1
|
Pun Á, Valimaña-Traverso J, García MÁ, Marina ML, Esteve-Núñez A, Boltes K. Enhanced removal of chiral emerging contaminants by an electroactive biofilter. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100500. [PMID: 39553850 PMCID: PMC11564004 DOI: 10.1016/j.ese.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024]
Abstract
50% of pharmaceuticals and 25% of herbicides used worldwide are chiral. Each enantiomer has a unique toxicity and biodegradation profile, affecting differently to organisms. Chirality plays a key role in the behavior of these emerging contaminants (ECs) in terms of their pharmacological or herbicidal activity, but this peculiarity is often overlooked in environmental research. The complexity of chiral ECs is underestimated, as the varying sensitivity of biological systems to enantiomers is rarely considered. Biofilters can promote the activity of specific microbial communities, facilitating the degradation of ECs, due to the greater interaction between water and microorganisms and their compact design. Here, we show that an electroactive biofilter can alter the chirality of drugs and herbicides in wastewater treatment, impacting their removal and toxicity. The electrochemical biofilter (BioeF) removed 80% of pharmaceuticals and 50-75% of herbicides, outperforming the conventional filter (ConF). BioeF also showed greater chiral alterations and lower ecotoxicity. This work provides the first evidence of a relationship between changes in contaminant chirality and detoxification capacity, enhanced by electroactive systems. The increased microbial activity observed in the BioeF suggests that bioelectrochemical systems offer a valuable advance for ECs removal and ecotoxicity reduction, addressing the environmental challenge posed by ECs.
Collapse
Affiliation(s)
- Álvaro Pun
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - Jesús Valimaña-Traverso
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Abraham Esteve-Núñez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- METfilter. Avenida Punto Com, nº 2 - Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
- IMDEA Water Institute, Parque Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain
| | - Karina Boltes
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33,600, Alcalá de Henares, 28871, Madrid, Spain
- IMDEA Water Institute, Parque Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
2
|
Zhang Y, Rao F, Zhang X, Zhang H, Chang F, Abdukayum A, Jin Z, Hu G. Ultrasmall nitrogen-doped Cu 0·92Co 2·08O 4 nanocrystal-decorated cerium dioxide nanoparticles for fast and complete degradation of ranitidine via permonosulfate activation. CHEMOSPHERE 2023; 327:138527. [PMID: 37003436 DOI: 10.1016/j.chemosphere.2023.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
A simple and efficient coagulation method was used for the rapid preparation of nitrogen-doped copper-cobalt oxide (N-Cu0.92Co2·08O4) supported on cerium dioxide (CeO2), that is, N-Cu0.92Co2·08O4@CeO2. A low concentration of N-Cu0.92Co2·08O4@CeO2 (0.15 g L-1) was shown to rapidly activate permonosulfate (PMS) (0.15 g L-1) to achieve 100% degradation of ranitidine within 10 min. A 100% degradation of ranitidine enabled by the catalyst was achieved over a wide range of pH (5.5-9.0), which could be completed within 8 min in the presence of anionic H2PO4-. Moreover, the N-Cu0.92Co2·08O4@CeO2 catalyst enabled more than 90% degradation of various typical antibiotics within 30 min, including tetracycline, sulfaixoxazole, and chloramphenicol, with degradation rates of 100%, 93.51%, and 90.01%, respectively. Even after four catalytic cycles, N-Cu0.92Co2·08O4@CeO2 could be regenerated to achieve 100% degradation of ranitidine. Electrochemical analysis demonstrated that the combination of N-Cu0.92Co2·08O4@CeO2 and PMS immediately produced a strong current density, thereby rapidly producing reactive oxygen species (ROS) with high performance for the degradation of the target pollutant. Combined ion quenching and electron paramagnetic resonance analyses indicated that the main ROS was the non-free radical 1O2. Finally, a plausible ranitidine degradation pathway was deduced based on liquid chromatography-mass spectrometry (LC-MS) analysis, wherein the toxic substance N-nitrosodimethylamine was not produced during the degradation process. In short, this study provides a new perspective for preparing ternary metal catalysts for advanced oxidation processes with practical application significance.
Collapse
Affiliation(s)
- Yunqiu Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengling Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Xianxi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| | - Abdukader Abdukayum
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar, 844007, China
| | - Zhong Jin
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar, 844007, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
3
|
Lin X, Xu Y, Han R, Luo W, Zheng L. Migration of antibiotic resistance genes and evolution of flora structure in the Xenopus tropicalis intestinal tract with combined exposure to roxithromycin and oxytetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153176. [PMID: 35063519 DOI: 10.1016/j.scitotenv.2022.153176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The intestinal flora is one of the most important environments for antibiotic resistance development, owing to its diverse mix of bacteria. An excellent medicine model organism, Xenopus tropicalis, was selected to investigate the spread of antibiotic resistance genes (ARGs) in the intestinal bacterial community with single or combined exposure to roxithromycin (ROX) and oxytetracycline (OTC). Seventeen resistance genes (tetA, tetB, tetE, tetM, tetO, tetS, tetX, ermF, msrA, mefA, ereA, ereB, mphA, mphB, intI1, intI2, intI3) were detected in the intestines of Xenopus tropicalis living in three testing tanks (ROX tanks, OTC tanks, ROX + OTC tanks) and a blank tank for 20 days. The results showed that the relative abundance of total ARGs increased obviously in the tank with single stress but decreased in the tank with combined stress, and the genes encoding the macrolide antibiotic efflux pump (msrA), phosphatase (mphB) and integron (intI2, intI3) were the most sensitive. With the aid of AFM scanning, DNA was found to be scattered short chain in the blank, became extended or curled and then compacted with the stress from a single antibiotic, and was compacted and then fragmented with combined stress, which might be the reason for the variation of the abundance of ARGs with stress. The ratio of Firmicutes/Bacteroides related to diseases was increased by ROX and OTC. The very significant correlation between intI2 and intI3 with tetS (p ≤ 0.001) hinted at a high risk of ARG transmission in the intestines. Collectively, our results suggested that the relative abundance of intestinal ARGs could be changed depending on the intestinal microbiome and DNA structures upon exposure to antibiotics at environmental concentrations.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wenshi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
4
|
Zhou H, Cui J, Li X, Wangjin Y, Pang L, Li M, Chen X. Antibiotic fate in an artificial-constructed urban river planted with the algae Microcystis aeruginosa and emergent hydrophyte. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1670. [PMID: 34859536 DOI: 10.1002/wer.1670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The behavior and removal of six antibiotics, that is, azithromycin, clarithromycin, sulfathiazole, sulfamethoxazole, ciprofloxacin, and tetracycline, in an artificial-controllable urban river (ACUR) were investigated. The ACUR was constructed to form five artificial eco-systems by planting three emergent hydrophytes and Microcystis aeruginosa: (1) Control; (2) MA: M. aeruginosa only; (3) MA-J-C: M. aeruginosa combined with Juncus effusus and Cyperus alternifolius; (4) MA-C-A: M. aeruginosa combined with C. alternifolius and Acorus calamus L.; (5) MA-A-J: M. aeruginosa combined with A. calamus L. and J. effusus. The MA-C-A system achieved the best removal of azithromycin and clarithromycin after 15-day test with the final concentrations 0.92 and 0.83 μg/L. The contents of ciprofloxacin and tetracycline in sediment were highest, up to 1453 and 1745 ng/g. The antibiotic plant bioaccumulation was higher in roots rather than the shoots (stem and leaves). No target antibiotics were detected in algae cells. The combination of hybrid hydrophytes had a certain effect on the removal of antibiotics, and thus selecting appropriate hydrophytes in urban rivers could greatly improve water quality. The overall removal of six antibiotics was greatly improved by the ACUR containing the hybrid hydrophytes and the algae, indicating a synergistic effect on antibiotic removal. PRACTITIONER POINTS: Controllable-mobile artificial eco-systems were developed with emergent hydrophytes and M. aeruginosa. The M. aeruginosa + Cyperus alternifolius + Acorus calamus L. system removed azithromycin and clarithromycin most at the end of tests. Emergent hydrophytes and M. aeruginosa have a synergistic effect on the removal of antibiotics. The combination of emergent hydrophytes did play an important role in the removal of antibiotics. The artificial eco-systems containing the hybrid hydrophytes and the algae could greatly improve the overall removal of antibiotics.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinyu Cui
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Yadan Wangjin
- School of communication and Information Engineering, Shanghai Technical Institute of Electronics Information, Shanghai, China
| | - Lidan Pang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengwei Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaomeng Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Gosset A, Wiest L, Fildier A, Libert C, Giroud B, Hammada M, Hervé M, Sibeud E, Vulliet E, Polomé P, Perrodin Y. Ecotoxicological risk assessment of contaminants of emerging concern identified by "suspect screening" from urban wastewater treatment plant effluents at a territorial scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146275. [PMID: 33714835 DOI: 10.1016/j.scitotenv.2021.146275] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France; Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France; Ecole Urbaine de Lyon, Institut Convergences, Commissariat général aux investissements d'avenir, Bât. Atrium, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christine Libert
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Myriam Hammada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Matthieu Hervé
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Elisabeth Sibeud
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France
| | - Yves Perrodin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
6
|
Bu Q, Cao H, Li Q, Zhang H, Jiang W, Yu G. Identifying unknown antibiotics with persistent and bioaccumulative properties and ecological risk in river water in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13515-13523. [PMID: 33188518 DOI: 10.1007/s11356-020-11611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The goal of this study was to identify antibiotics with potential risk in river water of the megacity Beijing, China. This was accomplished by using a tiered approach that combined hazard (phase I) and monitoring-based risk (phase II) assessment. Ninety-five candidate antibiotics were screened and 31 was identified as hazardous during phase I assessment. Of these hazardous antibiotics, 29 were identified as persistent and 7 were identified as bioaccumulative antibiotics. Fluoroquinolones, macrolides, sulfonamides, and aminoglycosides account for over 80% of these hazardous antibiotics. During phase II, four antibiotics (erythromycylamine, cefotaxime, ampicillin, and fusidic acid) that were not previously reported were detected in the surface water sampled from four major rivers in Beijing, with concentrations ranging from not detected to approximately 300 ng/L. The ecological risk assessment showed that erythromycylamine, cefotaxime, and ampicillin posed low to high levels of risk to the aquatic organisms. To summarize, erythromycylamine, cefotaxime, and ampicillin were identified as priority antibiotics in rivers in Beijing, China. Our results demonstrated the necessity of conducting monitoring-based verification process in identification of priority antibiotics in a specific region.
Collapse
Affiliation(s)
- Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, People's Republic of China.
| | - Hongmei Cao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Handan Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Weiwei Jiang
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd, Shanghai, 200082, People's Republic of China
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
7
|
Lee HJ, Kadokami K, Oh JE. Occurrences of microorganic pollutants in the Kumho River by a comprehensive target analysis using LC-Q/TOF-MS with sequential window acquisition of all theoretical fragment ion spectra (SWATH). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136508. [PMID: 32019012 DOI: 10.1016/j.scitotenv.2020.136508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, simultaneous identification and semi-quantification of hundreds of micropollutant compounds, including pharmaceutical and personal care products (PPCPs) and pesticides were performed in river and effluent samples from the Kumho River Basin using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) with sequential window acquisition of all theoretical fragment ion spectra (SWATH). In total, 85 compounds (29 pesticides and 56 PPCPs) were identified. The highest proportions of PPCP residues were detected in the downstream area of the Kumho River, close to the central city. On the other hand, the highest proportions of pesticide residues were observed upstream, near agricultural land and golf courses. Additionally, the highly exposable chemicals were prioritized using a scoring and ranking system based on their concentration and detection frequency. Thus, 20 compounds (7 pesticides and 13 PPCPs) with scores of 200 or higher were defined as highly exposable compounds in Kumho River basin.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Kiwao Kadokami
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
8
|
Li Y, Ding J, Zhang L, Liu X, Wang G. Occurrence and ranking of pharmaceuticals in the major rivers of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133991. [PMID: 31465916 DOI: 10.1016/j.scitotenv.2019.133991] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Residual pharmaceuticals have received widespread attention worldwide due to their continuous release and potential hazard to the environment. As a result of rapid development and a large population, China has become a country with high production and consumption of pharmaceuticals. This may be the main reason for the high detection frequencies and concentrations of pharmaceuticals in the aquatic environment in China. Rivers represent an important water resource and play an important role in the sustainable development of the Chinese economy and society. This study summarizes the occurrence of frequently detected pharmaceuticals in major rivers. A hazard score based on the occurrence, exposure potential, and environmental effects of pharmaceuticals was calculated and a prioritization approach was used to rank 166 pharmaceuticals that were detected in the aquatic environment of major rivers in China. The priority list provides a basis for selecting candidate pharmaceuticals for future site-specific monitoring in rivers.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Li Y, Zhang L, Liu X, Ding J. Ranking and prioritizing pharmaceuticals in the aquatic environment of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:333-342. [PMID: 30579191 DOI: 10.1016/j.scitotenv.2018.12.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals have become "persistent" pollutants in the aquatic environment, due to their wide usage in daily life and their continuous release into the aquatic environment. Hence, prioritization and ranking lists are required to screen for target compounds as part of risk assessments. A ranking system based on three criteria, such as occurrence, exposure potential and ecological effects, was developed in this study for specific application to China. A total of 100 pharmaceuticals were selected as candidates based on the ranking system and available consumption data. These pharmaceuticals have been previously reported by wastewater treatment plants (WWTPs) in China. 13 pharmaceuticals were classified as priority pharmaceuticals, among which diclofenac, erythromycin, and penicillin G were highly prioritized. Due to their abuse, antibiotics contributed a majority to the priority pharmaceuticals among all therapeutic classes, indicating that antibiotics should be considered based on their behaviors in WWTPs. The pharmaceuticals ranking list achieved good applicability and will help to establish a focus for future monitoring and management of pharmaceuticals. It will also provide an important basis for both ecological risk assessment and pollution control of pharmaceuticals in the aquatic environment.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Zhang S, Ding J, Razanajatovo RM, Jiang H, Zou H, Zhu W. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1431-1439. [PMID: 30340288 DOI: 10.1016/j.scitotenv.2018.08.266] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
There are hundreds of thousands metric tons of microplastics (MPs) present in aquatic environments. The MPs coexist with other pollutants in water bodies, such as pharmaceuticals, and may carry and transfer them into aquatic organisms, consequently causing unpredictable ecological risks. The purpose of the present study was to evaluate the effect of the presence of polystyrene microplastics (PS-MPs) on the distribution and bioaccumulation of roxithromycin (ROX) in freshwater fish red tilapia (Oreochromis niloticus) as well as their interactive biochemical effects in red tilapia. PS-MPs were found to enhance the bioaccumulation of ROX in fish tissues compared to ROX-alone exposure. In the treatment of PS-MPs (100 μg L-1) combined with ROX (50 μg L-1), the highest concentrations of ROX reached 39,672.9 ± 6311.4, 1767.9 ± 277.8, 2907.5 ± 225.0, and 4307.1 ± 186.5 μg kg-1 in gut, gills, brain, and liver, respectively. Furthermore, compared to the ROX alone, the neurotoxicity caused by ROX was alleviated due to the presence of MPs after 14 d of exposure. The activities of cytochrome P450 (CYP) enzymes [7-ethoxyresorufin O-deethylase (EROD) and 7-benzyloxy-4-trifluoromethyl-coumarin O-dibenzyloxylase (BFCOD)] in fish livers exposed to all co-exposure treatments exhibited great variability compared to ROX alone after 14 d of exposure, suggesting that the presence of MPs may affect the metabolism of ROX in tilapia. Compared with ROX alone, the superoxide dismutase (SOD) activity increased significantly, and malondialdehyde (MDA) contents decreased in the co-exposure treatments, showing that oxidative damage in situations of co-exposure to MPs and ROX was mitigated in fish livers after 14 d of exposure. Collectively, the presence of MPs could affect the fate and toxicity of other organic pollutants in fish. The results emphasize the importance to study the interactions between MPs and other organic pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
| | | | - Hang Jiang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Wenbin Zhu
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Wuxi 214081, China.
| |
Collapse
|
11
|
Zhou H, Liu X, Chen X, Ying T, Ying Z. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1291-1302. [PMID: 29913591 DOI: 10.1016/j.scitotenv.2018.04.384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The investigations on their variation and distribution of 13 called waste-water marking pharmaceuticals (WWMPs) were conducted under 4 hydrophyte conditions (without plants, with submerged aquatic plant (Myriophyllum verticillatum L.), emergent aquatic plant cattail (Typha orientalis Presl) and floating aquatic plant (Lemna minor L.)) in a simulated urban river system. By the calculation of mass balance, the quantitative distribution of WWMPs in water phase, sediment and plant tissues was identified, and the overall removal efficiencies of target pharmaceuticals in the whole system could be determined. Without plants, high persistence of atenolol (ATL) (97.7%), carbamazepine (CBM) (102.8%), clofibric acid (CLF) (101.8%) and ibuprofen (IBU) (80.9%) was detected in water phase, while triclosan (TCS) (53.5%) displayed strong adsorption affinity in sediment. The removal under the planted conditions was considerably raised, compared with no plant condition for most WWMPs. However, TCS did not show obvious differences among the hydrophyte conditions due to its strong adsorption affinity and high hydrophobicity. The relatively higher removal was found for the hydrophilic (logKow<1) or moderately hydrophobic (1<logKow<3) pharmaceuticals with submerged and emergent aquatic plants. The highly hydrophobic pharmaceuticals (logKow>4.0) did not show significant differences among the whole tests in sediment. Mass balance calculation displayed the removal of CBM (5.6%-13.6%), CLF (4.0%-17.8%) and caffeine (8.4%-17.2%) through the plant uptake was relatively higher. For the rest WWMPs, only small parts (<6.0%) of the initial concentrations were found in plant tissues. The higher removal efficiencies of most WWMPs under the planted conditions indicated that aquatic plants indeed played an important role in the removal of WWMPs although the direct uptakes might not be a dominant pathway to the overall removal of WWMPs. Besides, the floating aquatic plant removed most WWMPs from the water phase efficiently. In contrast, submerged and emergent aquatic plants could effectively remove them in sediment.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaojing Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaomeng Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianqi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenxi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Periodic mesoporous organosilica materials as sorbents for solid-phase extraction of drugs prior to simultaneous enantiomeric separation by capillary electrophoresis. J Chromatogr A 2018; 1566:135-145. [PMID: 29937122 DOI: 10.1016/j.chroma.2018.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 11/22/2022]
Abstract
Two novel periodic mesoporous organosilica materials were synthesized with a neutral phenylene-bridged ligand, 1,4-bis(trimethoxysilylethyl)benzene, one of them using tetraethyl orthosilicate as additional silica source (PMO-TMSEB-1 and PMO-TMSEB-2). A third material was also synthesized with 1,4-bis(triethoxysilyl)benzene ligand (PMO-TESB-1) which use has scarcely been reported. The three materials were evaluated as solid-phase extraction (SPE) sorbents for the off-line extraction of a mixture of seven drugs of different nature (duloxetine, terbutaline, econazole, propranolol, verapamil, metoprolol, and betaxolol) from water samples. Subsequent simultaneous enantiomeric analysis by CE, using sulfated-β-cyclodextrin (2% w/v) dissolved in a 25 mM phosphate buffer (pH 3.0) and a voltage of -20 kV (negative polarity) was carried out. Enantiomeric resolutions ranging from 2.4 to 8.5 were obtained in an analysis time of 16 min. After optimization of SPE parameters, it was shown that using just 100 mg of PMO-TESB-1 as sorbent, a preconcentration factor of 400 with 200 mL solution was achieved, allowing recoveries between 80.5 and 103.1% (except for terbutaline), with good repeatability (% RSD = 2-8 %, n = 5). Analytical characteristics of the method were evaluated in terms of precision, linearity and accuracy with method quantitation limits between 5.6 and 21.9 μg/L. The developed method was applied to the analysis of spiked wastewater samples collected in different treatment plants, with recoveries between 73.9 and 102.9% except for econazole with recovery values ranging between 58.5 and 72.4%.
Collapse
|
13
|
Yan Z, Lu G, Sun H, Ma B. Influence of multi-walled carbon nanotubes on the effects of roxithromycin in crucian carp (Carassius auratus) in the presence of natural organic matter. CHEMOSPHERE 2017; 178:165-172. [PMID: 28324838 DOI: 10.1016/j.chemosphere.2017.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Carbon nanotubes are increasingly entering the aquatic environment and may interact with other co-existing contaminants, such as antibiotics. However, whether these interactions may affect their bioavailability in aquatic organisms is the subject of considerable debate. The primary objective of this study was to assess the risks arising from the coexistence of roxithromycin (ROX) and multi-walled carbon nanotubes (MWCNTs) in waters containing natural organic matter (NOM), focusing on the distribution and bioaccumulation of ROX in crucian carp (Carassius auratus), and the related biochemical status. There were no significant differences in ROX bioaccumulation in fish following exposure to ROX with and without NOM. However, the further addition of MWCNTs significantly facilitated the bioaccumulation of ROX in the liver (32-80%), gill (15-74%), intestine (51-113%), and bile (15-67%) in different exposure periods. Meanwhile, a 0.3-fold increase in the metabolic enzyme activity and oxidative stress in the liver were markedly accelerated by the co-exposed MWCNTs compared to ROX alone. The findings imply that the ROX adsorbed on MWCNTs may be a higher threat to fish than ROX alone. The high and fast release of ROX from MWCNTs in bile salts and serum albumin may contribute to the enhancement in bioaccumulation and bioactivity of ROX in fish with MWCNTs.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi 860000, China.
| | - Hongwei Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Binni Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
14
|
Zhou H, Wangjin Y, Liu J, Ying T, Xuan Y. Temporal and spatial features of selected wastewater-marking pharmaceuticals and potential mechanisms of their removal from urban rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15712-15726. [PMID: 28527142 DOI: 10.1007/s11356-017-9184-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The investigations on seasonal and spatial distribution of 12 selected wastewater-marking pharmaceuticals (WWMPs) belonging to different therapeutic classes were conducted in three major urban rivers of Yangpu District, Shanghai, East China. The potential mechanisms for the removal of WWMPs in the rivers were also experimentally investigated. The detection frequencies of most WWMPs were in the range of 56-100%, with the exception of clofibric acid, which was not detected during the storm events. The median concentrations ranged from not detected to 5821 ng/L (caffeine) and the maximum concentration was 8662 ng/L, found in caffeine. Part of WWMPs such as paracetamol and caffeine showed significant seasonal variation (P < 0.05), while most of pharmaceuticals displayed limited concentration fluctuation under different seasons for relative low levels. The spatial pattern of most WWMPs has not showed obvious difference in the three rivers (P > 0.05). WWMPs could come from different sources, such as wastewater treatment plants, hospitals, untreated domestic wastewater, or some unknown sources. Lab-scale tests showed that the biodegradation and adsorption were the main removal pathways for WWMPs with lesser contribution from photodegradation and hydrolysis.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China.
| | - Yadan Wangjin
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| | - Jianbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| | - Tianqi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| | - Yumei Xuan
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| |
Collapse
|
15
|
Stipaničev D, Dragun Z, Repec S, Rebok K, Jordanova M. Broad spectrum screening of 463 organic contaminants in rivers in Macedonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:48-59. [PMID: 27685670 DOI: 10.1016/j.ecoenv.2016.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Target screening of 463 organic contaminants in surface water using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) with direct injection was performed in spring of 2015 in northern Macedonia, at six sampling sites in four rivers belonging to Vardar basin: Kriva, Zletovska, Bregalnica and Vardar. The aim of the study was to differentiate between various types of organic contamination characteristic for different types of anthropogenic activities, such as mining, agriculture, and urbanization. Depending on the studied river, 9-16% of analyzed compounds were detected. The highest total levels of organic contaminants were recorded in agriculturally impacted Bregalnica River (1839-1962ngL-1) and Vardar River downstream from the city of Skopje (1945ngL-1), whereas the lowest level was found in the mining impacted Zletovska River (989ngL-1). The principal organic contaminants of the Bregalnica River were herbicides (45-55% of all detected compounds; 838-1094ngL-1), with the highest concentrations of bentazone (407-530ngL-1) and molinate (84-549ngL-1), common herbicides in rice cultivation. The main organic contaminants in the other rivers were drugs (70-80% of all detected compounds), with antibiotics as a predominant drug class. The highest drug concentrations were measured in the Vardar River, downstream from Skopje (1544ngL-1). Screening of surface water by UHPLC-QTOF-MS was proven as a practical tool for fast collection of comprehensive preliminary information on organic contamination of natural waters, which can present a significant contribution in the monitoring and preservation of good ecological status of freshwater ecosystems.
Collapse
Affiliation(s)
- Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia
| | - Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia
| | - Katerina Rebok
- Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, Macedonia
| | - Maja Jordanova
- Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, Macedonia
| |
Collapse
|
16
|
Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China. Sci Rep 2016; 6:34928. [PMID: 27713558 PMCID: PMC5054680 DOI: 10.1038/srep34928] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/20/2016] [Indexed: 01/20/2023] Open
Abstract
Twelve selected pharmaceuticals including antibiotics, analgesics, antiepileptics and lipid regulators were analysed and detected in water samples collected from 18 sampling sections along the three main urban rivers in Yangpu District of Shanghai, China during four sampling campaigns. Besides, algal growth inhibition test was conducted to preliminarily assess the eco-toxicology induced by the target pharmaceuticals in the rivers. Mean levels for most of target compounds were generally below 100 ng/L at sampling sections, with the exception of caffeine and paracetamol presenting considerably high concentration. The detected pharmaceuticals in the urban rivers ranged from <LOQ for propranolol to 8571 ng/L for caffeine. Qiujiang River could be regarded as the most polluted according to total detected pharmaceutical concentrations. The target pharmaceuticals varied and fluctuated irregularly from the upstreams to the downstreams of the three rivers, indicating the wastewater inputs from non-point sources and their individual different characteristics of transference and transportation. Preliminary eco-toxicological risk assessment showed that the presence of azithromycin, clarithromycin and caffeine may present an ecotoxicological risk in the urban rivers. For other tested pharmaceuticals the inhibition effects of single substances in the urban aquatic environment, based on the algae inhibition tests, were very imperceptible.
Collapse
|
17
|
Zhang M, Mao Q, Feng J, Yuan S, Wang Q, Huang D, Zhang J. Validation and application of an analytical method for the determination of selected acidic pharmaceuticals and estrogenic hormones in wastewater and sludge. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:914-920. [PMID: 27314419 DOI: 10.1080/10934529.2016.1191304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was undertaken to develop an extraction method for seven acidic pharmaceuticals and five steroidal estrogens from wastewater, treated wastewater and sludge samples. The temperature and time of sample derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide was optimized. Our results show that pretreatment combined with solid phase extraction (SPE) for wastewater samples (using an ENVI-C18 cartridge) and liquid-solid extraction combined with SPE (using an HLB cartridge) for sludge samples increased the analytical efficiency for acidic pharmaceuticals and estrogenic hormones using gas chromatography-mass spectrometry (GC-MS). The derivatization conditions were optimized at 40°C for 2 h. In addition, the derivatized samples were stable at ambient temperature. The new method was validated and applied to the analysis of real wastewater and discharged sludge samples from a local wastewater treatment plant. Except for 17α-ethinylestradiol, all acidic pharmaceuticals and estrogens were detected in the influent, effluent and discharged sludge samples. The concentrations of these compounds were particularly high in the discharged sludge samples.
Collapse
Affiliation(s)
- Mengtao Zhang
- a Department of Environmental Science and Engineering , Fudan University , Shanghai , China
| | - Qianhui Mao
- b School of Civil Engineering, Hefei University of Technology , Hefei , China
| | - Jingwei Feng
- b School of Civil Engineering, Hefei University of Technology , Hefei , China
| | - Shoujun Yuan
- b School of Civil Engineering, Hefei University of Technology , Hefei , China
| | - Qiquan Wang
- c Department of Chemistry , Delaware State University , Dover , Delaware , USA
| | - Deying Huang
- d Department of Chemistry , Fudan University , Shanghai , China
| | - Jibiao Zhang
- a Department of Environmental Science and Engineering , Fudan University , Shanghai , China
| |
Collapse
|
18
|
Mansour F, Al-Hindi M, Saad W, Salam D. Environmental risk analysis and prioritization of pharmaceuticals in a developing world context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:31-43. [PMID: 26994791 DOI: 10.1016/j.scitotenv.2016.03.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 05/13/2023]
Abstract
The impact of residual pharmaceuticals on the aquatic environment has gained widespread attention over the past years. Various studies have established the occurrence of pharmaceutical compounds in different water bodies throughout the world. In view of the absence of occurrence data in a number of developing world countries, and given the limited availability of analytical resources in these countries, it is prudent to devise methodologies to prioritize pharmaceuticals for environmental monitoring purposes that are site specific. In this work, several prioritization approaches are used to rank the 88 most commonly consumed pharmaceuticals in Lebanon. A simultaneous multi-criteria decision analysis method utilizing the exposure, persistence, bioaccumulation, and toxicity (EPBT) approach is applied to a smaller subset of the original list (69 pharmaceuticals). Several base cases are investigated and sensitivity analysis is applied to one of these base case runs. The similarities and differences in the overall ranking of individual, and classes of, pharmaceuticals for the base cases and the sensitivity runs are elucidated. An environmental risk assessment (ERA), where predicted environmental concentrations (PEC) and risk quotients (RQ) are determined at different dilution factors, is performed as an alternative method of prioritization for a total of 84 pharmaceuticals. The ERA results indicate that metformin and amoxicillin have the highest PECs while 17β-estradiol, naftidrofuryl and dimenhydrinate have the highest RQs. The two approaches, EPBT prioritization and ERA, are compared and a priority list consisting of 26 pharmaceuticals of various classes is developed. Nervous system and alimentary tract and metabolism pharmaceuticals (9/26 and 5/26 respectively) constitute more than half of the numbers on the priority list with the balance consisting of anti-infective (4/26), musculo-skeletal (3/26), genito-urinary (2/26), respiratory (2/26) and cardiovascular (1/26) pharmaceuticals. This list will serve as a basis for the selection of candidate compounds to focus on for future monitoring campaigns.
Collapse
Affiliation(s)
- Fatima Mansour
- Department of Chemical and Petroleum Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Mahmoud Al-Hindi
- Department of Chemical and Petroleum Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Walid Saad
- Department of Chemical and Petroleum Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Darine Salam
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
19
|
Florenza X, Garcia-Segura S, Centellas F, Brillas E. Comparative electrochemical degradation of salicylic and aminosalicylic acids: Influence of functional groups on decay kinetics and mineralization. CHEMOSPHERE 2016; 154:171-178. [PMID: 27045634 DOI: 10.1016/j.chemosphere.2016.03.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Solutions of 100 mL with 1.20 mM of salicylic acid (SA), 4-aminosalicylic acid (4-ASA) or 5-aminosalicylic acid (5-ASA) have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were carried out with a stirred tank reactor with a BDD anode and an air-diffusion cathode for continuous H2O2 production. A marked influence of the functional groups of the drugs was observed in their decay kinetics, increasing in the order SA < 5-ASA < 4-ASA in AO-H2O2 and 5-ASA < SA < 4-ASA in EF and PEF, due to the different attack of OH generated at the BDD surface and in the bulk from Fenton's reaction, respectively. This effect was clearly observed when varying the current density between 16.7 and 100 mA cm(-2). The relative mineralization power of the processes always followed the sequence: AO-H2O2 < EF < PEF. The three drugs underwent analogous mineralization abatement up to 88% by AO-H2O2 at 100 mA cm(-2). The mineralization rate in EF and PEF grew in the order: 4-ASA < 5-ASA < SA. The most powerful process was PEF, attaining >98% mineralization for all the drugs at 100 mA cm(-2). Oxalic and oxamic acids were detected as final short-linear aliphatic carboxylic acids by ion-exclusion HPLC, allowing the fast photolysis of their Fe(III) complexes by UVA light to justify the high power of PEF.
Collapse
Affiliation(s)
- Xavier Florenza
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Sergi Garcia-Segura
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Deyerling D, Wang J, Bi Y, Peng C, Pfister G, Henkelmann B, Schramm KW. Depth profile of persistent and emerging organic pollutants upstream of the Three Gorges Dam gathered in 2012/2013. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5782-94. [PMID: 26585456 DOI: 10.1007/s11356-015-5805-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 05/08/2023]
Abstract
Persistent and emerging organic pollutants were sampled in September 2012 and 2013 at a sampling site in front of the Three Gorges Dam near Maoping (China) in a water depth between 11 and 61 m to generate a depth profile of analytes. A novel compact water sampling system with self-packed glass cartridges was employed for the on-site enrichment of approximately 300 L of water per sample to enable the detection of low analytes levels in the picogram per liter-scale in the large water body. The overall performance of the sampling system was acceptable for the qualitative detection of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), perfluoroalkylic acids (PFAAs), pharmaceutical residues and polar pesticides. Strongly particle-associated analytes like PAHs and PCBs resided mainly in the glass wool filter of the sampling system, whereas all other compounds have mainly been enriched on the XAD-resin of the self-packed glass cartridges. The sampling results revealed qualitative information on the presence, depth distribution and origin of the investigated compounds. Although the depth profile of PAHs, PCBs, OCPs, and PFAAs appeared to be homogeneous, pharmaceuticals and polar pesticides were detected in distinct different patterns with water depth. Source analysis with diagnostic ratios for PAHs revealed their origin to be pyrogenic (burning of coal, wood and grass). In contrast, most PCBs and OCPs had to be regarded as legacy pollutants which have been released into the environment in former times and still remain present due to their persistence. The abundance of emerging organic pollutants could be confirmed, and their most abundant compounds could be identified as perfluorooctanoic acid, diclofenac and atrazine among investigated PFAAs, pharmaceuticals and polar pesticides, respectively.
Collapse
Affiliation(s)
- Dominik Deyerling
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für analytische Lebensmittelchemie, Alte Akademie 10, 85354, Freising, Germany.
- Helmholtz Zentrum München - German Research Center for Environmental Health, Molecular EXposomics, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| | - Jingxian Wang
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für analytische Lebensmittelchemie, Alte Akademie 10, 85354, Freising, Germany
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yonghong Bi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chengrong Peng
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gerd Pfister
- Helmholtz Zentrum München - German Research Center for Environmental Health, Molecular EXposomics, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Henkelmann
- Helmholtz Zentrum München - German Research Center for Environmental Health, Molecular EXposomics, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum München - German Research Center for Environmental Health, Molecular EXposomics, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
- Department für Biowissenschaften, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| |
Collapse
|
21
|
Ding J, Lu G, Liu J, Zhang Z. Evaluation of the potential for trophic transfer of roxithromycin along an experimental food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10592-600. [PMID: 25739841 DOI: 10.1007/s11356-015-4265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/20/2015] [Indexed: 04/15/2023]
Abstract
Pharmaceuticals have been recognized as a new class of environmental pollutants in recent years. But data about their potential for transfer and biomagnification in aquatic food chains are still lacking. In this study, bioaccumulation of the macrolide antibiotic roxithromycin (ROX) was determined in an experimental aquatic food chain involving the green algae Scenedesmus obliquus, the water flea Daphnia magna and the crucian carp Carassius auratus. After 48 h of exposure, S. obliquus accumulated ROX from media, with bioconcentration factors (BCFs) of 74.6, 46.3, and 24.5 l kg(-1) at nominal exposure concentrations of 4, 20, and 100 μg l(-1), respectively. After 48 h of feeding ROX-contaminated algae, D. magna was able to accumulate ROX in all three concentration treatments, but biomagnification did not occur at this trophic level, as biomagnification factors (BMFs) varied from 0.21 to 0.29 in different concentration treatments were well below one. In tissues (muscle, gill, liver, and bile) of C. auratus fed with contaminated daphnia for 8 days, no biomagnification was observed. However, this species did accumulate a certain degree of ROX through food chain transfer, and the tissue burden was greatest in the liver > muscle > gill and lowest in the bile. This work suggests that the trophic transfer should be a matter of concern for ecological risk assessments of pharmaceutical substances in aquatic food webs.
Collapse
Affiliation(s)
- Jiannan Ding
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | | | | | | |
Collapse
|
22
|
Anumol T, Snyder SA. Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Talanta 2015; 132:77-86. [DOI: 10.1016/j.talanta.2014.08.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
|