1
|
Nash S, Hietpas C, Subbiah S, Schniederjan E, Crago J. Incorporating benchmark dose into sediment toxicity testing using zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178953. [PMID: 40022978 DOI: 10.1016/j.scitotenv.2025.178953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Mortality is the most common endpoint surveyed for environmental risk assessment of sediment contaminated with organic pollutants. More recently, a modified zebrafish embryo toxicity assay (zFET) has been utilized in sediment toxicity assessments as it provides data on both mortality and distinct malformations associated with the whole sediment and sediment extract containing only the organic pollutants. Taking this approach further, we herein have incorporated benchmark dose (BMD) calculations through EPA's BMD software based on zebrafish mortality and malformation data; thus, providing a framework to apply this methodology to sediment toxicity assessments. The goal of this study was to assess relative toxicity of sediment chemical extracts using a zfBMD approach based on mortality, malformation and behavior as compared to hazard index calculations from chemical analysis. To perform this study, sediment from the Lower Rio Grande Valley of Texas resacas 'oxbow lakes', were collected to assess utility of this approach in sediment toxicity assessments. Chemical analysis of 95 organic contaminants revealed the presence of 45 organic pollutants in sediment extracts from 13 locations and 5 resacas across four sampling events in a one-year period to determine seasonal variability. Our results indicated that the zfFET assay was correlated with seasonal applications of pyrethroids, neonicotinoids and organophosphates. Incorporating BMD for the three endpoints allowed for better representation of sub-acute toxicity as many of the sediment extracts induced malformations and behavior changes at concentrations below the chemical bioavailable concentration in the sediment. Results of this study will aid in the development of utilizing fish embryo-larvae BMD mortality and malformation calculations in ecological risk assessments of contaminated sediments.
Collapse
Affiliation(s)
- Sarah Nash
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Colby Hietpas
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Emmy Schniederjan
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Jordan Crago
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
3
|
Lee J, Hong S, An SA, Khim JS. Methodological advances and future directions of microalgal bioassays for evaluation of potential toxicity in environmental samples: A review. ENVIRONMENT INTERNATIONAL 2023; 173:107869. [PMID: 36905773 DOI: 10.1016/j.envint.2023.107869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Microalgal bioassays are widely applied to evaluate the potential toxicity of various persistent toxic substances in environmental samples due to multiple advantages, including high sensitivity, short test duration, and cost-effectiveness. Microalgal bioassay is gradually developing in method, and the scope of application to environmental samples is also expanding. Here, we reviewed the published literature on microalgal bioassays for environmental assessments, focusing on types of samples, sample preparation methods, and endpoints, and highlighted key scientific advancements. Bibliographic analysis was performed with the keywords 'microalgae' and 'toxicity' or 'bioassay', and 'microalgal toxicity'; 89 research articles were selected and reviewed. Traditionally, most studies implementing microalgal bioassays focused on water samples (44%) with passive samplers (38%). Studies using the direct exposure method (41%) of injecting microalgae into sampled water mainly evaluated toxic effects by growth inhibition (63%). Recently, various automated sampling techniques, in situ bioanalytical methods with multiple endpoints, and targeted and non-targeted chemical analyses have been applied. More research is needed to identify causative toxicants affecting microalgae and to quantify the cause-effect relationships. This study provides the first comprehensive overview of recent advances in microalgal bioassays performed with environmental samples, suggesting future research directions based on current understanding and limitations.
Collapse
Affiliation(s)
- Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Seong-Ah An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Majumdar S, Mandal T, Mandal DD. Chitosan based micro and nano-particulate delivery systems for bacterial prodigiosin: Optimization and toxicity in animal model system. Int J Biol Macromol 2022; 222:2966-2976. [DOI: 10.1016/j.ijbiomac.2022.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
5
|
Environmental Impacts of Biosurfactants from a Life Cycle Perspective: A Systematic Literature Review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:235-269. [DOI: 10.1007/10_2021_194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Saiki P, Mello-Andrade F, Gomes T, Rocha TL. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148633. [PMID: 34182436 DOI: 10.1016/j.scitotenv.2021.148633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Sediment is an important compartment in aquatic environments and acts as a sink for environmental pollutants. Sediment toxicity tests have been suggested as critical components in environmental risk assessment. Since the zebrafish (Danio rerio) has been indicated as an emerging model system in ecotoxicological tests, a scientometric and systematic review was performed to evaluate the use of zebrafish as an experimental model system in sediment toxicity assessment. A total of 97 papers were systematically analyzed and summarized. The historical and geographical distributions were evaluated and the data concerning the experimental design, type of sediment toxicity tests and approach (predictive or retrospective), pollutants and stressors, zebrafish developmental stages and biomarkers responses were summarized and discussed. The use of zebrafish to assess the sediment toxicity started in 1996, using mainly a retrospective approach. After this, research showed an increasing trend, especially after 2014-2015. Zebrafish exposed to pollutant-bound sediments showed bioaccumulation and several toxic effects, such as molecular, biochemical, morphological, physiological and behavioral changes. Zebrafish is a suitable model system to assess the toxicity of freshwater, estuarine and marine sediments, and sediment spiked in the laboratory. The pollutant-bound sediment toxicity in zebrafish seems to be overall dependent on physical and chemical properties of pollutants, experimental design, environmental factor, developmental stages and presence of organic natural matter. Overall, results showed that the zebrafish embryos and larvae are suitable model systems to assess the sediment-associated pollutant toxicity.
Collapse
Affiliation(s)
- Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Francyelli Mello-Andrade
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Modrzyński JJ, Christensen JH, Brandt KK. Evaluation of dimethyl sulfoxide (DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1136-1141. [PMID: 31559559 DOI: 10.1007/s10646-019-02107-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Toxicity testing of hydrophobic compounds with low aqueous solubility remains challenging. Dimethyl sulfoxide (DMSO) is widely used as a co-solvent for toxicity testing of hydrophobic chemicals, but it may modulate chemical toxicity patterns. In this study, we critically evaluated the suitability of DMSO as a co-solvent for toxicity testing of hydrophobic organic compounds in aqueous solutions. As the toxicity measure, we used growth inhibition of a natural bacterial community, and the test toxicants included phenol, BTEX (benzene, toluene, ethylbenzene and xylene) and transformation products of polycyclic aromatic hydrocarbons (PAHs). We found that dose-response curves for phenol were unaffected by DMSO concentrations up to 10% (v/v) and that DMSO (5% v/v) did not affect the degree of bacterial growth inhibition for any of the other test compounds in short-term experiments (3.5 h). By contrast, marked co-solvent effects of DMSO were observed in the long-term assay (25 and 27 h). We therefore conclude that DMSO has excellent co-solvent properties for short-term (≤3.5 h) toxicity testing of sparingly water-soluble compounds and its application provides a simple, inexpensive approach for screening of various environmentally relevant hydrophobic chemicals. Importantly, the use of DMSO allows for generation of full dose-responses that may otherwise not be attained.
Collapse
Affiliation(s)
- Jakub J Modrzyński
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350, Copenhagen, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Promoting zebrafish embryo tool to identify the effects of chemicals in the context of Water Framework Directive monitoring and assessment. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Yılmaz A, Tolun LG, Okay OS. Pollution and toxicity of sediment in potential dredging sites of the Marmara Sea, Turkey. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1206-1218. [PMID: 31271113 DOI: 10.1080/10934529.2019.1631656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
This study aims to assess the impact of the sediment in the potential dredging areas of the Marmara Sea. To that aim, sediments were analyzed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and heavy metals, sources were discussed, and toxicity tests were applied. For assessment, lower and upper limits of Turkish draft regulation (LTR, UTR) and UNEP-MAP's guidance document (LCT, UCT), and effects range low and median (ERL, ERM) were used. Total concentrations were found between 562 and 8643 µg kg-1 for PAHs, 4-36 µg kg-1 for PCBs, and 14-190 µg kg-1 for OCPs. The highest ∑PAH concentrations were measured in Golden Horn, and none of the PAH compounds was above ERM. ERL and UCT were exceeded in İstinye and Golden Horn stations. The highest ∑PCBs and ∑OCPs levels were determined in İzmit Bay (IB). ΣPCBs in IB were higher than ERL and LTR, while ΣDDT were found above ERM and UCT. High concentrations of chromium (∼190 mg kg-1) and copper (∼180 mg kg-1) in Golden Horn and mercury in IB (∼4 mg kg-1) were detected. The highest toxicities were observed in İstinye and İzmit Bay. According to the regulations, none of the sediments can be dumped.
Collapse
Affiliation(s)
- Atilla Yılmaz
- Faculty of Naval Architecture and Ocean Engineering, İstanbul Technical University , İstanbul , Turkey
| | - Leyla G Tolun
- Environment and Cleaner Production Institute, TÜBİTAK Marmara Research Center , Kocaeli , Turkey
| | - Oya S Okay
- Faculty of Naval Architecture and Ocean Engineering, İstanbul Technical University , İstanbul , Turkey
| |
Collapse
|
10
|
Babić S, Barišić J, Stipaničev D, Repec S, Lovrić M, Malev O, Martinović-Weigelt D, Čož-Rakovac R, Klobučar G. Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:435-450. [PMID: 29945079 DOI: 10.1016/j.scitotenv.2018.06.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 05/25/2023]
Abstract
Quantitative chemical analyses of 428 organic contaminants (OCs) indicated the presence of 313 OCs in the sediment extracts from Sava River, Croatia. Pharmaceuticals were present in higher concentrations than pesticides thus confirming their increasing threat to freshwater ecosystems. Toxicity evaluation of the sediment extracts from four locations (Jesenice, Rugvica, Galdovo and Lukavec) using zebrafish embryotoxicity test (ZET) accompanied with semi-quantitative histopathological analyses exhibited correlation with cumulative number and concentrations of OCs at the investigated sites (10.05, 15.22, 1.25, and 9.13 μg/g respectively). Toxicity of sediment extracts and sediment was predicted using toxic unit (TU) approach and persistence, bioaccumulation and toxicity (PBT) ranking. Additionally, influential OCs and genes were identified by graph mining of the prior knowledge informed, site-specific chemical-gene interaction models. Predicted toxicity of sediment extracts (TUext) was similar to the results obtained by ZET and associated histopathology with Rugvica sediment being the most toxic, followed by Jesenice, Lukavec and Galdovo. Sediment TU (TUsed) favoured OCs with low octanol-water partition coefficients like herbicide glyphosate and antibiotics ciprofloxacin and sulfamethazine thus indicating locations containing higher concentrations of these OCs (Galdovo and Rugvica) as the most toxic. Results suggest that comprehensive in silico sediment toxicity predictions advocate providing equal attention to organic contaminants with either very low or very high log Kow.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13/6, A-8010 Graz, Austria; NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Olga Malev
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia; Department for Translational Medicine, Children's Hospital Srebrnjak, Srebrnjak 100, Zagreb, Croatia
| | - Dalma Martinović-Weigelt
- University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN 55105, USA
| | - Rozelindra Čož-Rakovac
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Göran Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
11
|
Durán C, Blanco V, Piccini C, Zunino P, Rodríguez E. A Simple and Effective Method for Extracting Potential Mutagens from Sediment Samples in the Classroom Laboratory Setting. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2018; 19:jmbe-19-60. [PMID: 29904547 PMCID: PMC5969433 DOI: 10.1128/jmbe.v19i1.1509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
We describe a simple and effective method for the extraction of potential mutagens from sediment samples. This method is straightforward and does not require expensive laboratory equipment, thus enabling instructors to analyze the presence of mutagenic substances in a conventional classroom setting. Additionally, we found that students felt encouraged to add the Ames test to the list of analyses they traditionally employ with sediment samples. This link between the environment and the Ames test provided an authentic learning context for students, bridging the gap between the "real-world" and the classroom laboratory, and thus making the educational experience more engaging and meaningful.
Collapse
Affiliation(s)
- Catalina Durán
- Unidad Académica de Laboratorios Prácticos, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Valentina Blanco
- Unidad Académica de Laboratorios Prácticos, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Pablo Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Eliana Rodríguez
- Unidad Académica de Laboratorios Prácticos, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
12
|
Schreiber B, Fischer J, Schiwy S, Hollert H, Schulz R. Towards more ecological relevance in sediment toxicity testing with fish: Evaluation of multiple bioassays with embryos of the benthic weatherfish (Misgurnus fossilis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:391-400. [PMID: 29156260 DOI: 10.1016/j.scitotenv.2017.11.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish (Misgurnus fossilis) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish (Danio rerio) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96h-LC50) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare concerns.
Collapse
Affiliation(s)
- Benjamin Schreiber
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany.
| | - Jonas Fischer
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany; Center for Environmental Research and Technology, General and Theoretical Ecology, University of Bremen, Leobener Strasse, Bremen, Germany
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| |
Collapse
|
13
|
Boehler S, Strecker R, Heinrich P, Prochazka E, Northcott GL, Ataria JM, Leusch FDL, Braunbeck T, Tremblay LA. Assessment of urban stream sediment pollutants entering estuaries using chemical analysis and multiple bioassays to characterise biological activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:498-507. [PMID: 28360001 DOI: 10.1016/j.scitotenv.2017.03.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Stormwater contaminants are a major source of often neglected environmental stressors because of the emphasis placed on the management of municipal and industrial wastewaters. Stormwater-derived pollutants in sediments from two New Zealand estuaries was characterised by analytical chemistry and bioassays. Contaminants were extracted from sediment using accelerated solvent extraction (ASE), recovered and concentrated by solid phase extraction (SPE), and analysed for polycyclic aromatic hydrocarbons (PAHs), selected metals, and musk fragrances. The concentrations of PAHs were below the ANZECC Interim Sediment Quality Guideline values while those of lead and zinc exceeded them in some samples. The sediment extracts containing organic contaminants exhibited acute toxicity in the zebrafish fish embryo toxicity (FET) and teratogenicity, induction of biotransformation (EROD activity), and genotoxicity (comet assay) in zebrafish. The potential of the extracts to interact with endocrine signalling processes was assessed by GeneBLAzer reporter gene bioassays and they exhibited estrogenic, androgenic, and anti-progestagenic activities.
Collapse
Affiliation(s)
- Svenja Boehler
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Ruben Strecker
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Patrick Heinrich
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Erik Prochazka
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| | | | | | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Louis A Tremblay
- Cawthron Institute, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
14
|
Kais B, Schiwy S, Hollert H, Keiter SH, Braunbeck T. In vivo EROD assays with the zebrafish (Danio rerio) as rapid screening tools for the detection of dioxin-like activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:269-280. [PMID: 28268020 DOI: 10.1016/j.scitotenv.2017.02.236] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The present study compares two alternative in vivo approaches for the measurement of ethoxyresorufin-O-deethylase (EROD) activity in zebrafish (Danio rerio) following exposure to acetonic model sediment extracts: (1) the live-imaging EROD assay for the direct detection of EROD induction in individual livers via epifluorescence, and (2) the fish embryo EROD assay in subcellular fractions derived from entire zebrafish embryos after in vivo exposure. For toxicity assessment, each sediment extract was tested with the standard fish embryo test (FET). Upon completion of a functioning liver after 72h, the embryos gave a distinct fluorescent signal in the liver, and a corresponding EROD activity could be detected in the fish embryo EROD assay. The exposure time in the live-imaging EROD assay was reduced to 3h, which resulted in a stronger, less variable and more sensitive EROD response. Overall, the live-imaging and the fish embryo EROD assays showed the same tendencies and gave comparable results, e.g. a concentration-dependent increase in EROD activity at concentrations one order of magnitude below concentrations producing macroscopically visible abnormalities. At higher concentrations, however, a decrease of EROD activity was observed in either test. Both tests ranked the three model sediment extracts in the same order. Results indicate that both test systems complement each other and together provide a rapid and reliable in vivo tool to investigate the presence of dioxin-like substances in environmental samples.
Collapse
Affiliation(s)
- Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany.
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Gartiser S, Heisterkamp I, Schoknecht U, Bandow N, Burkhardt NM, Ratte M, Ilvonen O. Recommendation for a test battery for the ecotoxicological evaluation of the environmental safety of construction products. CHEMOSPHERE 2017; 171:580-587. [PMID: 28040614 DOI: 10.1016/j.chemosphere.2016.12.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/21/2023]
Abstract
The European Construction Products Regulation allows Member States to adopt rules for evaluating the environmental impact of their buildings. The aim of the project was to develop recommendations for a test battery for the ecotoxicological assessment of the environmental impact of construction products for outdoor use and contribute to the European harmonization of test methods. From a shortlist of 39 products 20 products were included in the ecotoxicological testing program. Monolithic and plate-like construction products were eluted in the Dynamic Surface Leaching test (DSLT) in accordance with CEN/TS 16637-2, granular products were eluted in a one stage batch test in accordance with DIN EN 12457-1. The eluates were examined in four aquatic toxicity tests (algae, daphnia, luminescent bacteria, fish eggs), a genotoxicity test (umu test) and in the respirometer test (OECD 301 F). Here, low to very high ecotoxicity was observed (up to a dilution factor of 1536). Six out of 8 eluates, whose TOC exceeded 10 mg L-1 showed a good biodegradability above 75%. The intra-laboratory repeatability of the Lowest Ineffective Dilution (LID) usually was within ±1 dilution steps (ecotoxicity tests) and ±2 dilution steps (leaching and ecotoxicity tests). This is acceptable, when considering that the overall variability of sample preparation, leaching test, and bioassays add up. The conclusions lead to practical recommendations for a suitable combination of leaching and ecotoxicity tests.
Collapse
Affiliation(s)
| | | | - Ute Schoknecht
- BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Nicole Bandow
- BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - N Michael Burkhardt
- HSR University of Applied Sciences Rapperswil, Institute for Environmental and Process Engineering (UMTEC), Rapperswil, Switzerland
| | | | | |
Collapse
|
16
|
Häder DP, Erzinger GS. Daphniatox - Online monitoring of aquatic pollution and toxic substances. CHEMOSPHERE 2017; 167:228-235. [PMID: 27723478 DOI: 10.1016/j.chemosphere.2016.09.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/22/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The microcrustacean Daphnia is sensitive to many toxic substances and can be cultured easily. The Daphniatox instrument is based on computerized image analysis tracking swimming organisms in real time. The software evaluates 14 endpoints including motility, swimming velocity, orientation with respect to light and gravity as well as cell form and size. The system determines movement vectors of a large number of organisms to warrant high statistical significance and calculates mean values as well as standard deviation. Tests with K dichromate show that the toxin inhibits motility (EC50 0.75 mg/L), swimming velocity (EC50 0.70 mg/L) and even causes a significant decrease in length (16% at 4 mg/L) and changes the form of the animals, This bioassay can be used to monitor the toxicity of a large number of dissolved pollutants and toxic substances such as arsenic, dichromate and persistent organic pollutants.
Collapse
Affiliation(s)
- Donat-P Häder
- Emeritus from Friedrich-Alexander University, Department of Biology, Neue Str. 9, 91096, Möhrendorf, Germany.
| | - Gilmar S Erzinger
- Department of Medicine and Pharmacy, University of Joinville Region - UNIVILLE, Rua Paulo Malschitzki, 10 Campus - Industrial Zone, PO Box 246, Joinville, SC, CEP 89219-710, Brazil.
| |
Collapse
|
17
|
Jarque S, Masner P, Klánová J, Prokeš R, Bláha L. Bioluminescent Vibrio fischeri Assays in the Assessment of Seasonal and Spatial Patterns in Toxicity of Contaminated River Sediments. Front Microbiol 2016; 7:1738. [PMID: 27872614 PMCID: PMC5097916 DOI: 10.3389/fmicb.2016.01738] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/18/2016] [Indexed: 01/18/2023] Open
Abstract
Several bacteria-based assays, notably Vibrio fischeri luminescence assays, are often used as environmental monitoring tool for toxicity in sediments that may serve as both sinks and secondary source of contamination in aquatic ecosystems. In this study, we used 30-s kinetic bioassays based on V. fischeri to evaluate the toxicity associated to sediments from five localities with different contamination inputs (Morava River and its tributary Drevnice River in the south-eastern part of the Czech Republic). Toxicity assessed as half maximal inhibitory concentration (IC50) over the course of a year-long sampling was compared in bottom sediments and freshly trapped particulate material. Standard approach based on testing of aqueous elutriates was compared with toxicity of whole sediments (contact suspension toxicity). Bottom sediments showed lower toxicity compared to freshly trapped suspended materials in all cases. On the other hand, standardized elutriates induced generally weaker effects than suspended sediments likely due to losses during the extraction process. Toxicity generally increased during winter reaching maximum peaks in early spring months in all five sites. Total organic carbon (TOC) was found to be highly correlated with toxic effects. Toxicity from sites with direct industrial and agricultural water inputs also correlated with concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). Single time point sampling followed by the extraction and testing of elutriates, do not truly reflect the spatial and temporal variability in natural sediments and may lead to underestimation of ecotoxic risks.
Collapse
Affiliation(s)
- Sergio Jarque
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Brno, Czech Republic
| | - Petr Masner
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Brno, Czech Republic
| | - Jana Klánová
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Brno, Czech Republic
| | - Roman Prokeš
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Brno, Czech Republic
| | - Ludek Bláha
- Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Brno, Czech Republic
| |
Collapse
|
18
|
Schiwy A, Maes HM, Koske D, Flecken M, Schmidt KR, Schell H, Tiehm A, Kamptner A, Thümmler S, Stanjek H, Heggen M, Dunin-Borkowski RE, Braun J, Schäffer A, Hollert H. The ecotoxic potential of a new zero-valent iron nanomaterial, designed for the elimination of halogenated pollutants, and its effect on reductive dechlorinating microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:419-427. [PMID: 27317494 DOI: 10.1016/j.envpol.2016.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to assess the ecotoxic potential of a new zero-valent iron nanomaterial produced for the elimination of chlorinated pollutants at contaminated sites. Abiotic dechlorination through the newly developed nanoscale zero-valent iron material and its effects on dechlorinating bacteria were investigated in anaerobic batch and column experiments. The aged, i.e. oxidized, iron material was characterization with dynamic light scattering, transmission electron microscopy and energy dispersive x-ray analysis, x-ray diffractometry and cell-free reactive oxygen measurements. Furthermore, it was evaluated in aerobic ecotoxicological test systems with algae, crustacean, and fish, and also applied in a mechanism specific test for mutagenicity. The anaerobic column experiments showed co-occurrence of abiotic and biological dechlorination of the common groundwater contaminant perchloroethene. No prolonged toxicity of the nanomaterial (measured for up to 300 days) towards the investigated dechlorinating microorganism was observed. The nanomaterial has a flake like appearance and an inhomogeneous size distribution. The toxicity to crustacean and fish was calculated and the obtained EC50 values were 163 mg/L and 458 mg/L, respectively. The nanomaterial showed no mutagenicity. It physically interacted with algae, which had implications for further testing and the evaluation of the results. Thus, the newly developed iron nanomaterial was slightly toxic in its reduced state but no prolonged toxicity was recorded. The aquatic tests revealed a low toxicity with EC50 values ≥ 163 mg/L. These concentrations are unlikely to be reached in the aquatic environment. Hence, this nanomaterial is probably of no environmental concern not prohibiting its application for groundwater remediation.
Collapse
Affiliation(s)
- Andreas Schiwy
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Hanna M Maes
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Daniel Koske
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Mirkko Flecken
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Kathrin R Schmidt
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Heico Schell
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Andreas Tiehm
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Andre Kamptner
- UVR-FIA GmbH, Chemnitzer Straße 40, 09599 Freiberg, Germany
| | - Silke Thümmler
- UVR-FIA GmbH, Chemnitzer Straße 40, 09599 Freiberg, Germany
| | - Helge Stanjek
- Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072 Aachen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Jürgen Braun
- VEGAS-Research Facility for Subsurface Remediation, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing 400715, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Qixia District Xianlin Avenue, Nanjing 210023, China
| | - Henner Hollert
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing 400715, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Qixia District Xianlin Avenue, Nanjing 210023, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
19
|
Hollert H, Keiter SH. Danio rerio as a model in aquatic toxicology and sediment research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16243-16246. [PMID: 26374542 DOI: 10.1007/s11356-015-5362-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Affiliation(s)
- H Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Steffen H Keiter
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
20
|
Garcia-Käufer M, Gartiser S, Hafner C, Schiwy S, Keiter S, Gründemann C, Hollert H. Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16341-16357. [PMID: 25471716 DOI: 10.1007/s11356-014-3894-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The embryotoxic potential of three model sediment samples with a distinct and well-characterized pollutant burden from the main German river basins Rhine and Elbe was investigated. The Fish Embryo Contact Test (FECT) in zebrafish (Danio rerio) was applied and submitted to further development to allow for a comprehensive risk assessment of such complex environmental samples. As particulate pollutants are constructive constituents of sediments, they underlay episodic source-sink dynamics, becoming available to benthic organisms. As bioavailability of xenobiotics is a crucial factor for ecotoxicological hazard, we focused on the direct particle-exposure pathway, evaluating throughput-capable endpoints and considering toxicokinetics. Fish embryo and larvae were exposed toward reconstituted (freeze-dried) sediment samples on a microcosm-scale experimental approach. A range of different developmental embryonic stages were considered to gain knowledge of potential correlations with metabolic competence during the early embryogenesis. Morphological, physiological, and molecular endpoints were investigated to elucidate induced adverse effects, placing particular emphasis on genomic instability, assessed by the in vivo comet assay. Flow cytometry was used to investigate the extent of induced cell death, since cytotoxicity can lead to confounding effects. The implementation of relative toxicity indices further provides inter-comparability between samples and related studies. All of the investigated sediments represent a significant ecotoxicological hazard by disrupting embryogenesis in zebrafish. Beside the induction of acute toxicity, morphological and physiological embryotoxic effects could be identified in a concentration-response manner. Increased DNA strand break frequency was detected after sediment contact in characteristic non-monotonic dose-response behavior due to overlapping cytotoxic effects. The embryonic zebrafish toxicity model along with the in vivo comet assay and molecular biomarker analysis should prospectively be considered to assess the ecotoxicological potential of sediments allowing for a comprehensive hazard ranking. In order to elucidate mode of action, novel techniques such as flow cytometry have been adopted and proved to be valuable tools for advanced risk assessment and management.
Collapse
Affiliation(s)
- M Garcia-Käufer
- Hydrotox GmbH, Bötzingerstr. 109, 79098, Freiburg, Germany.
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Center for Complementary Medicine, Department of Environmental Health Sciences, University Medical Centre Freiburg, Breisacherstr. 115b, 79106, Freiburg, Germany.
- Department of Environmental Health Sciences, University Medical Centre Freiburg, Breisacherstr. 115b, 79106, Freiburg, Germany.
| | - S Gartiser
- Hydrotox GmbH, Bötzingerstr. 109, 79098, Freiburg, Germany
| | - C Hafner
- Hydrotox GmbH, Bötzingerstr. 109, 79098, Freiburg, Germany
| | - S Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - S Keiter
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 70182, Örebro, Sweden
| | - C Gründemann
- Center for Complementary Medicine, Department of Environmental Health Sciences, University Medical Centre Freiburg, Breisacherstr. 115b, 79106, Freiburg, Germany
| | - H Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- School of Environment, Nanjing University, Nanjing, China
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- College of Resources and Environmental Science, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Bräunig J, Schiwy S, Broedel O, Müller Y, Frohme M, Hollert H, Keiter SH. Time-dependent expression and activity of cytochrome P450 1s in early life-stages of the zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16319-16328. [PMID: 25994265 DOI: 10.1007/s11356-015-4673-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
Zebrafish embryos are being increasingly used as model organisms for the assessment of single substances and complex environmental samples for regulatory purposes. Thus, it is essential to fully understand the xenobiotic metabolism during the different life-stages of early development. The aim of the present study was to determine arylhydrocarbon receptor (AhR)-mediated activity during selected times of early development using qPCR, enzymatic activity through measurement of 7-ethoxyresorufin-O-deethylase (EROD) activity, and protein expression analysis. In the present study, gene expression of cyp1a, cyp1b1, cyp1c1, cyp1c2, and ahr2 as well as EROD activity were investigated up to 120 h postfertilization (hpf) after exposure to either β-naphthoflavone (BNF) or a polycyclic aromatic hydrocarbons (PAH)-contaminated sediment extract from Vering Kanal in Hamburg (VK). Protein expression was measured at 72 hpf after exposure to 20 μg/L BNF. Altered proteins were identified by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) peptide mass fingerprinting. Distinct patterns of basal messenger RNA (mRNA) expression were found for each of the cyp1 genes, suggesting specific roles during embryonic development. All transcripts were induced by BNF and VK. ahr2 mRNA expression was significantly upregulated after exposure to VK. All cyp1 genes investigated showed a temporal decline in expression at 72 hpf. The significant decline of Hsp 90β protein at 72 hpf after exposure to BNF may suggest an explanation for the decline of cyp1 genes at this time point as Hsp 90β is of major importance for the functioning of the Ah-receptor. EROD activity measured in embryos was significantly induced after 96 hpf of exposure to BNF or VK. Together, these results demonstrate distinct temporal patterns of cyp1 genes and protein activities in zebrafish embryos as well as show a need to investigate further the xenobiotic biotransformation system during early development of zebrafish.
Collapse
Affiliation(s)
- Jennifer Bräunig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- National Research Centre for Environmental Toxicology (Entox), The University of Queensland, 39 Kessels Road, 4108, Brisbane, Queensland, Australia.
| | - Sabrina Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Oliver Broedel
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Yvonne Müller
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|