1
|
Militon C, Michaud E, Sylvi L, Millera Ferriz L, Roic E, Gilbert F, Jézéquel R, Cuny P. In situ oil contamination in young mangroves: Biodegradation of petroleum hydrocarbons and effects on the microbial and benthic communities, an experimental study in French Guiana. MARINE POLLUTION BULLETIN 2024; 209:117285. [PMID: 39579482 DOI: 10.1016/j.marpolbul.2024.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
An in-situ experiment was conducted in a young mangrove with no history of oil contamination (French Guiana). Control and oil-contaminated sediments were sampled one month after exposure and analyzed to a depth of 18 cm to assess natural oil depletion and changes in benthic communities. High biodegradation percentages (89-99 %) of n-alkanes and polycyclic aromatic hydrocarbons were measured. The microbiological results suggest that this degradation is strongly connected to several bacterial taxa. A 90 % decrease in the meso- (>250 mm) and macro-benthic organisms' (>1 mm) densities was observed. The oil has also significantly impacted the composition of the benthos, as well as the microorganisms responsible for mediating biogeochemical functions associated with nitrogen turnover. While chemical and microbiological analyses revealed a high bioremediation potential by the indigenous microbes, an oil spill would be a catastrophic event for the benthic fauna, which could, in turn, affect the microbial communities.
Collapse
Affiliation(s)
- Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Lise Millera Ferriz
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Enora Roic
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Franck Gilbert
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | | | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
2
|
Zhu Y, Xu Y, Xu J, Meidl P, He Y. Contrasting response strategies of microbial functional traits to polycyclic aromatic hydrocarbons contamination under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131548. [PMID: 37141779 DOI: 10.1016/j.jhazmat.2023.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
PAHs (Polycyclic aromatic hydrocarbons) are widely distributed in soil ecosystems, but our knowledge regarding the impacts of PAHs effects on soil microbial functional traits is limited. In this study, we evaluated the response and regulating strategies of microbial functional traits that are associated with the typical C, N, P, S cycling processes in a pristine soil under aerobic and anaerobic conditions after the addition of PAHs. Results revealed that indigenous microorganisms had strong degradation potential and adaptability to PAHs especially under aerobic conditions, while anaerobic conditions favored the degradation of high molecular weight PAHs. PAHs exhibited contrasting effects on soil microbial functional traits under different aeration conditions. It would probably change microbial carbon source utilization preference, stimulate inorganic P solubilization and strengthen the functional interactions between soil microorganisms under aerobic conditions, while might cause the increase of H2S and CH4 emissions under anaerobic conditions. This research provides an effective theoretical support for the ecological risk assessment of soil PAHs pollution.
Collapse
Affiliation(s)
- Yanjie Zhu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China; College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
3
|
Effective degradation of organophosphate ester flame retardants and plasticizers in coastal sediments under high urban pressure. Sci Rep 2022; 12:20228. [PMID: 36418387 PMCID: PMC9684566 DOI: 10.1038/s41598-022-24685-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Empirical evidence of the effective degradation at environmentally relevant conditions of organophosphate esters (OPEs) flame retardants and plasticizers in coastal sediments from an impacted area in the NW Mediterranean Sea is provided. Half-lives varied from 23.3 to 77.0 (abiotic conditions) and from 16.8 to 46.8 days (biotic conditions), depending on the compound, highlighting the relevant role of microbial assemblages enhancing OPE degradation. After an immediate significant reduction of the bacterial abundance due to OPE addition to the sediment at the very beginning of the experiment, the observed biodegradation was associated to a general stimulation of the growth of the bacterial community during a first period, but without a marked change of the structure of the community. However, OPE contamination induced a decrease on the diversity of the bacterial community in the coastal sediment, noticeable after 14 days of incubation. It is likely that on one side the contamination had favoured the growth of some bacterial groups maybe involved in the biodegradation of these compounds but, on the other side, had also impacted some sensitive bacteria. The estimated half-lives fill a data gap concerning OPE degradation rates in marine sediments and will be valuable data for the refinement of OPE chemical risk assessment in marine environments, particularly on impacted sites.
Collapse
|
4
|
Liu Y, Sun Y, Yu J, Xia X, Ding A, Zhang D. Impacts of groundwater level fluctuation on soil microbial community, alkane degradation efficiency and alkane-degrading gene diversity in the critical zone: Evidence from an accelerated water table fluctuation simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83060-83070. [PMID: 35759097 DOI: 10.1007/s11356-022-21246-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Petroleum hydrocarbons are hazardous to ecosystems and human health, commonly containing n-alkanes and polycyclic aromatic hydrocarbons. Previous researches have studied alkane degraders and degrading genes under aerobic or anaerobic conditions, but seldom discussed them in the intermittent saturation zone which is a connective area between the vadose zone and the groundwater aquifer with periodic alteration of oxygen and moisture. The present study investigated the difference in alkane degradation efficiency, bacterial community, and alkane degrading gene diversity in aerobic, anaerobic, and aerobic-anaerobic fluctuated treatments. All biotic treatments achieved over 90% of n-alkane removal after 120 days of incubation. The removal efficiencies of n-alkanes with a carbon chain length from 16 to 25 were much higher in anaerobic scenarios than those in aerobic scenarios, explained by different dominant microbes between aerobic and anaerobic conditions. The highest removal efficiency was found in fluctuation treatments, indicating an accelerated n-alkane biodegradation under aerobic-anaerobic alternation. In addition, the copy numbers of the 16S rRNA gene and two alkB genes (alkB-P and alkB-R) declined dramatically when switched from aerobic to anaerobic scenarios and oppositely from anaerobic to aerobic conditions. This suggested that water level fluctuation could notably change the presence of aerobic alkane degrading genes. Our results suggested that alkane degradation efficiency, soil microbial community, and alkane-degrading genes were all driven by water level fluctuation in the intermittent saturation zone, helping better understand the effects of seasonal water table fluctuation on the biodegradation of petroleum hydrocarbons in the subsurface environment.
Collapse
Affiliation(s)
- Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jingshan Yu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuefeng Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Lyu L, Li J, Chen Y, Mai Z, Wang L, Li Q, Zhang S. Degradation potential of alkanes by diverse oil-degrading bacteria from deep-sea sediments of Haima cold seep areas, South China Sea. Front Microbiol 2022; 13:920067. [PMID: 36338091 PMCID: PMC9626528 DOI: 10.3389/fmicb.2022.920067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Marine oil spills are a significant concern worldwide, destroying the ecological environment and threatening the survival of marine life. Various oil-degrading bacteria have been widely reported in marine environments in response to marine oil pollution. However, little information is known about culturable oil-degrading bacteria in cold seep of the deep-sea environments, which are rich in hydrocarbons. This study enriched five oil-degrading consortia from sediments collected from the Haima cold seep areas of the South China Sea. Parvibaculum, Erythrobacter, Acinetobacter, Alcanivorax, Pseudomonas, Marinobacter, Halomonas, and Idiomarina were the dominant genera. Further results of bacterial growth and degradation ability tests indicated seven efficient alkane-degrading bacteria belonging to Acinetobacter, Alcanivorax, Kangiella, Limimaricola, Marinobacter, Flavobacterium, and Paracoccus, whose degradation rates were higher in crude oil (70.3–78.0%) than that in diesel oil (62.7–66.3%). From the view of carbon chain length, alkane degradation rates were medium chains > long chains > short chains. In addition, Kangiella aquimarina F7, Acinetobacter venetianus F1, Limimaricola variabilis F8, Marinobacter nauticus J5, Flavobacterium sediminis N3, and Paracoccus sediminilitoris N6 were first identified as oil-degrading bacteria from deep-sea environments. This study will provide insight into the bacterial community structures and oil-degrading bacterial diversity in the Haima cold seep areas, South China Sea, and offer bacterial resources to oil bioremediation applications.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Lina Lyu,
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Si Zhang,
| |
Collapse
|
6
|
A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms 2022; 10:microorganisms10071289. [PMID: 35889007 PMCID: PMC9324126 DOI: 10.3390/microorganisms10071289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for petroleum products generates needs for innovative and reliable methods for cleaning up crude oil spills. Annually, several oil spills occur around the world, which brings numerous ecological and environmental disasters on the surface of deep seawaters like oceans. Biological and physico-chemical remediation technologies can be efficient in terms of spill cleanup and microorganisms—mainly bacteria—are the main ones responsible for petroleum hydrocarbons (PHCs) degradation such as crude oil. Currently, biodegradation is considered as one of the most sustainable and efficient techniques for the removal of PHCs. However, environmental factors associated with the functioning and performance of microorganisms involved in hydrocarbon-degradation have remained relatively unclear. This has limited our understanding on how to select and inoculate microorganisms within technologies of cleaning and to optimize physico-chemical remediation and degradation methods. This review article presents the latest discoveries in bioremediation techniques such as biostimulation, bioaugmentation, and biosurfactants as well as immobilization strategies for increasing the efficiency. Besides, environmental affecting factors and microbial strains engaged in bioremediation and biodegradation of PHCs in marines are discussed.
Collapse
|
7
|
Effect of pyrene and phenanthrene in shaping bacterial communities in seagrass meadows sediments. Arch Microbiol 2021; 203:4259-4272. [PMID: 34100100 DOI: 10.1007/s00203-021-02410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37-89%), Firmicutes (9-41%), and Bacteroides (7-21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas, Spinghobium, Sphingobacterium, Mycobacterium, Pseudoxanthomonas, Idiomarina, Stenotrophomonas, were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia (P < 0.05). This work showed that polycyclic aromatic hydrocarbon significantly affects bacterial community succession, and different PAHs might influence the bacterial community succession differently.
Collapse
|
8
|
Jang J, Forbes VE, Sadowsky MJ. Lack of evidence for the role of gut microbiota in PAH biodegradation by the polychaete Capitella teleta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138356. [PMID: 32302836 DOI: 10.1016/j.scitotenv.2020.138356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Capitella teleta is a marine sediment-feeding polychaete known to degrade various polycyclic aromatic hydrocarbons (PAHs) and reported to possess genes involved in PAH transformation, such as those in the P450 cytochrome superfamily. Previous research focusing on biodegradation of PAHs by C. teleta demonstrated that these worms are effective biodegraders, but overlooked the possible role of its gut microbiota in facilitating PAH metabolism. Recently, C. teleta's microbiome was characterized and found to contain several bacterial genera known to contain PAH-degrading members, including Acinetobacter, Thalassotalea, and Achromobacter. Despite this, however, no data have thus far been presented demonstrating the role of C. teleta's gut microbiota in PAH degradation. The present study was designed to more conclusively determine the presence of PAH-degrading bacteria in worm digestive tracts and to more clearly distinguish the relative roles of worm versus gut-microbial metabolism in the removal of PAH from sediment. To do this, we manipulated marine sediment microorganisms and worm gut microbiota by autoclaving and antibiotic treatment, respectively. Our results showed that no fluoranthene degradation occurred in microcosms in the absence of worms. More importantly, there was no significant difference in fluoranthene degradation between antibiotic-treated and non-treated worms. We also found no evidence of fluoranthene degradation using resting cells of gut microbes of C. teleta, and we were unable to isolate fluoranthene-degrading bacterial strains from enrichments of polychaete gut contents, despite multiple attempts. Gut microbiota in worms treated with antibiotics recovered, through bidirectional transfer, between worms and sediment after 2 weeks of microcosm incubation, and gut microbes appear to be required for the survival and growth of C. teleta. Our results build on previous studies suggesting that C. teleta itself is primarily responsible for the metabolism of fluoranthene in ingested sediment. We hypothesize that C. teleta's core microbiota, which includes members of Propionibacterium as the most abundant genus, likely aid worms in obtaining key nutrients (e.g., vitamins) from its sediment diet.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
9
|
Benedek T, Szentgyörgyi F, Szabó I, Farkas M, Duran R, Kriszt B, Táncsics A. Aerobic and oxygen-limited naphthalene-amended enrichments induced the dominance of Pseudomonas spp. from a groundwater bacterial biofilm. Appl Microbiol Biotechnol 2020; 104:6023-6043. [PMID: 32415320 PMCID: PMC7306034 DOI: 10.1007/s00253-020-10668-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
In this study, we aimed at determining the impact of naphthalene and different oxygen levels on a biofilm bacterial community originated from a petroleum hydrocarbon-contaminated groundwater. By using cultivation-dependent and cultivation-independent approaches, the enrichment, identification, and isolation of aerobic and oxygen-limited naphthalene degraders was possible. Results indicated that, regardless of the oxygenation conditions, Pseudomonas spp. became the most dominant in the naphthalene-amended selective enrichment cultures. Under low-oxygen conditions, P. veronii/P. extremaustralis lineage affiliating bacteria, and under full aerobic conditions P. laurentiana-related isolates were most probably capable of naphthalene biodegradation. A molecular biological tool has been developed for the detection of naphthalene 1,2-dioxygenase-related 2Fe-2S reductase genes of Gram-negative bacteria. The newly developed COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOP-PCR) technique may be used in the monitoring of the natural attenuation capacity of PAH-contaminated sites. A bacterial strain collection with prolific biofilm-producing and effective naphthalene-degrading organisms was established. The obtained strain collection may be applicable in the future for the development of biofilm-based bioremediation systems for the elimination of PAHs from groundwater (e.g., biofilm-based biobarriers).
Collapse
Affiliation(s)
- Tibor Benedek
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary.
| | - Flóra Szentgyörgyi
- Department of Environmental Protection and Safety, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - István Szabó
- Department of Environmental Protection and Safety, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Milán Farkas
- Department of Environmental Protection and Safety, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Robert Duran
- IPREM UMR CNRS 5254, Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, Pau, France
| | - Balázs Kriszt
- Department of Environmental Protection and Safety, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - András Táncsics
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| |
Collapse
|
10
|
Structure and Functions of Hydrocarbon-Degrading Microbial Communities in Bioelectrochemical Systems. WATER 2020. [DOI: 10.3390/w12020343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioelectrochemical systems (BESs) exploit the interaction between microbes and electrodes. A field of application thereof is bioelectrochemical remediation, an effective strategy in environments where the absence of suitable electron acceptors limits classic bioremediation approaches. Understanding the microbial community structure and genetic potential of anode biofilms is of great interest to interpret the mechanisms occurring in BESs. In this study, by using a whole metagenome sequencing approach, taxonomic and functional diversity patterns in the inoculum and on the anodes of three continuous-flow BES for the removal of phenol, toluene, and BTEX were obtained. The genus Geobacter was highly enriched on the anodes and two reconstructed genomes were taxonomically related to the Geobacteraceae family. To functionally characterize the microbial community, the genes coding for the anaerobic degradation of toluene, ethylbenzene, and phenol were selected as genetic markers for the anaerobic degradation of the pollutants. The genes related with direct extracellular electron transfer (EET) were also analyzed. The inoculum carried the genetic baggage for the degradation of aromatics but lacked the capacity of EET while anodic bacterial communities were able to pursue both processes. The metagenomic approach provided useful insights into the ecology and complex functions within hydrocarbon-degrading electrogenic biofilms.
Collapse
|
11
|
Ahmad M, Yang Q, Zhang Y, Ling J, Sajjad W, Qi S, Zhou W, Zhang Y, Lin X, Zhang Y, Dong J. The distinct response of phenanthrene enriched bacterial consortia to different PAHs and their degradation potential: a mangrove sediment microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120863. [PMID: 31401251 DOI: 10.1016/j.jhazmat.2019.120863] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the microbial community succession to polycyclic aromatic hydrocarbons (PAHs) and identification of important degrading microbial groups are crucial for the designing of appropriate bioremediation strategies. In the present study, two distinct phenanthrene enriched bacterial consortia were treated against high molecular weight (Pyrene, Benzo (a) pyrene and Benzo (a) fluoranthene) and the response was studied in term of taxonomic variations by using High Throughput Illumina sequencing and qPCR analysis. Overall, the type of PAHs significantly affected the composition and the relative abundance of bacterial communities while no obvious difference was detected between bacterial communities of benzo (a) pyrene and benzo (a) fluoranthene treatments. Genera, Novosphingobium, Pseudomonas, Flavobacterium, Mycobacterium, Hoeflae, and Algoriphagus dominated all PAHs treatment groups indicating that they could be the key PAHs degrading phylotypes. Due to the higher abundance of gram-negative PAH-ring hydroxylating dioxygenase gene than that of gram-positive bacteria in all treated groups, we speculated that gram-negative bacteria may contribute more in the PAH degradation. The studied sediments harbored rich PAHs degrading bacterial assemblages involved in both low and high molecular weight PAHs and these findings provided new insight into the perspective of microbial PAHs bioremediation in the mangrove ecosystem.
Collapse
Affiliation(s)
- Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Shuhua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuhang Zhang
- Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
12
|
Sun J, Guo J, Yang Q, Huang J. Diluted conventional media improve the microbial cultivability from aquarium seawater. J Microbiol 2019; 57:759-768. [PMID: 31376108 DOI: 10.1007/s12275-019-9175-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
The cultivation of microbial species remains a primary challenge in microbiology and obtaining pure cultures is essential for the study of microbial physiology and function. When isolating microorganisms from aquaculture environments, Vibrio are the most dominate isolates on the media that are commonly used. In order to expand our ability to study microbial species, an easy-operation and low-cost medium that can reduce the interference of Vibrio strains and increase the cultivability of other bacteria is urgently needed. We compared viable cell counts on conventional media (CM; including Marine Agar 2216 and LB media) and diluted media (DM; including 1/10-Marine Agar 2216, 1/10-LB). We also assessed the diversity of cultivable microorganisms under high and low nutrient conditions by a plate-wash strategy coupled with high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene. The results show that microbial communities from DM, especially 1/10-Marine Agar 2216, are more diverse than those obtained from CM. Vibrio isolates were reduced on DM. PICRUSt analysis revealed that nutrient composition is a significant contributor to the diversity and function of the cultivable microbial communities. Bacteria grown on CM possess more pathogenic characteristics, whereas DM favors the growth of bacteria that have multiple metabolic functions. Collectively, our data provide strong evidence that dilution of CM influences the cultivability of bacteria from aquaculture seawater. It also supports that DM can expand the range of microbial species that can be cultivated. This study also provides insights for media design in microbial cultivation from aquaculture systems.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China
| | - Jiazhen Guo
- Qingdao Aquarium, Qingdao, 266003, P. R. China
| | - Qian Yang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China
| | - Jie Huang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.
| |
Collapse
|
13
|
Nguyen TT, Cochrane SKJ, Landfald B. Perturbation of seafloor bacterial community structure by drilling waste discharge. MARINE POLLUTION BULLETIN 2018; 129:615-622. [PMID: 29100637 DOI: 10.1016/j.marpolbul.2017.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored.
Collapse
Affiliation(s)
- Tan T Nguyen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| | | | - Bjarne Landfald
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway.
| |
Collapse
|
14
|
Terrisse F, Cravo-Laureau C, Noël C, Cagnon C, Dumbrell AJ, McGenity TJ, Duran R. Variation of Oxygenation Conditions on a Hydrocarbonoclastic Microbial Community Reveals Alcanivorax and Cycloclasticus Ecotypes. Front Microbiol 2017; 8:1549. [PMID: 28861063 PMCID: PMC5562018 DOI: 10.3389/fmicb.2017.01549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022] Open
Abstract
Deciphering the ecology of marine obligate hydrocarbonoclastic bacteria (MOHCB) is of crucial importance for understanding their success in occupying distinct niches in hydrocarbon-contaminated marine environments after oil spills. In marine coastal sediments, MOHCB are particularly subjected to extreme fluctuating conditions due to redox oscillations several times a day as a result of mechanical (tide, waves and currents) and biological (bioturbation) reworking of the sediment. The adaptation of MOHCB to the redox oscillations was investigated by an experimental ecology approach, subjecting a hydrocarbon-degrading microbial community to contrasting oxygenation regimes including permanent anoxic conditions, anoxic/oxic oscillations and permanent oxic conditions. The most ubiquitous MOHCB, Alcanivorax and Cycloclasticus, showed different behaviors, especially under anoxic/oxic oscillation conditions, which were more favorable for Alcanivorax than for Cycloclasticus. The micro-diversity of 16S rRNA gene transcripts from these genera revealed specific ecotypes for different oxygenation conditions and their dynamics. It is likely that such ecotypes allow the colonization of distinct ecological niches that may explain the success of Alcanivorax and Cycloclasticus in hydrocarbon-contaminated coastal sediments during oil-spills.
Collapse
Affiliation(s)
- Fanny Terrisse
- IPREM UMR CNRS 5254, Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'AdourPau, France
| | - Cristiana Cravo-Laureau
- IPREM UMR CNRS 5254, Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'AdourPau, France
| | - Cyril Noël
- IPREM UMR CNRS 5254, Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'AdourPau, France
| | - Christine Cagnon
- IPREM UMR CNRS 5254, Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'AdourPau, France
| | - Alex J Dumbrell
- School of Biological Sciences, University of EssexColchester, United Kingdom
| | - Terry J McGenity
- School of Biological Sciences, University of EssexColchester, United Kingdom
| | - Robert Duran
- IPREM UMR CNRS 5254, Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'AdourPau, France
| |
Collapse
|
15
|
Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 2016; 40:814-830. [PMID: 28201512 PMCID: PMC5091036 DOI: 10.1093/femsre/fuw031] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2015] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| |
Collapse
|
16
|
Militon C, Atkinson A, Michotey V, Jeziorski C, Cravo-Laureau C, Duran R, Bonin P, Cuny P. Metatranscriptomes of oil-contaminated marine coastal sediment affected by oil addition and/or by the bioturbating activity of the marine polychaete Hediste diversicolor: Who are the microbial players? Mar Genomics 2016; 29:55-59. [PMID: 27425602 DOI: 10.1016/j.margen.2016.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 11/25/2022]
Abstract
In coastal marine sediment, oxygen fluctuations induced by bioturbating activities are widespread and exert a great influence, not only on the structure and diversity of the microbenthic communities, but also on their activities. Thus, the activity of benthic organisms can have a significant influence on the degradation of hydrocarbons (HC) and can favor the development of hydrocarbonoclastic microorganisms in contaminated marine sediments. Here, we have generated metatranscriptomic data from coastal marine sediments affected by oil addition and/or by the reworking activity of the marine polychaete Hediste diversicolor to gain insights into the active microbial groups involved in the response to oil addition under the oxygen-fluctuating conditions. The preliminary results suggest that the macrofauna promote the diversity of active aerobic hydrocarbonoclastic bacteria in marine sediments, even if its influence cannot be strongly observed at the microbial community expression profiles level.
Collapse
Affiliation(s)
- Cécile Militon
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France.
| | - Alexandre Atkinson
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Valérie Michotey
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Céline Jeziorski
- GeT-PlaGe, Genotoul, INRA Auzeville F31326, Castanet-Tolosan, France; INRA, UAR1209, INRA Auzeville F31326, Castanet-Tolosan, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Patricia Bonin
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Philippe Cuny
- Aix Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
17
|
Complete Genome Sequence of Labrenzia sp. Strain CP4, Isolated from a Self-Regenerating Biocathode Biofilm. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00354-16. [PMID: 27174270 PMCID: PMC4866846 DOI: 10.1128/genomea.00354-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we present the complete genome sequence of Labrenzia sp. strain CP4, isolated from an electricity-consuming marine biocathode biofilm. Labrenzia sp. strain CP4 consists of a circular 5.2 Mbp chromosome and an 88 Kbp plasmid.
Collapse
|
18
|
Oil removal and effects of spilled oil on active microbial communities in close to salt-saturation brines. Extremophiles 2016; 20:235-50. [DOI: 10.1007/s00792-016-0818-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/14/2016] [Indexed: 11/25/2022]
|
19
|
Duran R, Cuny P, Bonin P, Cravo-Laureau C. Microbial ecology of hydrocarbon-polluted coastal sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15195-15199. [PMID: 26381785 DOI: 10.1007/s11356-015-5373-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
| | - Philippe Cuny
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography UM 110, 13288, Marseille, France
| | - Patricia Bonin
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography UM 110, 13288, Marseille, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|