| | - Monica T Britton
- Bioinformatics Core Facility, Genome Center, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nann A Fangue
- Wildlife, Fish and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
33
|
SanJuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Islas-Flores H, González-González ED, Cardoso-Vera JD, Jiménez-Vargas JM. NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:1-10. [PMID: 26026403 DOI: 10.1016/j.scitotenv.2015.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
The pharmaceutical industry generates wastewater discharges of varying characteristics and contaminant concentrations depending on the nature of the production process. The main chemicals present in these effluents are solvents, detergents, disinfectants - such as sodium hypochlorite (NaClO) - and pharmaceutical products, all of which are potentially ecotoxic. Therefore, this study aimed to evaluate the geno- and cytotoxicity induced in the common carp Cyprinus carpio by the effluent emanating from a nonsteroidal anti-inflammatory drug (NSAID)-manufacturing plant. Carp were exposed to the lowest observed adverse effect level (LOAEL, 0.1173%) for 12, 24, 48, 72 and 96 h, and biomarkers of genotoxicity (comet assay and micronucleus test) and cytotoxicity (caspase-3 activity and TUNEL assay) were evaluated. A significant increase with respect to the control group (p<0.05) occurred with all biomarkers from 24h on. Significant positive correlations were found between NSAID concentrations and biomarkers of geno- and cytotoxicity, as well as among geno- and cytotoxicity biomarkers. In conclusion, exposure to this industrial effluent induces geno- and cytotoxicity in blood of C. carpio.
Collapse
Affiliation(s)
- Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Edgar David González-González
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Juan Manuel Jiménez-Vargas
- Unidad de Farmacología Clínica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Ángel de la Independencia s/n. Col. Metopolitana 2ª Sección, 57740 Nezahualcóyotl, Estado de México, Mexico
| |
Collapse
|
34
|
Morachis-Valdez G, Dublán-García O, López-Martínez LX, Galar-Martínez M, Saucedo-Vence K, Gómez-Oliván LM. Chronic exposure to pollutants in Madín Reservoir (Mexico) alters oxidative stress status and flesh quality in the common carp Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9159-9172. [PMID: 25583264 DOI: 10.1007/s11356-014-4061-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Madín Reservoir (MR) is located on the Río Tlalnepantla in Mexico. Previous studies seeking to identify pollutants at this site evidence that MR water contains a considerable metal load as well as nonsteroidal anti-inflammatory drugs (NSAIDs) at concentrations above those determined suitable for aquatic life. This study aimed to evaluate whether chronic exposure to pollutants in MR alters oxidative stress status and flesh quality in muscle of the common carp Cyprinus carpio. The following biomarkers were evaluated in muscle of carp caught in the general area of discharge from the town of Viejo Madín: hydroperoxide content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Physicochemical and textural properties of muscle were also evaluated. Results show that the metals Al and Fe were accumulated in muscle of C. carpio at levels of 21.3 and 29.6 μg L(-1), respectively, and the NSAIDs diclofenac, ibuprofen, and naproxen at levels from 0.08 to 0.21 ng L(-1). Fish exposed to discharge from the town of Viejo Madín showed significant increases in HPC (9.77 %), LPX (69.33 %), and PCC (220 %) with respect to control specimens (p < 0.05). Similarly, enzyme activity increased significantly: SOD (80.82 %), CAT (98.03 %), and GPx (49.76 %). In muscle, physicochemical properties evidenced mainly significant reductions compared to control values while textural properties showed significant increases. Thus, water in this reservoir is contaminated with xenobiotics that alter some biological functions in C. carpio, a fish species consumed by the local human population.
Collapse
Affiliation(s)
- Gabriela Morachis-Valdez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | | | | | | | | | | |
Collapse
|
35
|
Saucedo-Vence K, Dublán-García O, López-Martínez LX, Morachis-Valdes G, Galar-Martínez M, Islas-Flores H, Gómez-Oliván LM. Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:527-539. [PMID: 25512029 DOI: 10.1007/s10646-014-1401-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Diclofenac (DCF) has been detected in significant amounts in municipal treated wastewater effluent. Diverse studies report that trace concentrations of DCF may induce toxic effects on different aquatic organisms as well as developmental, reproductive and renal damage. This study aimed to determine whether short and long-term exposure to DCF alter the oxidative stress (OS) status in blood, muscle, gills, brain and liver of common carp Cyprinus carpio. The median lethal concentration of DCF at 96 h (96-h LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed (short and long-term) to the latter value for different exposure times (4 and 24 days) and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxides content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF was determined by LC-MS/MS. Significant increases in HPC, LPX and PCC were observed respect to control (P < 0.05) particularly in blood, muscle, gill, brain and liver. SOD, CAT and GPx activity also increased in these organs, with respect to controls (P < 0.05). DCF concentrations decreased and increased in water system and carp, respectively. Cyprinus carpio exposed to DCF was affected in OS status during the initial days of the study (at 4 days), exhibiting an increased response at 24 days in blood and liver. In contrast, a decrease was observed in muscle, gills and brain at 24 days with respect to 4 days. In conclusion, DCF induces OS on blood, muscle, gills, brain and liver in the carp C. carpio in short and long-term exposure. The biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.
Collapse
Affiliation(s)
- Karinne Saucedo-Vence
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | | | | | | | | | | | | |
Collapse
|
36
|
Neri-Cruz N, Gómez-Oliván LM, Galar-Martínez M, Del Socorro Romero-Figueroa M, Islas-Flores H, García-Medina S, Jiménez-Vargas JM, SanJuan-Reyes N. Oxidative stress in Cyprinus carpio induced by hospital wastewater in Mexico. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:181-193. [PMID: 25336044 DOI: 10.1007/s10646-014-1371-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
The very wide range of activities performed in hospitals (care, diagnosis, hygiene, maintenance, research) require the use of a large variety of potentially ecotoxic substances such as surfactants, metals, disinfectants and pharmaceuticals. This study aimed to determine oxidative stress in the common carp Cyprinus carpio induced by hospital wastewater (HWW) in Mexico. The median lethal concentration (LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed to the latter value (0.5 %) for 24, 48, 72 and 96 h, and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxide content (HPC), malondialdehyde (MDA) content, protein carbonyl content (PCC) and activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Significant increases in HPC, MDA content and PCC were observed in exposed specimens, particularly in gill, liver and brain. SOD and CAT activity also increased in liver and brain. In conclusion, this particular HWW induces oxidative stress on C. carpio, this damage being most evident in gill, liver and brain.
Collapse
Affiliation(s)
- Nadia Neri-Cruz
- Laboratorio de Toxicología Ambiental, Departamento de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Veldhoen N, Skirrow RC, Brown LLY, van Aggelen G, Helbing CC. Effects of acute exposure to the non-steroidal anti-inflammatory drug ibuprofen on the developing North American Bullfrog (Rana catesbeiana) tadpole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10439-10447. [PMID: 25111458 DOI: 10.1021/es502539g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A variety of pharmaceutical chemicals can represent constituents of municipal effluent outflows that are dispersed into aquatic receiving environments worldwide. Increasingly, there is concern as to the potential of such bioactive substances to interact with wildlife species at sensitive life stages and affect their biology. Using a combination of DNA microarray, quantitative real-time polymerase chain reaction, and quantitative nuclease protection assays, we assessed the ability of sub-lethal and environmentally relevant concentrations of ibuprofen (IBF), a non-steroidal anti-inflammatory agent and prevalent environmental contaminant, to function as a disruptor of endocrine-mediated post-embryonic development of the frog. While the LC50 of IBF for pre-metamorphic Rana catesbeiana tadpoles is 41.5 mg/L (95% confidence interval: 32.3-53.5 mg/L), exposure to concentrations in the ppb range elicited molecular responses both in vivo and in organ culture. A nominal concentration of 15 μg/L IBF (actual = 13.7 μg/L) altered the abundance of 26 mRNA transcripts within the liver of exposed pre-metamorphic R. catesbeiana tadpoles within 6 d. IBF-treated animals demonstrated subsequent disruption of thyroid hormone-mediated reprogramming in the liver transcriptome affecting constituents of several metabolic, developmental, and signaling pathways. Cultured tadpole tail fin treated with IBF for 48 h also demonstrated altered mRNA levels at drug concentrations as low as 1.5 μg/L. These observations raise the possibility that IBF may alter the post-embryonic development of anuran species in freshwater environs, where IBF is a persistent or seasonal pollutant.
Collapse
Affiliation(s)
- Nik Veldhoen
- Department of Biochemistry & Microbiology, University of Victoria , P.O. Box 3055 Stn CSC, Victoria, British Columbia, Canada V8W 3P6
| | | | | | | | | |
Collapse
|