1
|
Hossain MS, Okino T. Cyanoremediation of heavy metals (As(v), Cd(ii), Cr(vi), Pb(ii)) by live cyanobacteria ( Anabaena variabilis, and Synechocystis sp.): an eco-sustainable technology. RSC Adv 2024; 14:10452-10463. [PMID: 38567320 PMCID: PMC10986677 DOI: 10.1039/d4ra00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
The cyanoremediation technique for heavy metal (HM) removal from wastewater using live cyanobacteria is promising to reduce the pollution risk both for the environment and human health. In this study, two widely recognized freshwater cyanobacteria, Anabaena variabilis and Synechocystis sp., were used to explore their efficacy in HM (As(v), Cd(ii), Cr(vi), Pb(ii)) removal. The different optimum adsorption conditions were pH 8 and 7.5 for A. variabilis and Synechocystis sp., respectively, but the temperature (25 °C) and contact time (48 hours) were the same for both strains. Under these specified conditions, A. variabilis exhibited the capability to remove 25% of As(v), 78% of Cd(ii), 54% of Cr(vi), and 17% of Pb(ii), whereas Synechocystis sp. removed 77% of As(v), 57% of Cd(ii), 91% of Cr(vi), and 77% of Pb(ii) at different initial concentrations. Metal diversity interfered negatively with cyanobacterial growth, especially Cd(ii) and As(v), as measured by OD730, dry biomass, chlorophyll a, and carotenoid production for both strains. Fourier transform infrared spectrum (FT-IR) analysis revealed the existence of diverse surface binding sites for HM adsorption, stemming from proteins and polysaccharides. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) confirmed the presence of HMs on the surface of the cyanobacterial cells. Finally, the zeta potential results indicating alterations in the surface negative charges elucidated the adsorption mechanisms involved in the HM removal by both cyanobacteria. These results provided a comprehensive understanding of the HM adsorption mechanism by cyanobacteria, offering valuable theoretical insights that can be extrapolated to enhance our comprehension of the cyanoremediation mechanisms by various other cyanobacterial strains.
Collapse
Affiliation(s)
- Md Sabbir Hossain
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
- Department of Environmental Science and Technology, Jashore University of Science and Technology Jashore-7408 Bangladesh
| | - Tatsufumi Okino
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
2
|
Lalinská-Voleková B, Majerová H, Kautmanová I, Brachtýr O, Szabóová D, Arendt D, Brčeková J, Šottník P. Hydrous ferric oxides (HFO's) precipitated from contaminated waters at several abandoned Sb deposits - Interdisciplinary assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153248. [PMID: 35051450 DOI: 10.1016/j.scitotenv.2022.153248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The presented paper represents a comprehensive analysis of ochre sediments precipitated from Fe rich drainage waters contaminated by arsenic and antimony. Ochre samples from three abandoned Sb deposits were collected in three different seasons and were characterized from the mineralogical, geochemical, and microbiological point of view. They were formed mainly by poorly crystallized 2-line ferrihydrite, with the content of arsenic in samples ranging from 7 g·kg-1 to 130 g·kg-1 and content of antimony ranging from 0.25 g·kg-1 up to 12 g·kg-1. Next-generation sequencing approach with 16S RNA, 18S RNA and ITS markers was used to characterize bacterial, fungal, algal, metazoal and protozoal communities occurring in the HFOs. In the 16S RNA, the analysis dominated bacteria (96.2%) were mainly Proteobacteria (68.8%) and Bacteroidetes (10.2%) and to less extent also Acidobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Nitrosprae and Chloroflexi. Alpha and beta diversity analysis revealed that the bacterial communities of individual sites do not differ significantly, and only subtle seasonal changes were observed. In this As and Sb rich, circumneutral microenvironment, rich in iron, sulfates and carbonates, methylotrophic bacteria (Methylobacter, Methylotenera), metal/reducing bacteria (Geobacter, Rhodoferax), metal-oxidizing and denitrifying bacteria (Gallionella, Azospira, Sphingopyxis, Leptothrix and Dechloromonas), sulfur-oxidizing bacteria (Sulfuricurvum, Desulphobulbaceae) and nitrifying bacteria (Nitrospira, Nitrosospira) accounted for the most dominant ecological groups and their impact over Fe, As, Sb, sulfur and nitrogen geocycles is discussed. This study provides evidence of diverse microbial communities that exist in drainage waters and are highly important in the process of mobilization or immobilization of the potentially toxic elements.
Collapse
Affiliation(s)
| | - Hana Majerová
- Hana Majerová, Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ivona Kautmanová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Ondrej Brachtýr
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Dana Szabóová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Darina Arendt
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Jana Brčeková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Peter Šottník
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
3
|
Byeon E, Kang HM, Yoon C, Lee JS. Toxicity mechanisms of arsenic compounds in aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105901. [PMID: 34198209 DOI: 10.1016/j.aquatox.2021.105901] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a toxic metalloid that is widely distributed in the environment due to its persistence and accumulative properties. The occurrence, distribution, and biological effects of arsenic in aquatic environments have been extensively studied. Acute and chronic toxicities to arsenic are associated with fatal effects at the individual and molecular levels. The toxicity of arsenic in aquatic organisms depends on its speciation and concentration. In aquatic environments, inorganic arsenic is the dominant form. While trivalent arsenicals have greater toxicity compared with pentavalent arsenicals, inorganic arsenic can assume a variety of forms through biotransformation in aquatic organisms. Biotransformation mechanisms and speciation of arsenic have been studied, but few reports have addressed the relationships among speciation, toxicity, and bioavailability in biological systems. This paper reviews the modes of action of arsenic along with its toxic effects and distribution in an attempt to improve our understanding of the mechanisms of arsenic toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Cui J, Xie Y, Sun T, Chen L, Zhang W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144111. [PMID: 33352345 DOI: 10.1016/j.scitotenv.2020.144111] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution caused by heavy metals has received worldwide attentions due to their ubiquity, poor degradability and easy bioaccumulation in host cells. As one potential solution, photosynthetic cyanobacteria have been considered as promising remediation chassis and widely applied in various bioremediation processes of heavy-metals. Meanwhile, deciphering resistant mechanisms and constructing tolerant chassis towards heavy metals could greatly contribute to the successful application of the cyanobacteria-based bioremediation in the future. In this review, first we summarized recent application of cyanobacteria in heavy metals bioremediation using either live or dead cells. Second, resistant mechanisms and strategies for enhancing cyanobacterial bioremediation of heavy metals were discussed. Finally, potential challenges and perspectives for improving bioremediation of heavy metals by cyanobacteria were presented.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
5
|
Moura KAF, Lizieri C, Wittig Franco M, Vaz MGMV, Araújo WL, Convey P, Barbosa FAR. Physiological and thylakoid ultrastructural changes in cyanobacteria in response to toxic manganese concentrations. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1009-1021. [PMID: 31471822 DOI: 10.1007/s10646-019-02098-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, two cyanobacterial strains (morphologically identified as Microcystis novacekii BA005 and Nostoc paludosum BA033) were exposed to different Mn concentrations: 7.0, 10.5, 15.7, 23.6 and 35.4 mg L-1 for BA005; and 15.0, 22.5, 33.7, 50.6, and 76.0 mg L-1 for BA033. Manganese toxicity was assessed by growth rate inhibition (EC50), chlorophyll a content, quantification of Mn accumulation in biomass and monitoring morphological and ultrastructural effects. The Mn EC50 values were 16 mg L-1 for BA005 and 39 mg L-1 for BA033, respectively. Reduction of chlorophyll a contents and ultrastructural changes were observed in cells exposed to Mn concentrations greater than 23.6 and 33.7 mg L-1 for BA005 and BA033. Damage to intrathylakoid spaces, increased amounts of polyphosphate granules and an increased number of carboxysomes were observed in both strains. In the context of the potential application of these strains in bioremediation approaches, BA005 was able to remove Mn almost completely from aqueous medium after 96 h exposure to an initial concentration of 10.5 mg L-1, and BA033 was capable of removing 38% when exposed to initial Mn concentration of 22.5 mg L-1. Our data shed light on how these cyanobacterial strains respond to Mn stress, as well as supporting their utility as organisms for monitoring Mn toxicity in industrial wastes and potential bioremediation application.
Collapse
Affiliation(s)
- Karen Ann Ferreira Moura
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Claudineia Lizieri
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maione Wittig Franco
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Marcelo Gomes Marçal Vieira Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Francisco Antônio Rodrigues Barbosa
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
6
|
Arsenic-contaminated sediment from mining areas as source of morphological and phylogenetic distinct cyanobacterial lineages. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Soares Guimarães LH, Segura FR, Tonani L, von-Zeska-Kress MR, Rodrigues JL, Calixto LA, Silva FF, Batista BL. Arsenic volatilization by Aspergillus sp. and Penicillium sp. isolated from rice rhizosphere as a promising eco-safe tool for arsenic mitigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:170-179. [PMID: 30784865 DOI: 10.1016/j.jenvman.2019.02.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 05/27/2023]
Abstract
Arsenic (As) is a non-threshold human carcinogenic. This element can be volatilized either by nature or anthropogenic sources. In the present study, the analytical performance of an As volatile species trapping system was evaluated to assess the As volatilization promoted by Penicillium sp. and Aspergillus sp., both isolated from rice rhizosphere, and Aspergillus niger sp. considered as a reference. The study was conducted for 60 days (sampling of volatile As species from 1st to 30th day and from 31st to 60th day). The efficiency of As-volatilization was associated with the fungal growth. The highest As volatilization occurred from 31st to 60th day. Penicillium sp., Aspergillus sp. and A. niger were capable of producing 57.8, 46.4, and 5.2% of volatile arsenic species, respectively. The speciation analysis has shown trimethylarsine (TMAs) as the main volatilized As-form, followed by mono- and dimethylarsine (MMAs and DMAs). The results are following the "Challenger pathway". Therefore, the tested fungi isolated from rice rhizosphere have shown promising properties concerning bio-volatilization with potential use for As-mitigation in paddy soils.
Collapse
Affiliation(s)
| | - Fabiana Roberta Segura
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Ludmilla Tonani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcia Regina von-Zeska-Kress
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhona e Mucuri, Rua do Cruzeiro 01, 39803-371, Teófilo Otoni, MG, Brazil
| | - Leandro Augusto Calixto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030, Diadema, SP, Brazil
| | - Fábio Ferreira Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
8
|
Xie S, Liu J, Yang F, Feng H, Wei C, Wu F. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19413-19422. [PMID: 29728971 DOI: 10.1007/s11356-018-2152-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
This study was carried out using indoor controlled experiments to study the arsenic (As) uptake, biotransformation, and release behaviors of freshwater algae under growth stress. Three freshwater algae, Microcystis aeruginosa, Anabaena flosaquae, and Chlorella sp., were chosen. Two types of inhibitors, e.g., Cu2+ and isothiazolinone, were employed to inhibit the growth of the algae. The algae were cultivated to a logarithmic stage in growth media containing 0.1 mg/L P; then, 0.8 mg/L As in the form of arsenate (iAsV) was added, while both inhibitors were simultaneously added at dosages of 0.1 and 0.3 mg/L, with no addition of inhibitors in the control. After 2 days of exposure, the average growth rate (μ2d) was measured to represent the growth rates of the algae cells; the extra- and intracellular As concentrations in various forms, i.e., arsenate, arsenite (iAsIII), monomethyl arsenic (MMA), and dimethyl arsenic (DMA), were also measured. Without inhibitors, the average growth rate followed the order of M. aeruginosa, Chlorella sp., and A. flosaquae, with the growth rate of M. aeruginosa significantly higher than that of the other two algae. However, when Cu2+ was added as an external inhibitor, the order of the average growth rate for the three algae became partially reversed, suggesting differentiation of the algae in response to the inhibitor. This differentiation can be seen by the reduction in the average growth rate of M. aeruginosa, which was as high as 1730% at the 0.3-mg/L Cu2+ dosage when compared with the control, while for the other two algae, much fewer changes were seen. The great reduction in M. aeruginosa growth rate was accompanied by increases in extracellular iAsV and iAsIII and intracellular iAsV concentrations in the algae, indicating that As transformation is related to the growth of this algae. Much fewer or neglectable changes in growth were observed that were consistent with the few changes in the extra- and intracellular As speciation for the other two algae with Cu2+ inhibition and all the three algae with isothiazolinone inhibition, corroborating the above hypothesis again. All the algae tested in this study demonstrated great abilities for As transformation and release, as seen by the much higher rates of 86.11-99.98% and 81.11-99.89% for transformation and release when compared to the control, respectively. When inhibitors were added, the transformation and release values of only A. flosaquae decreased remarkably down to 72.37-86.79% and 64.67-85.24%, respectively, while no changes were seen for these values in the other two algae, indicating that growth stress did not affect the As transformation and release of the other algae. The biological productivity of As by the three algae followed the order of M. aeruginosa, Chlorella sp., and A. flosaquae, which was generally consistent with the As transformation and release in conditions with and without inhibitors, suggesting that the As behavior in the algae that was related to growth stress largely differed among algae species.
Collapse
Affiliation(s)
- Shaowen Xie
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinxin Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanxiao Feng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
9
|
Hong S, Kwon HO, Choi SD, Lee JS, Khim JS. Arsenic speciation in water, suspended particles, and coastal organisms from the Taehwa River Estuary of South Korea. MARINE POLLUTION BULLETIN 2016; 108:155-162. [PMID: 27114086 DOI: 10.1016/j.marpolbul.2016.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Water, suspended particulate matter (SPM), and biota samples were collected from the Taehwa River Estuary to determine the distributions, partitioning, and bioaccumulation of arsenicals. Six forms of As were quantitated by the use of HPLC-ICP/MS. As was found mainly near urban and industrial areas, and inorganic As(V) was the predominant As form in both water and SPM. Particulate arsenicals were found at the greatest concentrations in coarse particles (>180μm), followed by medium (30-180μm) and fine (0.45-30μm) particles, in freshwater. Arsenical concentrations were similar across the three particle fractions in saltwater. Field-based distribution coefficient (Kd) values for As depended strongly on SPM, with a less robust dependence on salinity. Concentrations of As were greater in macroalgae than in marine animals, such as fishes, bivalves, crabs, shrimps, and gastropods. Overall, the results of the present study provide useful information on the behaviors and fate of arsenicals in an estuarine environment.
Collapse
Affiliation(s)
- Seongjin Hong
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Ok Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung-Suk Lee
- Institute of Environmental Safety and Protection, NeoEnBiz Co., Bucheon 14526, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|