1
|
Balogh C, Faragó N, Faludi T, Kovács Z, Kobak J, Serfőző Z. Organic pollutants in a large shallow lake, and the potential of the local quagga mussel population for their removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118201. [PMID: 40249979 DOI: 10.1016/j.ecoenv.2025.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Filter feeders, like mussels, can significantly lower the concentration of harmful substances in the water body. In the present study, we examined the distribution of organic pollutants (polycyclic aromatic hydrocarbons [PAHs], non-steroidal anti-inflammatory drugs [NSAIDs]) in Lake Balaton, the largest shallow lake of Central Europe. We also investigated the sensitivity of the invasive quagga mussel to these substances and its potential to reduce their concentration in the water column. Our findings show that organic pollutant levels in Lake Balaton were generally below concentrations known to harm mussels, as indicated by the stress gene activity patterns observed along the lake's longitudinal axis. However, in the most urbanized eastern part of the lake, especially in spring, we detected signs of environmental contamination from certain pollutants (e.g. diclofenac), highlighting potential risks to local ecosystems and communities. Removal capacity of the mussels for PAHs reached the maximum after four days of exposure to 5-10 % diluted water accommodated fraction of fuel-oil fraction #4 when the mussels (20 ind. L-1) reduced the PAH level by 100-85 %. Mussels (50 ind. L-1) removed 28 % and 21 % of ibuprofen and ketoprofen, respectively, from 1 µg L-1 concentrated solutions within 24 h. Many of the stress response genes were activated in the quagga mussel after their exposure to PAHs. These results suggest a significant role of gregarious invasive bivalves in the removal of organic pollutants from lake water.
Collapse
Affiliation(s)
- Csilla Balogh
- Balaton Limnological Institute, Hungarian Research Network (HUN-REN), Klebelsberg Kuno u. 3, Tihany, Hungary
| | - Nóra Faragó
- Biological Research Center, Institute of Genetics, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Tamás Faludi
- Department of Analytical Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Kovács
- Sustainability Solutions Research Laboratory, Research Centre for Biochemical, Environmental and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary; National Laboratory for Water Science and Water Security, University of Pannonia, Veszprém 8200, Hungary
| | - Jarosław Kobak
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Toruń, Poland
| | - Zoltán Serfőző
- Balaton Limnological Institute, Hungarian Research Network (HUN-REN), Klebelsberg Kuno u. 3, Tihany, Hungary.
| |
Collapse
|
2
|
Goñi P, Benito M, LaPlante D, Fernández MT, Sánchez E, Chueca P, Miguel N, Mosteo R, Ormad MP, Rubio E. Identification of free-living amoebas and amoeba-resistant bacteria accumulated in Dreissena polymorpha. Environ Microbiol 2020; 22:3315-3324. [PMID: 32436345 DOI: 10.1111/1462-2920.15093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
Abstract
To identify the free-living amoeba (FLA) and amoeba-resistant bacteria (ARB) accumulated in zebra mussels and in the water in which they are found, mussels were collected at two locations in the Ebro river basin (North East Spain). FLAs and bacteria were isolated from mussel extracts and from natural water. PCR techniques were used to identify the FLAs and endosymbiont bacteria (Legionella, Mycobacterium, Pseudomonas and cyanobacteria), and to detect Giardia and Cryptosporidium. The most frequently found FLAs were Naegleria spp. The presence of Legionella, Mycobacterium and Pseudomonas inside the FLA was demonstrated, and in some cases both Legionella and Pseudomonas were found together. Differences between FLAs and ARB identified inside the mussels and in the water were detected. In addition, Escherichia coli, Clostridium perfringens, Salmonella spp. and Enterococcus spp. were accumulated in mussels in concentrations unconnected with those found in water. The results show the ability of the zebra mussel to act as a reservoir of potentially pathogenic FLAs, which are associated with potentially pathogenic ARB, although the lack of association between microorganisms inside the mussels and in the water suggests that they are not useful for monitoring microbiological contamination at a specific time.
Collapse
Affiliation(s)
- Pilar Goñi
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain.,Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain
| | - María Benito
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - Daniella LaPlante
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain
| | - María T Fernández
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Physiatry and Nursery, Faculty of Health Sciences University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain
| | - Elena Sánchez
- Service of Microbiology and Parasitology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, C/San Juan Bosco, 15, 50009, Spain
| | - Patricia Chueca
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain
| | - Natividad Miguel
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - Rosa Mosteo
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - María P Ormad
- Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.,Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, Zaragoza, C/María de Luna 3, 50018, Spain
| | - Encarnación Rubio
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, C/Domingo Miral s/n, 50009, Spain.,Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Evariste L, David E, Cloutier PL, Brousseau P, Auffret M, Desrosiers M, Groleau PE, Fournier M, Betoulle S. Field biomonitoring using the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis following immunotoxic reponses. Is there a need to separate the two species? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:706-716. [PMID: 29621730 DOI: 10.1016/j.envpol.2018.03.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The zebra mussel, Dreissena polymorpha constitutes an extensively used sentinel species for biomonitoring in European and North American freshwater systems. However, this invasive species is gradually replaced in freshwater ecosystem by Dreissena bugensis, a closely related dreissenid species that shares common morphological characteristics but possess some physiological differences. However, few are known about differences on more integrated physiological processes that are generally used as biomarkers in biological monitoring studies. Declining of zebra mussel populations raises the question of the sustainability of using one or both species indifferently to maintain the quality of environmental pollution monitoring data. In our study, we performed a field comparative study measuring immune-related markers and bioaccumulation of PCBs, PAHs and PBDEs in sympatrically occurring mussel populations from three sites of the St. Lawrence River. For tested organisms, species were identified using RFLP analysis. Measurement of bioaccumulated organic compounds indicated a higher accumulation of PCBs and PBDEs in D. bugensis soft tissues compared to D. polymorpha while no differences were noticed for PAHs. Results of hemocytic parameters highlighted that differences of hemocyte distributions were associated to modulations of phagocytic activities. Moreover, marked differences occurred in measurement of hemocytic oxidative activity, indicating divergences between the two species for ROS regulation strategies. This physiological characteristic may deeply influence species responses facing environmental or pollution related stress and induce bias if the two species are not differentiated in further biomarker or bioaccumulation measurement-based studies.
Collapse
Affiliation(s)
- Lauris Evariste
- Université de Reims Champagne-Ardenne, UMR-INERIS 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Reims, France; INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Elise David
- Université de Reims Champagne-Ardenne, UMR-INERIS 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Reims, France
| | - Pierre-Luc Cloutier
- INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; Centre d'expertise en Analyse Environnementale du Québec, Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, 2700, Rue Einstein, Québec City, Québec, G1P 3W8, Canada
| | - Pauline Brousseau
- INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Michel Auffret
- Institut Universitaire Européen de la Mer, Laboratoire LEMAR, Plouzané, France
| | - Mélanie Desrosiers
- Centre d'expertise en Analyse Environnementale du Québec, Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, 2700, Rue Einstein, Québec City, Québec, G1P 3W8, Canada
| | - Paule Emilie Groleau
- Centre d'expertise en Analyse Environnementale du Québec, Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, 850, Boulevard Vanier, Laval, QC, H7C 2M7, Canada
| | - Michel Fournier
- INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, UMR-INERIS 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Reims, France
| |
Collapse
|
4
|
Bartrons M, Catalan J, Penuelas J. Spatial And Temporal Trends Of Organic Pollutants In Vegetation From Remote And Rural Areas. Sci Rep 2016; 6:25446. [PMID: 27146722 PMCID: PMC4857197 DOI: 10.1038/srep25446] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/15/2016] [Indexed: 11/20/2022] Open
Abstract
Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) used in agricultural, industrial, and domestic applications are widely distributed and bioaccumulate in food webs, causing adverse effects to the biosphere. A review of published data for 1977-2015 for a wide range of vegetation around the globe indicates an extensive load of pollutants in vegetation. On a global perspective, the accumulation of POPs and PAHs in vegetation depends on the industrialization history across continents and distance to emission sources, beyond organism type and climatic variables. International regulations initially reduced the concentrations of POPs in vegetation in rural areas, but concentrations of HCB, HCHs, and DDTs at remote sites did not decrease or even increased over time, pointing to a remobilization of POPs from source areas to remote sites. The concentrations of compounds currently in use, PBDEs and PAHs, are still increasing in vegetation. Differential congener specific accumulation is mostly determined by continent-in accordance to the different regulations of HCHs, PCBs and PBDEs in different countries-and by plant type (PAHs). These results support a concerning general accumulation of toxic pollutants in most ecosystems of the globe that for some compounds is still far from being mitigated in the near future.
Collapse
Affiliation(s)
- Mireia Bartrons
- CSIC, Global Ecology Unit CREAF-CSIC-UAB. Cerdanyola del Vallès 08193, Barcelona, Catalonia, Spain
- BETA Technological Centre (Tecnio), Aquatic Ecology Group, University of Vic–Central University of Catalonia. Vic 08500, Barcelona, Catalonia, Spain
| | - Jordi Catalan
- CREAF. Cerdanyola del Vallès 08193, Barcelona, Catalonia, Spain
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB. Cerdanyola del Vallès 08193, Barcelona, Catalonia, Spain
- CREAF. Cerdanyola del Vallès 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Mosteo R, Goñi P, Miguel N, Abadías J, Valero P, Ormad MP. Bioaccumulation of pathogenic bacteria and amoeba by zebra mussels and their presence in watercourses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1833-1840. [PMID: 26400243 DOI: 10.1007/s11356-015-5418-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Dreissena polymorpha (the zebra mussel) has been invading freshwater bodies in Europe since the beginning of the nineteenth century. Filter-feeding organisms can accumulate and concentrate both chemical and biological contaminants in their tissues. Therefore, zebra mussels are recognized as indicators of freshwater quality. In this work, the capacity of the zebra mussel to accumulate human pathogenic bacteria and protozoa has been evaluated and the sanitary risk associated with their presence in surface water has also been assessed. The results show a good correlation between the pathogenic bacteria concentration in zebra mussels and in watercourses. Zebra mussels could therefore be used as an indicator of biological contamination. The bacteria (Escherichia coli, Enterococcus spp., Pseudomonas spp., and Salmonella spp.) and parasites (Cryptosporidium oocysts and free-living amoebae) detected in these mussels reflect a potential sanitary risk in water.
Collapse
Affiliation(s)
- R Mosteo
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María Luna, 3, 50018, Zaragoza, Spain.
| | - P Goñi
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain
| | - N Miguel
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María Luna, 3, 50018, Zaragoza, Spain
| | - J Abadías
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María Luna, 3, 50018, Zaragoza, Spain
| | - P Valero
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María Luna, 3, 50018, Zaragoza, Spain
| | - M P Ormad
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María Luna, 3, 50018, Zaragoza, Spain
| |
Collapse
|