1
|
Marumure J, Gwenzi W, Makuvara Z, Simbanegavi TT, Alufasi R, Goredema M, Gufe C, Karidzagundi R, Rzymski P, Halabowski D. Global Occurrence of Cyanotoxins in Drinking Water Systems: Recent Advances, Human Health Risks, Mitigation, and Future Directions. Life (Basel) 2025; 15:825. [PMID: 40430251 PMCID: PMC12112831 DOI: 10.3390/life15050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
This paper applies a semi-quantitative approach to review the diversity, environmental controls, detection methods, human health risks, and mitigation of cyanotoxins in drinking water systems (DWSs). It discusses the environmental factors controlling the occurrence of cyanotoxins, presents the merits and limitations of emerging methods of their detection (qPCR, liquid chromatography-mass spectrometry, and electrochemical biosensors), and outlines the human exposure pathways and health outcomes with identification of high-risk groups and settings. High-risk groups include (1) communities relying on untreated drinking water from unsafe, polluted water sources and (2) low-income countries where cyanotoxins are not routinely monitored in DWSs. The fate and behavior processes are discussed, including removing cyanotoxins in DWSs based on conventional and advanced treatment processes. The available methods for cyanotoxin removal presented in this paper include (1) polymer-based adsorbents, (2) coagulation/flocculation, (3) advanced oxidation processes, (4) ultra- and nanofiltration, and (5) multi-soil layer systems. Future research should address (1) detection and fate in storage and conveyance facilities and at the point of consumption, (2) degradation pathways and toxicity of by-products or metabolites, (3) interactive health effects of cyanotoxins with legacy and emerging contaminants, (4) removal by low-cost treatment techniques (e.g., solar disinfection, boiling, bio-sand filtration, and chlorination), (5) quantitative health risk profiling of high-risk groups, and (6) epidemiological studies to link the prevalence of human health outcomes (e.g., cancer) to cyanotoxins in DWSs.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; (J.M.); (Z.M.)
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria 0002, South Africa
| | - Willis Gwenzi
- Formerly Alexander von Humboldt Fellow, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany;
- Formerly Alexander von Humboldt Fellow, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany
- Independent Researcher, Biosystems & Environmental Engineering Research Group, 380 New Adylin, Westgate, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; (J.M.); (Z.M.)
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria 0002, South Africa
| | - Tinoziva T. Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe;
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, Bindura, Zimbabwe; (R.A.); (M.G.)
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, Bindura, Zimbabwe; (R.A.); (M.G.)
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, P.O. Box CY55, 18A Borrowdale Road, Harare, Zimbabwe;
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119, Mount Pleasant, Harare, Zimbabwe;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Sahu N, Maldhure A, Labhasetwar P. Management of cyanobacteria and cyanotoxins in drinking water: A comprehensive review on occurrence, toxicity, challenges and treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179260. [PMID: 40203743 DOI: 10.1016/j.scitotenv.2025.179260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
The synergistic effects of increased anthropogenic activities and climate change have intensified the frequency of cyanobacterial blooms in surface water bodies. These blooms pose significant health risks to humans and animals due to the release of cyanotoxins into the water. Conventional drinking water treatment plants (DWTPs) are often ineffective in removing cyanobacterial cells due to challenges such as electrostatic repulsion, hydrophilicity, and buoyancy. While excessive pre-oxidation can remove cyanobacteria, it may cause cell lysis, increase cyanotoxin concentration, and surpass various regulatory guidelines, posing additional risks of forming disinfection by-products (DBPs). Moderate pre-oxidation presents a viable alternative by effectively removing intact cyanobacterial cells. This review comprehensively analyses the occurrence, toxicity, associated challenges faced by DWTPs, and treatment approaches for cyanobacteria. Various moderate pre-oxidation processes for enhancing coagulation efficiency while preserving cell integrity are systematically summarized and critically discussed. The review also highlights the importance of holistic multi-barrier approaches, including prevention, corrections measures and water intake management for managing cyanobacterial contamination in drinking water treatment. It underscores the need for intensive research to develop affordable and effective solutions to ensure sustainable and safe drinking water provision.
Collapse
Affiliation(s)
- Nidhi Sahu
- Water Recourse Sub-vertical, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Atul Maldhure
- Water Recourse Sub-vertical, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| | - Pawan Labhasetwar
- Water Recourse Sub-vertical, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| |
Collapse
|
3
|
Zhang Y, Sun W, Wang B, Liu Z, Liu Z, Zhang X, Wang B, Han Y, Zhang H. Metabolomics reveals the lipid metabolism disorder in Pelophylax nigromaculatus exposed to environmentally relevant levels of microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124458. [PMID: 38942276 DOI: 10.1016/j.envpol.2024.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cyanobacterial blooms have emerged as a significant environmental issue worldwide in recent decades. However, the toxic effects of microcystin-LR (MC-LR) on aquatic organisms, such as frogs, have remained poorly understood. In this study, frogs (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of MC-LR (0, 1, and 10 μg/L) for 21 days. Subsequently, we assessed the impact of MC-LR on the histomorphology of the frogs' livers and conducted a global MS-based nontarget metabolomics analysis, followed by the determination of substances involved in lipid metabolism. Results showed that MC-LR significantly induced histological alterations in the frogs' hepatopancreas. Over 200 differentially expressed metabolites were identified, primarily enriched in lipid metabolism. Biochemical analysis further confirmed that MC-LR exposure led to a disorder in lipid metabolism in the frogs. This study laid the groundwork for a mechanistic understanding of MC-LR toxicity in frogs and potentially other aquatic organisms.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Wenhui Sun
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Bingyi Wang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center, Hangzhou, 311121, China
| | | | - Binhao Wang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Mohamed ZA, Mostafa Y, Alamri S, Hashem M. Accumulation of microcystin toxin in irrigation water and alfalfa (Medicago sativa) forage plant, and assessing the potential risk to animal health. CHEMOSPHERE 2024; 364:143248. [PMID: 39233291 DOI: 10.1016/j.chemosphere.2024.143248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Microcystin (MC) toxin produced by cyanobacteria has become a significant concern for societies worldwide. The risk of MC in drinking water has been assessed to human health. Nonetheless, its risk to animal health has not been thoroughly evaluated. This study investigated MCs in irrigation water and alfalfa plant from nearby farmlands. Both irrigation water and alfalfa shoots contained greater MC concentrations (1.8-17.4 μg L-1 and 0.053-0.128 μg g-1) during summer than winter (2.4 μg L-1 and 0.017 μg g-1). These MC concentrations showed a correlation with the predominance of cyanobacteria in the sites, triggering the potential risk of these microorganisms in irrigation waters. Accordingly, there would be a high risk (risk quotient, RQ > 1) during summer and a moderate risk (0.1
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Yasser Mostafa
- King Khalid University, College of Science, Department of Biology, Abha, P.O. Box 9004, Saudi Arabia
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, P.O. Box 9004, Saudi Arabia
| | - Mohamed Hashem
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut 71516, Egypt
| |
Collapse
|
5
|
Mohamed ZA, Fathi AA, Mostafa Y, Alamri S, Hashem M, Alrumman S, Basha OR. Microcystin levels in irrigation water and field-vegetable plants, and food safety risk assessment: A case study from Egypt. Toxicon 2024; 247:107846. [PMID: 38964620 DOI: 10.1016/j.toxicon.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Microcystin (MC), a hepatotoxin that is harmful to human health, has frequently increased in freshwaters worldwide due to the increase in toxic cyanobacterial blooms. Despite many studies reported the human exposure to MC through drinking water, the potential transfer of this toxin to human via consumption of vegetables grown on farmlands that are naturally irrigated with contaminated water has not been largely investigated. Therefore, this study investigates the presence of MC in irrigation water and its potential accumulation in commonly consumed vegetables from Egyptian farmlands. The results of toxin analysis revealed that all irrigation water sites contained high MC concentrations (1.3-93.7 μg L-1) along the study period, in association with the abundance of dominant cyanobacteria in these sites. Meanwhile, MCs were detected in most vegetable plants surveyed, with highest levels in potato tubers (1100 μg kg-1 fresh weight, FW) followed by spinach (180 μg kg-1 FW), onion (170 μg g-1 FW), Swiss chard (160 μg kg-1 FW) and fava bean (46 μg kg-1 FW). These MC concentrations in vegetables led to estimated daily intake (EDI) values (0.08-1.13 μg kg bw-1 d-1 for adults and 0.11-1.5 μg kg bw-1 d-1 for children), through food consumption, exceeding the WHO recommended TDI (0.04 μg kg bw-1 d-1) for this toxin. As eutrophic water is widely used for irrigation in many parts of the world, our study suggests that cyanotoxins in irrigation waters and agricultural plants should be regularly monitored to safeguard the general public from inadvertent exposure to harmful toxins via food consumption.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Adel A Fathi
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia, Egypt
| | - Yasser Mostafa
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Sulaiman Alrumman
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Omnia R Basha
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
6
|
Mohamed ZA, Elnour RO, Alamri S, Hashem M, Campos A, Vasconcelos V, Badawye H. Presence of the neurotoxin β-N-methylamino-L-alanine in irrigation water and accumulation in cereal grains with human exposure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31479-31491. [PMID: 38635096 DOI: 10.1007/s11356-024-33188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The present study demonstrates the presence of the neurotoxin β-N-methylamino-L-alanine and its cyanobacterial producers in irrigation water and grains of some cereal plants from farmlands irrigated with Nile River water in Egypt. BMAA detected by LC-MS/MS in phytoplankton samples was found at higher concentrations of free form (0.84-11.4 μg L-1) than of protein-bound form (0.16-1.6 μg L-1), in association with the dominance of cyanobacteria in irrigation water canals. Dominant cyanobacterial species isolated from these irrigation waters including Aphanocapsa planctonica, Chroococcus minutus, Dolichospermum lemmermanni, Nostoc commune, and Oscillatoria tenuis were found to produce different concentrations of free (4.8-71.1 µg g-1 dry weight) and protein-bound (0.1-11.4 µg g-1 dry weight) BMAA. In the meantime, BMAA was also detected in a protein-bound form only in grains of corn (3.87-4.51 µg g-1 fresh weight) and sorghum (5.1-7.1 µg g-1 fresh weight) plants, but not in wheat grains. The amounts of BMAA accumulated in these grains correlated with BMAA concentrations detected in relevant irrigation water canals. The presence of BMAA in cereal grains would constitute a risk to human and animal health upon consumption of contaminated grains. The study, therefore, suggests continuous monitoring of BMAA and other cyanotoxins in irrigation waters and edible plants to protect the public against exposure to such potent toxins.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Rehab O Elnour
- Biology Department, Faculty of Sciences and Arts, Dahran Al-Janoub, King Khalid University, Abha, Saudi Arabia
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Departament of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Hanan Badawye
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
7
|
Zhou Y, Wang Q, Xiao G, Zhang Z. Effects of the catastrophic 2020 Yangtze River seasonal floods on microcystins and environmental conditions in Three Gorges Reservoir Area, China. Front Microbiol 2024; 15:1380668. [PMID: 38511001 PMCID: PMC10951095 DOI: 10.3389/fmicb.2024.1380668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction During July and August 2020, Three Gorges Reservoir Area (TGRA) suffered from catastrophic seasonal floods. Floods changed environmental conditions and caused increase in concentration of microcystins (MCs) which is a common and potent cyanotoxin. However, the effects and seasonal variations of MCs, cyanobacteria, and environmental conditions in TGRA after the 2020 Yangtze River extreme seasonal floods remain largely unclear, and relevant studies are lacking in the literature. Methods A total of 12 representative sampling sites were selected to perform concentration measurement of relevant water quality objectives and MCs in the representative area of the TGRA. The sampling period was from July 2020 to October 2021, which included the flood period. Organic membrane filters were used to perform the DNA extraction and analyses of the 16S rRNA microbiome sequencing data. Results Results showed the seasonal floods result in significant increases in the mean values of microcystin-RR (MCRR), microcystin-YR (MCYR), and microcystin-LR (MCLR) concentration and some water quality objectives (i.e., turbidity) in the hinterland of TGRA compared with that in non-flood periods (p < 0.05). The mean values of some water quality objectives (i.e., total nitrogen (TN), total phosphorus (TP), total dissolved phosphorus (TDP), and turbidity), MC concentration (i.e., MCRR, MCYR, and MCLR), and cyanobacteria abundance (i.e., Cyanobium_PCC-6307 and Planktothrix_NIVA-CYA_15) displayed clear tendency of increasing in summer and autumn and decreasing in winter and spring in the hinterland of TGRA. Discussions The results suggest that seasonal floods lead to changes in MC concentration and environmental conditions in the hinterland of TGRA. Moreover, the increase in temperature leads to changes in water quality objectives, which may cause water eutrophication. In turn, water eutrophication results in the increase in cyanobacteria abundance and MC concentration. In particular, the increased MC concentration may further contribute to adverse effects on human health.
Collapse
Affiliation(s)
- Yuanhang Zhou
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Qilong Wang
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Romanis CS, Timms VJ, Nebauer DJ, Crosbie ND, Neilan BA. Microbiome analysis reveals Microcystis blooms endogenously seeded from benthos within wastewater maturation ponds. Appl Environ Microbiol 2024; 90:e0158523. [PMID: 38117057 PMCID: PMC10807444 DOI: 10.1128/aem.01585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
Toxigenic Microcystis blooms periodically disrupt the stabilization ponds of wastewater treatment plants (WWTPs). Dense proliferations of Microcystis cells within the surface waters (SWs) impede the water treatment process by reducing the treatment efficacy of the latent WWTP microbiome. Further, water quality is reduced when conventional treatment leads to Microcystis cell lysis and the release of intracellular microcystins into the water column. Recurrent seasonal Microcystis blooms cause significant financial burdens for the water industry and predicting their source is vital for bloom management strategies. We investigated the source of recurrent toxigenic Microcystis blooms at Australia's largest lagoon-based municipal WWTP in both sediment core (SC) and SW samples between 2018 and 2020. Bacterial community composition of the SC and SW samples according to 16S rRNA gene amplicon sequencing showed that Microcystis sp. was dominant within SW samples throughout the period and reached peak relative abundances (32%) during the summer. The same Microcystis Amplicon sequence variants were present within the SC and SW samples indicating a potential migratory population that transitions between the sediment water and SWs during bloom formation events. To investigate the potential of the sediment to act as a repository of viable Microcystis cells for recurrent bloom formation, a novel in-vitro bloom model was established featuring sediments and sterilized SW collected from the WWTP. Microcystin-producing Microcystis blooms were established through passive resuspension after 12 weeks of incubation. These results demonstrate the capacity of Microcystis to transition between the sediments and SWs in WWTPs, acting as a perennial inoculum for recurrent blooms.IMPORTANCECyanobacterial blooms are prevalent to wastewater treatment facilities owing to the stable, eutrophic conditions. Cyanobacterial proliferations can disrupt operational procedures through the blocking of filtration apparatus or altering the wastewater treatment plant (WWTP) microbiome, reducing treatment efficiency. Conventional wastewater treatment often results in the lysis of cyanobacterial cells and the release of intracellular toxins which pose a health risk to end users. This research identifies a potential seeding source of recurrent toxigenic cyanobacterial blooms within wastewater treatment facilities. Our results demonstrate the capacity of Microcystis to transition between the sediments and surface waters (SWs) of wastewater treatment ponds enabling water utilities to develop adequate monitoring and management strategies. Further, we developed a novel model to demonstrate benthic recruitment of toxigenic Microcystis under laboratory conditions facilitating future research into the genetic mechanisms behind bloom development.
Collapse
Affiliation(s)
- C. S. Romanis
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
| | - V. J. Timms
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
- ARC Centre of Excellence for Synthetic Biology, Callaghan, Australia
| | - D. J. Nebauer
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
| | | | - B. A. Neilan
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
- ARC Centre of Excellence for Synthetic Biology, Callaghan, Australia
| |
Collapse
|
9
|
Yu B, Zhang Y, Wu H, Yan W, Meng Y, Hu C, Liu Z, Ding J, Zhang H. Advanced oxidation processes for synchronizing harmful microcystis blooms control with algal metabolites removal: From the laboratory to practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167650. [PMID: 37806585 DOI: 10.1016/j.scitotenv.2023.167650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Harmful algal blooms (HABs) in freshwater systems have become a global epidemic, leading to a series of problems related to cyanobacterial outbreaks and toxicity. Studies are needed to improve the technology used for the simultaneous removal of harmful cyanobacteria and algal metabolites. In this review, widely reported advanced oxidation processes (AOPs) strategies for removing major species Microcystis aeruginosa (M. aeruginosa) and microcystins (MCs) were screened through bibliometrics, such as photocatalysis, activated persulfate, H2O2, Ozone oxidation, ultrasonic oxidation, and electrochemical oxidation, etc. AOPs generate kinds of reactive oxygen species (ROS) to inactivate cyanobacteria and degrade cyanotoxins. A series of responses occurs in algal cells to resist the damaging effects of ROS generated by AOPs. Specifically, we reviewed laboratory research, mechanisms, practical applications, and challenges of HABs treatments in AOPs. Problems common to these technologies include the impact of algal response and metabolites, and environmental factors. This information provides guidance for future research on the removal of harmful cyanobacteria and treatment of algal metabolites using AOPs.
Collapse
Affiliation(s)
- Bingzhi Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Huazhen Wu
- Hangzhou Huanke Environmental Consulting Co. LTD, 310010 Hangzhou, Zhejiang, China
| | - Wen Yan
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yunjuan Meng
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhang H, Wu J, Fang N, Zhang S, Su X, Jiang H, Hong P, Wu H, Shu Y. Waterborne exposure to microcystin-leucine arginine induces endocrine disruption and gonadal dysplasia of Pelophylax nigromaculatus tadpoles via the hypothalamic-pituitary-gonadal-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167644. [PMID: 37806583 DOI: 10.1016/j.scitotenv.2023.167644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The impact of microcystins on the gonad development and reproduction endocrine in the tadpole stage on amphibians remains unclear. In this study, the tadpoles (Pelophylax nigromaculatus) were exposed to 0, 1, and 10 μg/L of microcystin-leucine arginine (MC-LR) for 60 days to explore the impacts of environmental realistic concentration MC-LR on gonad development and reproduction endocrine, respectively. After MC-LR exposure, the germ cell structure has changed, especially in oocytes. The 10 μg/L MC-LR exposure group showed a significantly diminished gonad somatic index (GSI) in females. However, the sex ratio of tadpoles did not differ significantly. Moreover, gene transcription (figla and nobox) related to ovarian development and genes (sox9 and dmrt1) associated with testicular development were down-regulated after MC-LR exposure. After MC-LR exposure, the gene transcripts encoding gonadotropin-releasing hormone (gnrh1 and gnrh2) were down-regulated in the hypothalamus, while gonadotropins (FSH and LH) levels increased in serum. The transcripts of testosterone synthesis-related genes (star, cyp11a1, 3β-hsd, cyp17a1, and 17β-hsd) were up-regulated in the gonads, and the testosterone (T) concentration increased in serum. However, key gene transcript (cyp19a1) involved in estradiol synthesis was down-regulated and the estradiol (E2) concentration decreased in serum, resulting in the absence of a compensatory mechanism for positive feedback regulation of the hypothalamic-pituitary-gonadal (HPG) axis to maintain E2 levels. The vitellogenin gene (vtg1) transcription level was significantly down-regulated. The E2/T content ratio decreased in MC-LR concentration-dependent manner. Consequently, MC-LR exposure interfered with the hypothalamic-pituitary-gonadal-liver (HPGL) axis in tadpoles, which in turn affects gonadal development, especially the ovaries. Overall, this study provides the initial evidence that MC-LR exerts significant effects on reproductive endocrinology and gonadal development in amphibian tadpoles, highlighting the susceptibility of the tadpole reproductive system to the environmental risks of MC-LR.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Juntao Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Nanxi Fang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shengbin Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaomei Su
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
11
|
Muluye T, Fetahi T, Engdaw F, Mohammed A. Cyanotoxins in African waterbodies: occurrence, adverse effects, and potential risk to animal and human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7519-7542. [PMID: 37603139 DOI: 10.1007/s10653-023-01724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Public concerns about cyanotoxins production in water and its detrimental impacts on human and animal health are growing primarily due to the widespread eutrophication observed in aquatic ecosystems. A review of relevant literature was done to determine the degree of cyanotoxin occurrence and its harmful effects in African waterbodies. Data were extracted from 64 published studies from 1990 to 2022 that quantified the concentration of cyanotoxins in African aquatic ecosystems. Cyanotoxins have been reported in 95 waterbodies (29 lakes, 41 reservoirs, 10 ponds, 9 rivers, 5 coastal waters, and 1 irrigation canal) from 15 African countries. Cyanotoxins were documented in all the regions of Africa except the central region. Microcystins have been reported in nearly all waterbodies (98.9%), but anatoxin-a (5.3%), cylindrospermopsin (2.1%), nodularins (2.1%), homoanatoxin-a (1.1%), and β-N-methylamino-L-alanine (1.1%) were encountered in a small number of water ecosystems, homoanatoxin-a and β-N-methylamino-L-alanine each occurred in one waterbody. The largest concentrations of microcystins and nodularins were reported in South African Lakes Nhlanganzwani (49,410 μg L-1) and Zeekoevlei (347,000 μg g-1). Microcystin concentrations exceeding the WHO guideline for lifetime drinking water (1 μg L-1) were reported in 63% of the aquatic ecosystems surveyed. The most frequently reported toxin-producing cyanobacteria genus is Microcystis spp. (73.7%), followed by Oscillatoria spp. (35.8%) and Dolichospermum spp. (33.7%). Cyanotoxin-related animal mortality and human illness were reported in the continent. Consequently, it is necessary to regularly monitor the level of nutrients, cyanobacteria, and cyanotoxins in African waterbodies in an integrated manner to devise a sustainable water resources management.
Collapse
Affiliation(s)
- Tesfaye Muluye
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Tadesse Fetahi
- Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Flipos Engdaw
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Adem Mohammed
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Feng J, Li X, Manzi HP, Kiki C, Lin L, Hong J, Zheng W, Zhang C, Wang S, Zeng Q, Sun Q. Chlorination of microcystin-LR in natural water: Kinetics, transformation products, and genotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117774. [PMID: 36989953 DOI: 10.1016/j.jenvman.2023.117774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Microcystin-LR (MC-LR), a type of cyanotoxin commonly found in natural water bodies (sources of drinking water), poses a threat to human health due to its high toxicity. It is essential to successfully remove this cyanotoxin from drinking water sources. In this study, chlorine was used to oxidize MC-LR in Milli-Q water (MQ) (control test) and natural water collected from Lake Longhu (LLW) as a drinking water source. The removal efficiency, proposed transformation pathways, and genotoxicity were investigated. In the chlorine dose range investigated (4.0 mg L-1 - 8.0 mg L-1), the apparent second-order rate constants for MC-LR chlorination varied from 21.3 M-1s-1 to 31.9 M-1s-1 in MQ, higher than that in LLW (9.06 M-1s-1 to 17.7 M-1s-1) due to a faster chlorine decay attributed to the water matrix (e.g., natural organic matter) of LLW. Eleven transformation products (TPs) of MC-LR were identified in the two waters. The conjugated diene moieties and benzene ring of Adda moiety (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid), and the double bond of Mdha moiety (N-methyldehydroalanine) were the major susceptible reaction sites. Attacking unsaturated bonds by hydroxyl and chlorine radicals to generate monochloro-hydroxy-MC-LR was the primary initial transformation pathway, followed by nucleophilic substitution, dehydration, and cleavage in MC-LR. Chlorine substitution on the benzene ring was also observed. Based on the bacterial reverse-mutation assay (Ames assay), TPs in treated natural water did not induce genotoxicity/mutagenicity. These findings shed light on the role of chlorination in controlling the risk of cyanotoxins in drinking water treatment plants.
Collapse
Affiliation(s)
- Jinlu Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Habasi Patrick Manzi
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lifeng Lin
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jiaxing Hong
- Fujian Jinjin Water Supply Co., LTD, Quanzhou, 362200, China
| | - Wenzhen Zheng
- Fujian Jinjin Water Supply Co., LTD, Quanzhou, 362200, China
| | - Chuchu Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shengda Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qiaoting Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
13
|
Si W, Zhao M, Che H, Wu Z, Xiao Y, Xie X, Duan J, Shen T, Xu D, Zhao S. Microcystin-LR induced transgenerational effects of thyroid disruption in zebrafish offspring by endoplasmic reticulum stress-mediated thyroglobulin accumulation and apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121117. [PMID: 36690294 DOI: 10.1016/j.envpol.2023.121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
MC-LR can interfere with thyroid function in fish, but the underlying mechanism is still unclear. Current study focuses to study the intergenerational inheritance of MC-LR-induced thyroid toxicity in zebrafish and in rat thyroid cells. In vivo experiments, adult female zebrafish (F0) were exposed to MC-LR (0, 5, and 25 μg/L) for 90 days and mated with male zebrafish without MC-LR exposure to generate F1 generation. F1 embryos were allowed to develop normally to 7 days post-fertilization (dpf) in clear water. In the F0 generation, MC-LR induced disturbance of the hypothalamic-pituitary-thyroid (HPT) axis, leading to a decrease in the production of thyroid hormones. Maternal MC-LR exposure also induced growth inhibition by altering thyroid hormones (THs) homeostasis and interfering with thyroid metabolism and development in F1 offspring. Mechanistically, MC-LR caused excessive accumulation of ROS and induced ER stress that further lead to activation of UPR in the F0 and F1 offspring of zebrafish. Interestingly, our findings suggested that MC-LR exposure hampered thyroglobulin turnover by triggering IRE1 and PERK pathway in zebrafish and FRTL-5 thyroid cells, thus disturbing the thyroid endocrine system and contributing to the thyroid toxicity from maternal to its F1 offspring of zebrafish. Particularly, inhibition of the IRE1 pathway by siRNA could alleviate thyroid development injury induced by MC-LR in FRTL-5 cells. In addition, MC-LR induced thyroid cell apoptosis by triggering ER stress. Taken together, our results demonstrated that maternal MC-LR exposure causes thyroid endocrine disruption by ER stress contributing to transgenerational effects in zebrafish offspring.
Collapse
Affiliation(s)
- Weirong Si
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Mengjie Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zaiwei Wu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuchun Xiao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xinxin Xie
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayao Duan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Jeon Y, Baranwal P, Li L, Piezer K, Seo Y. Review: Current understanding on biological filtration for the removal of microcystins. CHEMOSPHERE 2023; 313:137160. [PMID: 36356807 DOI: 10.1016/j.chemosphere.2022.137160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms (HABs) have become a global problem not only in aquatic habitats but also in public health and safety due to the production of cyanotoxins as their secondary metabolites. Among the various identified cyanotoxin groups, microcystins (MCs) are one of the most prevalent cyanotoxin detected during HABs. Different strategies including advanced physical and chemical treatment processes have been developed to mitigate the threat of cyanotoxins in water utilities, but these have revealed certain limitations in terms of high operational costs, low removal efficacy, and harmful by-products formation. Recently, biological filtration systems (BFS) have gained attention for safe drinking water production as they can treat various natural organic matter (NOM) and emerging contaminants through a highly efficient and environmentally sustainable process. However, limited attention has been given to understand the current research progress, research challenges, and knowledge gaps for the successful implementation of BFS for MC removal. Therefore, in this review, currently identified MC biodegradation pathways and MC-degrading microorganisms with their degradation rates are summarized, which may be pivotal for studying bioaugmented BFS to enhance the MC removal during HABs. Moreover, both laboratory and field studies on BFS for MC removal are reviewed, followed by a discussion of current challenges and future research needs for the practical application of BFS.
Collapse
Affiliation(s)
- Youchul Jeon
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States
| | - Parul Baranwal
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States
| | - Lei Li
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States
| | - Kayla Piezer
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH, 43606, United States
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH, 43606, United States.
| |
Collapse
|
15
|
Chia MA, Ameh I, George KC, Balogun EO, Akinyemi SA, Lorenzi AS. Genetic Diversity of Microcystin Producers (Cyanobacteria) and Microcystin Congeners in Aquatic Resources across Africa: A Review Paper. TOXICS 2022; 10:772. [PMID: 36548605 PMCID: PMC9783101 DOI: 10.3390/toxics10120772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins are produced by multifaceted organisms called cyanobacteria, which are integral to Africa's freshwater environments. The excessive proliferation of cyanobacteria caused by rising temperature and eutrophication leads to the production and release of copious amounts of microcystins, requiring critical management and control approaches to prevent the adverse environmental and public health problems associated with these bioactive metabolites. Despite hypotheses reported to explain the phylogeography and mechanisms responsible for cyanobacterial blooms in aquatic water bodies, many aspects are scarcely understood in Africa due to the paucity of investigations and lack of uniformity of experimental methods. Due to a lack of information and large-scale studies, cyanobacteria occurrence and genetic diversity are seldom reported in African aquatic ecosystems. This review covers the diversity and geographical distribution of potential microcystin-producing and non-microcystin-producing cyanobacterial taxa in Africa. Molecular analyses using housekeeping genes (e.g., 16S rRNA, ITS, rpoC1, etc.) revealed significant sequence divergence across several cyanobacterial strains from East, North, West, and South Africa, but the lack of uniformity in molecular markers employed made continent-wise phylogenetic comparisons impossible. Planktothrix agardhii, Microcystis aeruginosa, and Cylindrospermopsis raciborskii (presently known as Raphidiopsis raciborskii) were the most commonly reported genera. Potential microcystin (MCs)-producing cyanobacteria were detected using mcy genes, and several microcystin congeners were recorded. Studying cyanobacteria species from the African continent is urgent to effectively safeguard public and environmental health because more than 80% of the continent has no data on these important microorganisms and their bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ilu Ameh
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Korie Chibuike George
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | | | | | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, Brazil
| |
Collapse
|
16
|
Mohamed Z, Alamri S, Hashem M, Mostafa Y. Bioremoval of Cylindrospermopsis raciborskii cells and cylindrospermopsin toxin in batch culture by the yeast Aureobasidium pullulans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90140-90146. [PMID: 35864401 DOI: 10.1007/s11356-022-22069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
This study describes the ability of a yeast strain, Aureobasidium pullulans KKUY0701 isolated from eutrophic lake to eliminate Cylindrospermopsis raciborskii and cylindrospermopsin (CYN) toxin. The anti-cyanobacterial activity of this yeast strain was evaluated by growing with living cells and filtrate of C. raciborskii. CYN bioremoval was assayed using living and heat-inactivated yeast cells. Both living cells and filtrate of this yeast strain were able to suppress the growth of C. raciborskii, with total cell death occurring at day 2 and day 3, respectively. Living and inactivated yeast cells, but not yeast filtrate, reduced CYN concentrations released into cyanobacterial cultures, indicating that this toxin might be removed from the culture medium via absorption onto yeast surface rather than enzymatic biodegradation. The adsorption experiments also confirmed the elimination of CYN by living and heat-inactivated yeast. Nevertheless, inactivated yeast exhibited higher capacity (K = 3.3) and intensity (n = 1.4) than living yeast (K = 1.9, n = 1) for CYN adsorption. The study suggests that this yeast strain could be employed for bioremediation of Cylindrospermopsis blooms in freshwaters. Additionally, heat-inactivated yeast biomass could be used in slow sand filters for elimination of CYN in drinking water treatment plants.
Collapse
Affiliation(s)
- Zakaria Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Botany and Microbiology Department, Facultyof Science, Assiut University, Assiut, 71516, Egypt
| | - Yasser Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
17
|
Hua S, Chen J, Wu L, Yu X, Ye J, Li Y, Zhu Y, Tian F. The monthly variation tendency of microcystin-LR levels in the Huangpu River (China) by applications of ELISA and HPLC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56876-56884. [PMID: 35347625 DOI: 10.1007/s11356-022-19791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In this study, the contents of microcystin-LR (MC-LR) of Microcystis aeruginosa cultures in the laboratory and natural water samples from the Huangpu River in different seasons were detected through enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. Excellent correlation between the two methods was obtained (R2 > 0.99). ELISA was a reliable and simple method with high reproducibility (coefficient of variation < 25%) and satisfactory recovery for the monitoring of low levels of MC-LR. MC-LR concentrations in Huangpu River varied with the seasonal variation, which peaked in August with the temperature over 30 °C and then gradually declined with the decreasing temperature after August. The highest MC-LR concentration in the Huangpu River was below the WHO drinking water quality standard (1 µg/L). These results indicated that warm temperature accelerated the MC-LR synthesis and release, and it is necessary to regularly monitor the MC-LR levels, especially during the high algae period in summer. ELISA can be applied to detect the low levels of MC-LR in the field without complex treatment, avoiding the samples from denaturation and degradation during the transportation. Hence, ELISA is a better alternative of HPLC when HPLC is unavailable, especially when rapid testing is required in routine MC-LR analysis.
Collapse
Affiliation(s)
- Sijia Hua
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawen Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
- Program of Environmental Toxicology, University of California, Riverside, CA, 92521, USA
| | - Xinyue Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yongqiang Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
18
|
Ren B, Weitzel KA, Duan X, Nadagouda MN, Dionysiou DD. A comprehensive review on algae removal and control by coagulation-based processes: mechanism, material, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Accumulation of Microcystin from Oscillatoria limnetica Lemmermann and Microcystis aeruginosa (Kützing) in Two Leafy Green Vegetable Crop Plants Lactuca sativa L. and Eruca sativa. PLANTS 2022; 11:plants11131733. [PMID: 35807685 PMCID: PMC9269519 DOI: 10.3390/plants11131733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
The use of contaminated water to irrigate crop plants poses a risk to human health from the bioaccumulation potential of microcystins (MCs) in the edible tissues of vegetable plants. The main objective of this study is to determine the concentration of total microcystins (MC-LR and MC-RR) in leafy green plants (Lactuca sativa L. var. longifolia and Eruca sativa) that have previously been irrigated with polluted water. Integrated water samples were collected by cleaned plastic bottles at a depth of about 30 cm from one of the sources of water used to irrigate agricultural lands for crop plants. At the same time, samples from plants were also collected because this water from the lake farm is used for the irrigation of surrounding vegetable plants such as Lactuca sativa L. var. longifolia and Eruca sativa. The dominant species of cyanobacteria in water samples are Microcystis aeruginosa (Kützing) and Oscillatoria limnetica Lemmermann, which were detected with an average cell count 2,300,000 and 450,000 cells/mL, respectively. These two dominant species in water produced two MCs variants (MC-LR, -RR) that were quantified by high-performance liquid chromatography (HPLC). Dissolve and particulate MCs were detected in the irrigation waters by HPLC with concentrations of 45.04–600 μg/L. MCs in the water samples exceeded the WHO safety limit (1 μg/L) of MC in drinking water. In addition, the total concentration of Microcystin in Lactuca sativa L. var. longifolia and Eruca sativa were 1044 and 1089 ng/g tissues, respectively. The estimated daily intake (EDI) of microcystins by a person (60 kg) consuming 300 g of fresh plants exceeded the total daily intake guidelines (0.04 μg kg−1 body weight) for human food consumption. According to the findings of this study, irrigation water and plants used for human consumption should be tested for the presence of MCs regularly through critical and regularly monitored programs to prevent the accumulation and transfer of such toxins through the food web.
Collapse
|
20
|
Kang Y, Su G, Yu Y, Cao J, Wang J, Yan B. CRISPR-Cas12a-Based Aptasensor for On-Site and Highly Sensitive Detection of Microcystin-LR in Freshwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4101-4110. [PMID: 35263090 DOI: 10.1021/acs.est.1c06733] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On-site monitoring of trace organic pollutants with facile methods is critical to environmental pollutant prevention and control. Herein, we proposed a CRISPR-Cas12a-based aptasensor platform (named as MC-LR-Casor) for on-site and sensitive detection of microcystin-LR (MC-LR). After hybridization with blocker DNA, the MC-LR aptamers were conjugated to magnetic beads (MBs) to get the MB aptasensor. In the presence of MC-LR, their interactions with aptamers were triggered and the specific binding caused the release of blocker DNA. Using the programmability of the CRISPR-Cas system, the released blocker DNA was designed to activate a Cas12a-crRNA complex. Single strand DNA reporters were rapidly cleaved by the complex. Signal readout could be achieved by fluorometer or lateral flow strips, which were positively correlated to MC-LR concentration. Benefiting from the CRISPR-Cas12a amplification system, the proposed sensing platform exhibited high sensitivity and reached the limit of detection of ∼3 × 10-6 μg/L (fluorescence method) or 1 × 10-3 μg/L (lateral flow assay). In addition, the MC-LR-Casor showed excellent selectivity and good recovery rates, demonstrating their good applicability for real water sample analysis. During the whole assay, only two steps of incubation at a constant temperature were required and the results could be visualized when employing flow strips. Therefore, the proposed assay offered a simple and convenient alternative for in situ MC-LR monitoring, which may hold great promise for future environmental surveillance.
Collapse
Affiliation(s)
- Yuliang Kang
- School of Pharmacy, Nantong University, Nantong 226001, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiajia Cao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
21
|
Benredjem L, Berredjem H, Abdi A, Casero MC, Quesada A, Fosso B, Marzano M, Pesole G, Azevedo J, Vasconcelos V. Morphological, molecular, and biochemical study of cyanobacteria from a eutrophic Algerian reservoir (Cheffia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27624-27635. [PMID: 34984616 DOI: 10.1007/s11356-021-17528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The cyanobacteria management in water bodies requires a deep knowledge of the community composition. Considering the reliable and thorough information provided by the polyphasic approach in cyanobacteria taxonomy, here we assess the cyanobacterial community structure of the Cheffia reservoir from Algeria. Cyanobacteria were identified on the basis of morphological traits and next-generation sequencing (NGS); toxins-related genes were localized in addition to the identification of toxins; temperature and nutrient level of water samples were also determined. The polyphasic approach was essential for cyanobacteria investigation; 28 genera were identified through 16S rRNA metabarcoding with the dominance of taxa from Microcystis (34.2%), Aphanizomenon (20.1%), and Planktothrix (20.0%), and morphological analysis revealed the association in this water body of five species within the genus Microcystis: M. aeruginosa, M. novacekii, M. panniformis, M. ichthyoblabe, and M. flos-aquae. The presence of mcyE genotypes was detected; moreover, HPLC-PDA and LC-ESI-MS/MS revealed the production of microcystin-LR. Results obtained in our study are very important since this ecosystem is used for water supply and irrigation; as a consequence, a good water management plan is essential.
Collapse
Affiliation(s)
- Lamia Benredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Akila Abdi
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Maria Cristina Casero
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Bruno Fosso
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Marinella Marzano
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Graziano Pesole
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
- Dipartimento Di Bioscienze, Biotecnologie E Biofarmaceutica, Università Degli Studi Di Bari "Aldo Moro", Via Orabona 4, 70126, Bari, Italy
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal.
- Biology Department, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
22
|
Nijhawan A, Howard G. Associations between climate variables and water quality in low- and middle-income countries: A scoping review. WATER RESEARCH 2022; 210:117996. [PMID: 34959067 DOI: 10.1016/j.watres.2021.117996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding how climate change will affect water quality and therefore, health, is critical for building resilient water services in low- and middle-income countries (LMICs) where the effect of climate change will be felt most acutely. Evidence of the effect of climate variables such as temperate and rainfall on water quality can generate insights into the likely impact of future climate change. While the seasonal effects on water quality are known, and there is strong qualitative evidence that climate change will impact water quality, there are no reviews that synthesise quantitative evidence from LMICs on links between climate variables and water quality. We mapped the available evidence on a range of climate exposures and water quality outcomes and identified 98 peer-reviewed studies. This included observational studies on the impact of temperature and rainfall events (which may cause short-term changes in contaminant concentrations), and modelling studies on the long-term impacts of sea level rise. Evidence on links between antecedent rainfall and microbiological contamination of water supplies is strong and relatively evenly distributed geographically, but largely focused on faecal indicator bacteria and on untreated shallow groundwater sources of drinking water. The literature on climate effects on geogenic contaminants was sparse. There is substantial research on the links between water temperature and cyanobacteria blooms in surface waters, although most studies were from two countries and did not examine potential effects on water treatment. Similarly, studies modelling the impact of sea level rise on groundwater salinity, mostly from south-Asia and the Middle East, did not discuss challenges for drinking water supplies. We identified key future research priorities based on this review. These include: more studies on specific pathogens (including opportunistic pathogens) in water supplies and their relationships with climate variables; more studies that assess likely relationships between climate variables and water treatment processes; studies into the relationships between climate variables and geogenic contaminants, including risks from heavy metals released as glacier retreat; and, research into the impacts of wildfires on water quality in LMICs given the current dearth of studies but recognised importance.
Collapse
Affiliation(s)
- Anisha Nijhawan
- Department of Civil Engineering and Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1TR, UK.
| | - Guy Howard
- Department of Civil Engineering and Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1TR, UK.
| |
Collapse
|
23
|
Sun J, Liu K, Alvarez PJJ, Fu H, Zheng S, Yin D, Qu X. Rapid detoxification of Microcystin-LR by selective catalytic hydrogenation of the Adda moiety using TiO 2-supported Pd catalysts. CHEMOSPHERE 2022; 288:132641. [PMID: 34687684 DOI: 10.1016/j.chemosphere.2021.132641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The hepatotoxicity of Microcystin-LR (MC-LR) is mainly caused by its Adda moiety. In this study, we used TiO2-supported Pd catalysts to selectively hydrogenate the CC bonds in the Adda moiety, achieving rapid detoxification of MC-LR in water under ambient conditions. MC-LR was removed within 5 min by catalytic hydrogenation on Pd(1.0)/TiO2 with a catalyst dosage normalized rate constant of 1.3 × 10-2 L mgcat-1 min-1, significantly more efficient than other catalytic treatment methods. The reactions proceeded in a highly selective manner towards catalytic hydrogenation at the CC bond of the Mdha moiety and subsequently the conjugated double bond of the Adda moiety, yielding two intermediates and one final product. Upon catalytic hydrogenation for 30 min on Pd(0.07)/TiO2, the toxicity of MC-LR (assessed by protein phosphatase 2A activity assay) drastically decreased by 90.8%, demonstrating effective detoxification. The influence of catalyst support, Pd content, initial MC-LR concentration, reaction pH, and catalytic stability were examined. Surface adsorption and the cationic Pd played a crucial role in the reaction kinetics. Our results suggest that catalytic hydrogenation is a highly effective and safe strategy for detoxifying MC-LR by selective reactions.
Collapse
Affiliation(s)
- Jingya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Kun Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, United States
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China.
| |
Collapse
|
24
|
Mohamed ZA, Alamri S, Hashem M. The link between microcystin levels in groundwater and surface Nile water, and assessing their potential risk to human health. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 244:103921. [PMID: 34784559 DOI: 10.1016/j.jconhyd.2021.103921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Although groundwater is an important source for drinking and irrigation water worldwide, particularly in arid countries, they have been paid little attention to their contamination with microcystins (MCs) compared to surface water. Our study is the fourth one reporting existence of MCs in groundwater due to surface-water and groundwater interaction. Dissolved MCs in groundwater were found with higher concentrations in summer (0.1 to 0.84 μg L-1) than in winter (0-0.06 μg L-1), in association with MCs detected in nearby surface Nile water. The chronic daily intake (CDI) of MCs for both adults and children (0-0.003 μg kg-1 body weight d-1) in groundwater were lower than the chronic reference dose (RfD, 0.003 μg kg-1 body weight d-1) during winter, with hazard quotient less than 1. Conversely, CDI values exceeded the reference dose during summer for both adults (0.005-0.024 μg kg-1 body weight d-1) and children (0.012-0.05 μg kg-1 body weight d-1), with hazard quotient greater than 1. This indicates that MCs concentrations in these groundwater wells might pose adverse health effects to both adults and children during summer, but not during winter. The study provides evidence for the risk of cyanotoxins in groundwater close to cyanobacteria-contaminated surface water. Therefore, regular monitoring for cyanotoxins in groundwater supplies used for drinking-water should be undertaken when cyanobacteria bloom events are noted in nearby surface waters.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt..
| | - Saad Alamri
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 61413, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 61413, Abha, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut 71516, Egypt
| |
Collapse
|
25
|
Mohamed Z, Alamri S, Hashem M. Simultaneous biodegradation of harmful Cylindrospermopsis raciborskii and cylindrospermopsin toxin in batch culture by single Bacillus strain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5153-5161. [PMID: 34417702 DOI: 10.1007/s11356-021-16062-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the capability of a Bacillus flexus strain isolated from decayed cyanobacterial blooms for the bioremediation of Cylindrospermopsis raciborskii and cylindrospermopsin (CYN) toxin. The algicidal activity of this strain was tested by co-cultivation with C. raciborskii cultures. CYN biodegradation was investigated in the presence of living and heat-inactivated bacterial cells or bacterial filtrate. Living bacterial cells inhibited C. raciborskii growth after 2 days of incubation with complete cell death at day 5. Bacterial filtrate caused a rapid reduction in C. raciborskii growth at the first day, with complete cell lysis at day 3. Only living cells of SSZ01 caused reduction in CYN released into the medium during the bacterial decay of C. raciborskii cells. The biodegradation rate of CYN by SSZ01 relied on initial toxin concentrations. The highest rate (42 μg CYN L-1 day-1) was obtained at the higher initial concentration (300 μg L-1), and the lowest (4μg CYN L-1 day-1) was at lower concentration (50 μg L-1). These results suggest that this bacterial strain could be employed to bioremediate cyanobacterial blooms in freshwaters. Also, the application of this bacterium in slow sand filters would give possibilities for degradation and bioremediation of cyanotoxins in drinking water treatment plants.
Collapse
Affiliation(s)
- Zakaria Mohamed
- Faculty of Science, Department of Botany and Microbiology, Sohag University, Sohag, 82524, Egypt.
| | - Saad Alamri
- Department of Biology, King Khalid University, College of Science, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, King Khalid University, College of Science, Abha, 61413, Saudi Arabia
- Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
26
|
Madany P, Xia C, Bhattacharjee L, Khan N, Li R, Liu J. Antibacterial activity of γFe 2 O 3 /TiO 2 nanoparticles on toxic cyanobacteria from a lake in Southern Illinois. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2807-2818. [PMID: 34520086 DOI: 10.1002/wer.1640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Frequent outbreaks of harmful algal blooms (HABs) have brought adverse impacts on human health, economic viability, and recreational activities in many communities in the United States. Cyanobacteria (or blue-green algae) blooms are the most common type of HABs in surface water. Current bactericides for controlling the blooms are disadvantageous due to the recycling difficulty. In this study, an innovative magnetic nanomaterial-γFe2 O3 /TiO2 nanoparticle-was used to inactivate toxic cyanobacteria species found in a lake in Southern Illinois that frequently experienced HABs. Cyanotoxin genes of mcy, nda, cyr, and sxt were used for targeting microcystin-, nodularin-, cylindrospermopsin-, and saxitoxin-producing cyanobacteria, respectively, by quantitative polymerase chain reaction (PCR) method. It was found that the concentration of chlorophyll a presents a strong correlation (R2 = 0.6024) with the gene copy obtained from 16S rRNA targeted for all cyanobacteria, but not with that from individual toxigenic cyanobacteria. The inactivation efficiencies of the nanomaterials under visible light were as high as 5-log and 1-log for cyanobacteria species containing mcyE/ndaF and sxtA genes, respectively, an improvement over the treatment under darkness. These nanomaterials can be recycled by their magnetic properties for reuse. Communities susceptible to HAB outbreaks are expected to benefit from the developed method for mitigating the blooms. PRACTITIONER POINTS: Lab-made γFe2 O3 /TiO2 nanoparticles can be used to inactivate microcystin/nodularin- and saxitoxin-producing cyanobacteria species. qPCR method can be used for targeting toxic cyanobacteria; Chl a cannot be used as a standalone indicator for HABs. Better inactivation efficiency under visible light indicated possible application of the technology under sunlight for HAB mitigation from surface water.
Collapse
Affiliation(s)
- Peerzada Madany
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Chunjie Xia
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Linkon Bhattacharjee
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Nafeesa Khan
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Ruopu Li
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Jia Liu
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
- Materials Technology Center, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
27
|
Zhao S, Xu J, Zhang W, Yan W, Li G. Paternal exposure to microcystin-LR triggers developmental neurotoxicity in zebrafish offspring via an epigenetic mechanism involving MAPK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148437. [PMID: 34153754 DOI: 10.1016/j.scitotenv.2021.148437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MCLR) induced impairment to male reproductive system and revealed the effects of transgenerational toxicity on offspring. But very little is known about the inheritance of these effects to offspring and the mechanisms involved. Here, we used methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and microarray to characterize whole-genome DNA methylation and mRNA expression patterns in zebrafish testis after 6-week exposure to 5 and 20 μg/L MCLR. Accompanied with these analyses it revealed that MAPK pathway and ER pathway significantly enriched in zebrafish testes. Apoptosis and testicular damage were also observed in testis. Next, we test the transmission of effects to compare control-father and MCLR exposure-father progenies. DNA methylation analyses (via reduced representation bisulfite sequencing) reveal that the enrichment of differentially methylated regions on neurodevelopment after paternal MCLR exposure. Meanwhile, several genes associated with neurodevelopment were markedly downregulated in zebrafish larvae, and swimming speed was also reduced in the larvae. Interestingly, paternal MCLR exposure also triggered activation the phosphorylation of mitogen-activated protein kinase (MAPK) pathway which is also associated with neurodevelopmental disorders. These results demonstrated the significant effect that paternal MCLR exposure may have on gene-specific DNA methylation patterns in testis. Inherited epigenetic alterations through the germline may be the mechanism leading to developmental neurotoxicity in the offspring.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weiyun Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Massey IY, Al osman M, Yang F. An overview on cyanobacterial blooms and toxins production: their occurrence and influencing factors. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1843060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Muwaffak Al osman
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Occupational and Environmental Health, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
29
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
30
|
Mohamed ZA, Alamri S, Hashem M, Mostafa Y. Growth inhibition of Microcystis aeruginosa and adsorption of microcystin toxin by the yeast Aureobasidium pullulans, with no effect on microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38038-38046. [PMID: 32621193 DOI: 10.1007/s11356-020-09902-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/26/2020] [Indexed: 05/26/2023]
Abstract
This study evaluates the inhibitory effect of a yeast strain, Aureobasidium pullulans KKUY0701, isolated from decayed cyanobacterial bloom against harmful cyanobacterium Microcystis aeruginosa and determines the ability of this strain to remove microcystin (MC) toxin from the water. The antialgal activity of this yeast strain was assayed by co-cultivation with M. aeruginosa, diatom, and green algal species. The MC adsorption experiment was conducted in the presence of living and heat-inactivated yeast cells. Both yeast cells and filtrates caused a rapid reduction in the growth of M. aeruginosa, with complete death and cell lysis occurring after 3 days. The yeast strain did not exhibit any inhibitory effect on either green algae or diatoms. Both living and heat-inactivated yeast cells were capable of adsorption of MC on their surfaces. Inactivated yeast exhibited higher adsorption capacity and lower intensity than living yeast for the adsorption of MC toxin. The results of this study suggest that this yeast strain could be employed to selectively reduce cyanobacterial blooms in freshwaters. Moreover, the application of heat-inactivated yeast's biomass for toxin adsorption gives new possibilities in drinking water treatment plants.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Saad Alamri
- College of Science, Department of Biology, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- College of Science, Department of Biology, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| | - Yasser Mostafa
- College of Science, Department of Biology, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
31
|
Kumar P, Rautela A, Kesari V, Szlag D, Westrick J, Kumar S. Recent developments in the methods of quantitative analysis of microcystins. J Biochem Mol Toxicol 2020; 34:e22582. [PMID: 32662914 DOI: 10.1002/jbt.22582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Cyanotoxins are produced by the toxic cyanobacterial species present in algal blooms formed in water bodies due to nutrient over-enrichment by human influences and natural environmental conditions. Extensive studies are available on the most widely encountered cyanotoxins, microcystins (MCs) in fresh and brackish water bodies. MC contaminated water poses severe risks to human health, environmental sustainability, and aquatic life. Therefore, commonly occurring MCs should be monitored. Occasionally, detection and quantification of these toxins are difficult due to the unavailability of pure standards. Enzymatic, immunological assays, and analytical techniques like protein phosphatase inhibition assay, enzyme-linked immunosorbent assay, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and biosensors are used for their detection and quantification. There is no single method for the detection of all the different types of MCs; therefore, various techniques are often combined to yield reliable results. Biosensor development offered a problem-solving approach in the detection of MCs due to their high accuracy, sensitivity, rapid response, and portability. In this review, an endeavor has been made to uncover emerging techniques used for the detection and quantification of the MCs.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Akhil Rautela
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Vigya Kesari
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - David Szlag
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
32
|
Jiang Y, Liu Y, Zhang J, Gao B. Antibiotics promoted the recovery of Microcystis aeruginosa after UV-B radiation at cellular and proteomic levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110080. [PMID: 31855790 DOI: 10.1016/j.ecoenv.2019.110080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Elevated UV-B radiation due to ozone layer depletion may prevent the growth of bloom-forming cyanobacteria in aquatic environments, while antibiotic contaminants may cause effects opposite to that of UV-B due to hormesis. This study investigated the influence of a quaternary antibiotic mixture on Microcystis aeruginosa after UV-B radiation through a 15-day exposure test. UV-B radiation extended the lag phase of M. aeruginosa at doses of 600 and 900 mJ/cm2, and significantly (p < 0.05) reduced the growth rate and the Fv/Fm value at doses of 300-900 mJ/cm2. Although UV-B radiation significantly (p < 0.05) stimulated the microcystin production ability in each cyanobacterial cell, the total microcystin concentration still significantly (p < 0.05) decreased due to the reduction of cell density. Mixed antibiotics and UV-B regulated the proteomic expression profile of M. aeruginosa in different manners. UV-B radiation upregulated 19 proteins and downregulated 49 proteins in M. aeruginosa, while mixed antibiotics upregulated 45 proteins and downregulated 25 proteins in UV-B treated cells. Mixed antibiotics significantly (p < 0.05) stimulated growth and photosynthesis, increased cell density and microcystin concentration, and reduced oxidative stress in UV-B treated cells through the upregulation of proteins involved in photosynthesis, biosynthesis, cell division, oxidation-reduction, gene expression and microcystin synthesis. This study verified the hypothesis that antibiotics accelerated the recovery of M. aeruginosa from UV-B induced damage. A safe threshold of 20 ng/L was suggested for mixed antibiotics (5 ng/L for each antibiotic), in order to eliminate the stimulatory effects of antibiotics on bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Yunhan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
33
|
Liu J, Huang Y, Cai F, Dang Y, Liu C, Wang J. MicroRNA-181a regulates endoplasmic reticulum stress in offspring of mice following prenatal microcystin-LR exposure. CHEMOSPHERE 2020; 240:124905. [PMID: 31563103 DOI: 10.1016/j.chemosphere.2019.124905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MCLR) was commonly regarded as a potent hepatotoxin and has been reported to cause neurotoxicity. This study was aimed to investigate how maternal MCLR exposure during pregnancy alters behavioral responses in offspring mice and the possible molecular mechanism involved in this procedure. Three doses of MCLR solutions (0, 3 or 15 μg/kg body weight) were administered subcutaneously to pregnant C57bl/6 from gestation day (GD) 6-19. Our results showed that MCLR prenatal exposure led to the impairment of learning and memory function in offspring on postnatal days (PND) 35, accompanied by endoplasmic reticulum (ER) stress and neuronal apoptosis in hippocampal CA1 regions of mice. Sixteen miRNAs in hippocampus of pups on PND 35 were significantly affected by MCLR exposure with the markedly decreased transcription of miR-181a-5p. We then found that miR-181a-5p was down-regulated, accompanied by activation of ER stress after prenatal exposure to MCLR using qPCR analysis. Furthermore, glucose-regulated protein, 78kDa/binding immunoglobulin protein (Grp78/BIP), a major ER chaperone and signaling regulator, was identified as a target of miR-181a-5p. Our study showed that miR-181a could lead to a decrease in the mRNA expression and protein levels of Grp78 by directly binding to its 3'-untranslated region (3'-UTR) in primary hippocampal neurons. Our findings indicate that the up-regulation of Grp78 mediated by inhibition of miR-181a-5p is a possible mechanism resulting in ER stress and cognitive impairment in pups following prenatal MCLR exposure.
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yangyang Huang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Cai
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 437100, Hubei, China; Department of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yao Dang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
34
|
Bai M, Yu Y, Cheng J, Ji Z, Li J. OH degraded 2-Methylisoborneol during the removal of algae-laden water in a drinking water treatment system: Comparison with ClO 2. CHEMOSPHERE 2019; 236:124342. [PMID: 31326752 DOI: 10.1016/j.chemosphere.2019.124342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The growth of algae in water and the taste and odour compounds produced by algal metabolism present a threat to water quality, public health and aquatic ecosystems and cannot be effectively removed by conventional water treatment processes. In this paper, a hydroxyl radical (OH)-based drinking water treatment system (DWTS) with a capacity of 480 m3 per day was built in the Xinglin water plant, Xiamen, China. With pretreatment at 0.88 mg L-1, sand filtration, and disinfection at 0.31 mg L-1 during the conveyance of algae-laden water within only 9.8 s, OH removed all five kinds of algae, with a total content of 35,180 cells mL-1, while ClO2 treatment left live and dead algae at 7150 cells mL-1, which would be transported into the pipe networks for the drinking water supply. Meanwhile, OH degraded 2-Methylisoborneol (2-MIB) from 175 to 4.4 ng L-1, which was below the Chinese standard of 10 ng L-1, while ClO2 degraded 2-MIB only to 155 ng L-1. Based on analyses of the mass spectra database, OH could mineralize 2-MIB by opening the ring structures of 2,2-dimethyl-1,3-cyclopentanedione and 2-methyl-cyclohexenecarboxaldehyde to produce small-molecule compounds. After OH pretreatment and OH disinfection, all water quality and disinfection by-product indexes met the Chinese Sanitary Standards for Drinking Water. Therefore, OH advanced oxidation produced using strong ionization discharge could be practically applied for the degradation of 2-MIB during the treatment of algae-laden water in the OH DWTS.
Collapse
Affiliation(s)
- Mindong Bai
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| | - Yixuan Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Jianguo Cheng
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Zhixin Ji
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Ji Li
- Department of Physics, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
35
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
36
|
Mohamed Z, Ahmed Z, Bakr A, Hashem M, Alamri S. Detection of free and bound microcystins in tilapia fish from Egyptian fishpond farms and its related public health risk assessment. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01254-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Pestana CJ, Capelo-Neto J, Lawton L, Oliveira S, Carloto I, Linhares HP. The effect of water treatment unit processes on cyanobacterial trichome integrity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:1403-1414. [PMID: 31096351 DOI: 10.1016/j.scitotenv.2018.12.337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Many toxic and/or noxious cyanobacteria appear in nature with a filamentous, stacked cell arrangement called trichomes. Although water treatment can be optimized to keep cyanobacterial cells intact and avoid the release of toxic and/or noxious compounds, many physical and chemical stresses encountered during the treatment process may result in trichome truncation, decreasing treatment efficiency by allowing single cells or short trichomes to reach the product water. This makes it possible for harmful/noxious compounds as well as organic matter to enter the distribution system. Investigations in a pilot and three full-scale water treatment plants were carried out in order to elucidate the degree of trichome truncation across different unit processes. It was found that genera (Pseudanabaena, Planktolyngbya) with short trichomes (<10-12 cells per trichome), are hardly affected by the unit processes (loss of one to four cells respectively), while genera (Planktothrix, Geitlerinema, Dolichospermum) with longer trichomes (30+ cells per trichome) suffer from high degrees of truncation (up to 63, 30, and 56 cells per trichome respectively). The presence of a rigid sheath and/or mucilaginous layer appears to offer some protection from truncation. It was observed that certain unit processes alter the sensitivity or resilience of trichomes to disruption by physical stress. Some genera (Planktothrix, Geitlerinema) were sensitive to pre-oxidation making them more susceptible to shear stress, while Dolichospermum sp. appears more robust after pre-oxidation. While the potential of toxicogenic genera breaking through into the product water is a real danger, in the current study no toxicogenic cyanobacteria were observed. This work stresses the need for plant operators to study the incoming cyanobacterial composition in the raw water in order to adjust treatment parameters and thus limit the potential of toxic/noxious compound breakthrough.
Collapse
Affiliation(s)
- Carlos J Pestana
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil; School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - José Capelo-Neto
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil.
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Samylla Oliveira
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil
| | - Ismael Carloto
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil
| | - Helísia P Linhares
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil
| |
Collapse
|
38
|
de Oliveira Ruiz Moreti L, Takaoka AB, Marquettotti Salcedo Vieira A, Mantovani D, Bergamasco R. The use of
Moringa oleifera
seeds and their fractionated proteins for
Microcystis aeruginosa
and microcystin‐LR removal from water. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Livia de Oliveira Ruiz Moreti
- Universidade Estadual de MaringáDepartment of Chemical EngineeringAvenida Colombo, 5790CEP: 87020‐900, Maringá, ParanáBrazil
| | - Aline Baptista Takaoka
- Universidade Estadual de MaringáDepartment of Chemical EngineeringAvenida Colombo, 5790CEP: 87020‐900, Maringá, ParanáBrazil
| | | | - Daniel Mantovani
- Universidade Estadual de MaringáDepartment of Civil EngineeringAvenida Colombo, 5790CEP: 87020‐900, Maringá, ParanáBrazil
| | - Rosângela Bergamasco
- Universidade Estadual de MaringáDepartment of Chemical EngineeringAvenida Colombo, 5790CEP: 87020‐900, Maringá, ParanáBrazil
| |
Collapse
|
39
|
Mohamed ZA, Bakr A, Soliman HA. Bioavailability of bound microcystins in mice orally fed with contaminated tilapia edible tissues: Implications to human health. Toxicon 2018; 151:34-36. [DOI: 10.1016/j.toxicon.2018.06.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
40
|
Wang Y, Cao Y, Li H, Gong A, Han J, Qian Z, Chao W. Removal of MCs by Bi 2O 2CO 3: adsorption and the potential of photocatalytic degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11867-11874. [PMID: 29446022 DOI: 10.1007/s11356-018-1418-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Microcystins (MCs) is a kind of hepatotoxin, which is the secondary metabolite of cyanobacteria. Bi2O2CO3 (BOC) is a kind of cheap and nontoxic semiconductor material. BOC was synthetized by solvothermal method and then microcystin-LR (MC-LR) and microcystin-RR (MC-RR) were removed by BOC, through adsorption and photocatalytic degradation. When the dosage of BOC is 6 g/L, the MC-LR and MC-RR in the natural water sample can be completely adsorbed in 30 min and then after 12 h irradiation, MC-LR and MC-RR were photocatalytically degraded by BOC.
Collapse
Affiliation(s)
- Yujiao Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yanqiu Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Hongmei Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100020, People's Republic of China
| | - Aijun Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jintao Han
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhen Qian
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Wenran Chao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
41
|
Geada P, Pereira RN, Vasconcelos V, Vicente AA, Fernandes BD. Assessment of synergistic interactions between environmental factors on Microcystis aeruginosa growth and microcystin production. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Zhou J, Qin B, Han X, Zhu L. Turbulence increases the risk of microcystin exposure in a eutrophic lake (Lake Taihu) during cyanobacterial bloom periods. HARMFUL ALGAE 2016; 55:213-220. [PMID: 28073534 DOI: 10.1016/j.hal.2016.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 06/06/2023]
Abstract
Toxic cyanobacterial harmful algal blooms (CyanoHABs) have posed serious water use and public health threats because of the toxins they produce, such as the microcystins (MCs). The direct physical effects of turbulence on MCs, however, have not yet been addressed and is still poorly elucidated. In this study, a 6-day mesocosm experiment was carried out to evaluate the effects of wind wave turbulence on the competition of toxic Microcystis and MCs production in highly eutrophicated and turbulent Lake Taihu, China. Under turbulent conditions, MCs concentrations (both total and extracellular) significantly increased and reached a maximum level 3.4 times higher than in calm water. Specifically, short term (∼3 days) turbulence favored the growth of toxic Microcystis species, allowing for the accumulation of biomass which also triggered the increase in MCs toxicity. Moreover, intense turbulence raises the shear stress and could cause cell mechanical damage or cellular lysis resulting in cell breakage and leakage of intracellular materials including the toxins. The results indicate that short term (∼3 days) turbulence is beneficial for MCs production and release, which increase the potential exposure of aquatic organisms and humans. This study suggests that the importance of water turbulence in the competition of toxic Microcystis and MCs production, and provides new perspectives for control of toxin in CyanoHABs-infested lakes.
Collapse
Affiliation(s)
- Jian Zhou
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Boqiang Qin
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Xiaoxia Han
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Lin Zhu
- Taihu Lake Laboratory Ecosystem Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| |
Collapse
|
43
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susana Y. Kimura
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|