1
|
Nosratabadi S, Kavousi HR, Sarcheshmehpour M, Mansouri M. Assessment of the Cu phytoremediation potential of Chrysanthemum indicum L. and Tagetes erecta L. using analysis of growth and physiological characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42445-42460. [PMID: 38872040 DOI: 10.1007/s11356-024-33941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
In the current study, the Cu phytoremediation ability of two ornamental plants, Chrysanthemum indicum L. and Tagetes erecta L., was tracked concerning the growth and physiological responses. Plants were subjected to varying concentrations of Cu (0, 100, 200, and 400 mg/kg) under the pot experiment for 8 weeks. The results showed that the measured growth and physiological characteristics declined in T. erecta shoots and roots at all tested treatments compared with the control. However, in C. indicum at 100 mg/kg, shoot biomass, shoot total soluble protein, and leaves number remained equal to that of the control and then reduced by rising Cu concentrations, compared with the control. Also, results indicated that in C. indicum, after 56 days of exposure to Cu, the chlorophyll pigments content markedly increased and reached a maximum level at 100 mg/kg dose and gradually declined with enhancing Cu concentrations, compared with the control. Other measured growth and physiological parameters decreased in both tissues of C. indicum in response to Cu usage in the growth medium. The carotenoid content of T. erecta decreased in all studied Cu levels in comparison to the control, but in C. indicum remained unaffected up to 200 mg/kg Cu in comparison to the control and then enhanced with increasing Cu level. The augmentation of antioxidant enzyme activity in two species, especially in roots, reflected the incident of Cu stress as demonstrated by elevated MDA and ion leakage levels. Data concerning copper accumulation in tissues, TF, and BAF showed T. erecta is a weak Cu accumulator and seems not to be an appropriate candidate for Cu phytoremediation. However, the Cu content in shoots and roots of C. indicum increased significantly with an increment in applied Cu level. Also, C. indicum accumulated higher Cu concentrations in the roots than in shoots and exhibited TF < 1, 0.1 < BAF root < 1, and can be considered as a Cu excluder by the phytostabilization mechanism.
Collapse
Affiliation(s)
- Sina Nosratabadi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Reza Kavousi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mehdi Sarcheshmehpour
- Department of Soil Science Engineering, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Mansouri
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Hussain S, Wang J, Asad Naseer M, Saqib M, Siddiqui MH, Ihsan F, Xiaoli C, Xiaolong R, Hussain S, Ramzan HN. Water stress memory in wheat/maize intercropping regulated photosynthetic and antioxidative responses under rainfed conditions. Sci Rep 2023; 13:13688. [PMID: 37608147 PMCID: PMC10444778 DOI: 10.1038/s41598-023-40644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Drought is a most prevalent environmental stress affecting the productivity of rainfed wheat and maize in the semiarid Loess Plateau of China. Sustainable agricultural practices such as intercropping are important for enhancing crop performance in terms of better physiological and biochemical characteristics under drought conditions. Enzymatic and non-enzymatic antioxidant enzyme activities are associated with improved abiotic tolerance in crop plants, however, its molecular mechanism remains obscure. A 2-year field study was conducted to evaluate the influence of intercropping treatment viz. wheat mono-crop (WMC), maize mono-crop (MMC), intercropping maize (IM) and wheat (IW) crops, and nitrogen (N) application rates viz. control and full-dose of N (basal application at 150 and 235 kg ha-1 for wheat and maize, respectively) on chlorophyll fluorescence, gas exchange traits, lipid peroxidation, antioxidative properties and expression patterns of six tolerance genes in both crops under rainfed conditions. As compared with their respective monocropping treatments, IW and IM increased the Fo/Fm by 18.35 and 14.33%, PS-11 efficiency by 7.90 and 13.44%, photosynthesis by 14.31 and 23.97%, C-capacity by 32.05 and 12.92%, and stomatal conductance by 41.40 and 89.95% under without- and with-N application, respectively. The reductions in instantaneous- and intrinsic-water use efficiency and MDA content in the range of 8.76-26.30% were recorded for IW and IM treatments compared with WMC and MMC, respectively. Compared with the WMC and MMC, IW and IM also triggered better antioxidant activities under both N rates. Moreover, we also noted that intercropping and N addition regulated the transcript levels of six genes encoding non-enzymatic antioxidants cycle enzymes. The better performance of intercropping treatments i.e., IW and IM were also associated with improved osmolytes accumulation under rainfed conditions. As compared with control, N addition significantly improved the chlorophyll fluorescence, gas exchange traits, lipid peroxidation, and antioxidant enzyme activities under all intercropping treatments. Our results increase our understanding of the physiological, biochemical, and molecular mechanisms of intercropping-induced water stress tolerance in wheat and maize crops.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - JinJin Wang
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Barani Agricultural Research Station, Fateh Jang, Attock, Punjab, 43350, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahid Ihsan
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| | - Chen Xiaoli
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ren Xiaolong
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Saddam Hussain
- Plant Stress Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafiz Naveed Ramzan
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| |
Collapse
|
3
|
Duan C, Mei Y, Wang Q, Wang Y, Li Q, Hong M, Hu S, Li S, Fang L. Rhizobium Inoculation Enhances the Resistance of Alfalfa and Microbial Characteristics in Copper-Contaminated Soil. Front Microbiol 2022; 12:781831. [PMID: 35095795 PMCID: PMC8791600 DOI: 10.3389/fmicb.2021.781831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/17/2021] [Indexed: 01/30/2023] Open
Abstract
Some studies have reported the importance of rhizobium in mitigating heavy metal toxicity, however, the regulatory mechanism of the alfalfa-rhizobium symbiosis to resist copper (Cu) stress in the plant-soil system through biochemical reactions is still unclear. This study assessed the effects of rhizobium (Sinorhizobium meliloti CCNWSX0020) inoculation on the growth of alfalfa and soil microbial characteristics under Cu-stress. Further, we determined the regulatory mechanism of rhizobium inoculation to alleviate Cu-stress in alfalfa through plant-soil system. The results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition in alfalfa by increasing the chlorophyll content, height, and biomass, in addition to nitrogen and phosphorus contents. Furthermore, rhizobium application alleviated Cu-induced phytotoxicity by increasing the antioxidant enzyme activities and soluble protein content in tissues, and inhibiting the lipid peroxidation levels (i.e., malondialdehyde content). In addition, rhizobium inoculation improved soil nutrient cycling, which increased soil enzyme activities (i.e., β-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass, plant antioxidant enzymes, and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiotic system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yuhan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Qi Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Maojun Hong
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Sheng Hu
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China.,Chinese Academy of Sciences (CAS), Center for Excellence in Quaternary Science and Global Change, Xi'an, China
| |
Collapse
|
4
|
Liu Z, Meng J, Sun Z, Su J, Luo X, Song J, Li P, Sun Y, Yu C, Peng X. Zinc application after low temperature stress promoted rice tillers recovery: Aspects of nutrient absorption and plant hormone regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111104. [PMID: 34895541 DOI: 10.1016/j.plantsci.2021.111104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Low temperature during the vegetative stage depresses rice tillering. Zinc (Zn) can promote rice tiller growth and improve plant resistance to abiotic stress. Consequently, Zn application after low temperature might be an effective approach to promote rice tiller recovery. A water culture experiment with treatments of two temperatures (12 °C and 20 °C) and three Zn concentrations (0.08 μM, 0.15 μM and 0.31 μM ZnSO4·7H2O) was conducted to determine by analyzing rice tiller growth, nutrient absorption and hormones metabolism. The results showed that low temperature reduced rice tiller numbers and leaf age, decreased as well. Increasing Zn application after low temperature could enhance not only rice tiller growth rate but also N metabolism and tillering recovery, and correlation analysis showed a significantly positive correlation between tiller increment and Zn and N accumulation after low temperature. In addition, higher cytokinin (CTK)/auxin (IAA) ratio was maintained by promoted synthesis of CTK and IAA as well as enhanced IAA transportation from tiller buds to other parts with increased Zn application after cold stress, which resulted in accelerated germination and growth of tiller buds. These results highlighted that Zn application after low temperature promoted rice tiller recovery by increasing N and Zn accumulation and maintaining hormones balance.
Collapse
Affiliation(s)
- Zhilei Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Germplasm Innovation, Physiology and Ecology of Grain Crop in Cold Region (Northeast Agricultural University), Ministry of Education, Harbin, 150030, China
| | - Jingrou Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zefeng Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jinkai Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyu Luo
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiamei Song
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Germplasm Innovation, Physiology and Ecology of Grain Crop in Cold Region (Northeast Agricultural University), Ministry of Education, Harbin, 150030, China
| | - Yankun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Cailian Yu
- The School of Material Science and Chemical Engineering,Harbin University of Science and Technology, Harbin, 150040, China
| | - Xianlong Peng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Germplasm Innovation, Physiology and Ecology of Grain Crop in Cold Region (Northeast Agricultural University), Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
5
|
Chaplygin V, Chernikova N, Fedorenko G, Fedorenko A, Minkina T, Nevidomskaya D, Mandzhieva S, Ghazaryan K, Movsesyan H, Beschetnikov V. Influence of soil pollution on the morphology of roots and leaves of Verbascum thapsus L. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:83-98. [PMID: 34050848 DOI: 10.1007/s10653-021-00975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
The impact of inorganic pollutants in the zone of industrial wastewater settling tanks (South of Russia) was studied. The levels of Mn, Cr, Ni, Cu, Zn, Pb, Cd were determined for Verbascum thapsus L., which are part of the mesophilic succession of wild plants in the studied technogenically polluted territory. The bioavailability of heavy metals (HM) for plants from transformed soils has been established. Anatomical and morphological features in the tissues of the plants affected by HM were analyzed using light-optical and electron microscopic methods. Contamination of the soil cover with Mn, Cr, Ni, Cu, Zn, Pb and Cd has been established with maximum content of Zn. It was revealed that the HM content in the V. thapsus plants exceeded the maximum permissible levels (Russian state standard): Zn by 23, Pb by 2, Cr by 31 and Cd by 3 times. The lower level of HM content in the inflorescences of mullein plants in comparison with the root system, stems and leaves indicates the resistance of generative organs to technogenic pollution. In the root and leaves of the V. thapsus, the anatomical and ultrastructural observation were carried out using light-optical and transmission electron microscopy. Changes in the ultrastructure of plants under the influence of anthropogenic impact have been revealed. The most significant changes of the ultrastructure of the polluted plants were found in the cell organelles of leaves (mitochondria, plastids, peroxisomes, etc.) including spatial transformation of the thylakoid system of plastids during the metal accumulation by plants, which may determine the mechanism of plant adaptation to technogenic pollution.
Collapse
Affiliation(s)
- Victor Chaplygin
- Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-on-Don, Russian Federation
| | - Natalia Chernikova
- Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-on-Don, Russian Federation.
| | - Grigorii Fedorenko
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
| | - Aleksei Fedorenko
- Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-on-Don, Russian Federation
| | - Tatiana Minkina
- Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-on-Don, Russian Federation
| | - Dina Nevidomskaya
- Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-on-Don, Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-on-Don, Russian Federation
| | | | | | - Vladimir Beschetnikov
- Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-on-Don, Russian Federation
| |
Collapse
|
6
|
Hazman Ö, Aksoy L, Büyükben A, Kara R, Kargioğlu M, Kumral ZB, Erol I. Evaluation of antioxidant, cytotoxic, antibacterial effects and mineral levels of Verbascum lasianthum Boiss. ex Bentham. AN ACAD BRAS CIENC 2021; 93:e20210865. [PMID: 34909831 DOI: 10.1590/0001-3765202120210865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to determine the antibacterial, antioxidant, cytotoxic activities and element levels of Verbascum lasianthum Boiss. ex Bentham. The free radical scavenging activity, total phenolic content, total antioxidant capacity, total oxidant capacity levels were analyzed as the antioxidant parameters. Seven bacteria and one yeast strains were used to determine the antimicrobial activity. The cytotoxic effects of plant extracts were determined using A549, MCF-7, HepG2 and SH-SY5Y cell lines. The findings demonstrated that the antioxidant activity increased with an increase in the phenolic content of extracts. This species is rich in bio-elements such as Fe, Cu, Mn, Zn, and Mg. Different concentrations of extracts could have antibacterial activity. This plant had an apparent cytotoxic effect only in the A549 cell line and increased the proliferation in other cell lines. The findings demonstrated that plant could be used alone or as a supplement to the current treatment protocols in diseases due to their antioxidant, antibacterial and cytotoxic effects. However, it is recommended that Verbascum L. species intended for use in therapy should be procured from areas where there is no soil pollution or organic farming is preferred.
Collapse
Affiliation(s)
- Ömer Hazman
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, Afyonkarahisar, Turkey
| | - Laçine Aksoy
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, Afyonkarahisar, Turkey
| | - Ahmet Büyükben
- Program of Chemistry Technology, Afyon Kocatepe University, Afyonkarahisar, Cay Vocational School, Turkey
| | - Recep Kara
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Afyonkarahisar, Turkey
| | - Mustafa Kargioğlu
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Afyonkarahisar, Turkey
| | - Zehra B Kumral
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, Afyonkarahisar, Turkey
| | - Ibrahim Erol
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, Afyonkarahisar, Turkey
| |
Collapse
|
7
|
Morina F, Mijovilovich A, Koloniuk I, Pěnčík A, Grúz J, Novák O, Küpper H. Interactions between zinc and Phomopsis longicolla infection in roots of Glycine max. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3320-3336. [PMID: 33544825 DOI: 10.1093/jxb/erab052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Phomopsis. longicolla is a hemibiotrophic fungus causing significant soybean yield loss worldwide. To reveal the role of zinc in plant-pathogen interactions, soybean seedlings were grown hydroponically with a range of Zn concentrations, 0.06 µM (deficient, Zn0), 0.4 µM (optimal growth), 1.5 µM, 4 µM, 12 µM, and toxic 38 μM, and were subsequently inoculated with P. longicolla via the roots. In vivo analysis of metal distribution in tissues by micro-X-ray fluorescence showed local Zn mobilization in the root maturation zone in all treatments. Decreased root and pod biomass, and photosynthetic performance in infected plants treated with 0.4 µM Zn were accompanied with accumulation of Zn, jasmonoyl-L-isoleucine (JA-Ile), jasmonic acid, and cell wall-bound syringic acid (cwSyA) in roots. Zn concentration in roots of infected plants treated with 1.5 µM Zn was seven-fold higher than in the 0.4 µM Zn treatment, which together with accumulation of JA-Ile, cwSyA, cell wall-bound vanilic acid and leaf jasmonates contributed to maintaining photosynthesis and pod biomass. Host-pathogen nutrient competition and phenolics accumulation limited the infection in Zn-deficient plants. The low infection rate in Zn 4 µM-treated roots correlated with salicylic and 4-hydroxybenzoic acid, and cell wall-bound p-coumaric acid accumulation. Zn toxicity promoted pathogen invasion and depleted cell wall-bound phenolics. The results show that manipulation of Zn availability improves soybean resistance to P. longicolla by stimulating phenolics biosynthesis and stress-inducible phytohormones.
Collapse
Affiliation(s)
- Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
| | - Igor Koloniuk
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Virology, Branišovská, České Budějovice, Czech Republic
| | - Aleš Pěnčík
- Czech Academy of Sciences, Institute of Experimental Botany and Palacký University, Faculty of Science, Laboratory of Growth Regulators, Šlechtitelů, Olomouc, Czech Republic
| | - Jiří Grúz
- Czech Academy of Sciences, Institute of Experimental Botany and Palacký University, Faculty of Science, Laboratory of Growth Regulators, Šlechtitelů, Olomouc, Czech Republic
| | - Ondrej Novák
- Czech Academy of Sciences, Institute of Experimental Botany and Palacký University, Faculty of Science, Laboratory of Growth Regulators, Šlechtitelů, Olomouc, Czech Republic
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
8
|
Kavousi HR, Karimi MR, Neghab MG. Assessment the copper-induced changes in antioxidant defense mechanisms and copper phytoremediation potential of common mullein (Verbascum thapsus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18070-18080. [PMID: 33405125 DOI: 10.1007/s11356-020-11903-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this research, the Cu phytoremediation capacity of common mullein (Verbascum thapsus L.) was evaluated concerning plant growth, antioxidant enzymes, and photosynthetic activities. Plants were subjected to five Cu concentrations (0, 125, 250, 375, and 500 mg/L) under the hydroponic conditions for 2 weeks. The results showed that at 125 mg/L, root and shoot biomass and chlorophylls remained the same as that of the control and then declined with increasing concentrations of Cu, when compared with control. The carotenoid contents remained unchanged up to 250 mg/L compared with control and then dropped with raising Cu dose. The raising of antioxidant enzymes activity reflected the occurrence of stress due to Cu exposure as manifested by increased MDA and ion leakage level. However, increased antioxidant enzymes may be associated with the tolerance capacity of V. thapsus to protect the plant from oxidative damage. Except for the highest concentration (500 mg/L), Cu accumulation in the roots and shoots all increased significantly with increasing Cu concentration, and the Cu accumulation in shoots was greater than roots. The Cu accumulation reached its maximum level at 375 mg/L Cu concentration, with 492.8 and 447.3 mg/kg DW in shoots and roots, respectively, which is highly greater than the threshold value for a Cu (hyper)accumulator plant. The extraction coefficient (EC) close to 1, and translocation factor (TF) > 1 from 125 to 375 mg/L Cu, suggested that V. thapsus could be used as a viable plant species for Cu phytoextraction.
Collapse
Affiliation(s)
- Hamid Reza Kavousi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
- Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran.
| | | | | |
Collapse
|
9
|
Dobrikova A, Apostolova E, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis IDS, Moustakas M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. PLANTS (BASEL, SWITZERLAND) 2021; 10:194. [PMID: 33494177 PMCID: PMC7909794 DOI: 10.3390/plants10020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 05/03/2023]
Abstract
In recent years, due to the development of industrial and agricultural production, heavy metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L. (clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytoremediation of heavy metal polluted soils. In this study, an adaptation of clary sage to 900 µM (excess) Zn exposure for eight days in a hydroponic culture was investigated. The tolerance mechanisms under excess Zn exposure were assessed by evaluating changes in the nutrient uptake, leaf pigment and phenolic content, photosynthetic activity and leaf structural characteristics. The uptake and the distribution of Zn, as well as some essential elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry. The results revealed that Salvia sclarea is a Zn-accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf contents of Fe, Ca and Mn ions to protect the photosynthetic function and to stimulate the photosystem I (PSI) and photosystem II (PSII) activities. The exposure of clary sage to excess Zn significantly increased the synthesis of total phenolics and anthocyanins in the leaves; these play an important role in Zn detoxification and protection against oxidative stress. The lipid peroxidation and electrolyte leakage in leaves, used as clear indicators for heavy metal damage, were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for the phytoextraction and/or phytostabilization of Zn-contaminated soils.
Collapse
Affiliation(s)
- Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter, Thermi, 57001 Thessaloniki, Greece;
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
10
|
Montanha GS, Rodrigues ES, Marques JPR, de Almeida E, Dos Reis AR, Pereira de Carvalho HW. X-ray fluorescence spectroscopy (XRF) applied to plant science: challenges towards in vivo analysis of plants. Metallomics 2020; 12:183-192. [PMID: 31793600 DOI: 10.1039/c9mt00237e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
X-ray fluorescence spectroscopy (XRF) is an analytical tool used to determine the elemental composition in a myriad of sample matrices. Due to the XRF non-destructive feature, this technique may allow time-resolved plant tissue analyses under in vivo conditions, and additionally, the combination with other non-destructive techniques. In this study, we employed handheld and benchtop XRF to evaluate the elemental distribution changes in living plant tissues exposed to X-rays, as well as real-time uptake kinetics of Zn(aq) and Mn(aq) in soybean (Glycine max (L.) Merrill) stem and leaves, for 48 hours, combined with transpiration rate assessment on leaves by an infrared gas analyzer (IRGA). We found higher Zn content than Mn in stems. The latter micronutrient, in turn, presented higher concentration in leaf veins. Besides, both micronutrients were more concentrated in the first trifolium (i.e., youngest leaf) of soybean plants. Moreover, the transpiration rate was more influenced by circadian cycles than Zn and Mn uptake. Thus, XRF represents a convenient tool for in vivo nutritional studies in plants, and it can be coupled successfully to other analytical techniques.
Collapse
Affiliation(s)
- Gabriel Sgarbiero Montanha
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - Eduardo Santos Rodrigues
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - João Paulo Rodrigues Marques
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - Eduardo de Almeida
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | | | - Hudson Wallace Pereira de Carvalho
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| |
Collapse
|
11
|
Morina F, Mishra A, Mijovilovich A, Matoušková Š, Brückner D, Špak J, Küpper H. Interaction Between Zn Deficiency, Toxicity and Turnip Yellow Mosaic Virus Infection in Noccaea ochroleucum. FRONTIERS IN PLANT SCIENCE 2020; 11:739. [PMID: 32582260 PMCID: PMC7290001 DOI: 10.3389/fpls.2020.00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/08/2020] [Indexed: 05/08/2023]
Abstract
Zinc is essential for the functioning of numerous proteins in plants. To investigate how Zn homeostasis interacts with virus infection, Zn-tolerant Noccaea ochroleucum plants exposed to deficient (Zn'0'), optimal (Zn10), and excess Zn (Zn100) concentrations, as well as Cd amendment, were infected with Turnip yellow mosaic virus (TYMV). Imaging analysis of fluorescence kinetics from the μs (OJIP) to the minutes (Kautsky effect, quenching analysis) time domain revealed strong patchiness of systemic virus-induced photosystem II (PSII) inhibition. That was more pronounced in Zn-deficient plants, while Zn excess acted synergistically with TYMV, in both cases resulting in reduced PSII reaction centers. Infected Cd-treated plants, already severely stressed, showed inhibited non-photochemical quenching and PSII activity. Quantitative in situ hybridization at the cellular level showed increased gene expression of ZNT5 and downregulation of HMA4 in infected Zn-deficient leaves. In Zn10 and Zn100 infected leaves, vacuolar sequestration of Zn increased by activation of HMA3 (mesophyll) and MTP1 (epidermis). This correlated with Zn accumulation in the mesophyll and formation of biomineralization dots in the cell wall (Zn100) visible by micro X-ray fluorescence tomography. The study reveals the importance of adequate Zn supply and distribution in the maintenance of photosynthesis under TYMV infection, achieved by tissue-targeted activation of metal transporter gene expression.
Collapse
Affiliation(s)
- Filis Morina
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Archana Mishra
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Ana Mijovilovich
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Šárka Matoušková
- Department of Geological Processes, Czech Academy of Sciences, Institute of Geology, Rozvojová, Czechia
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Josef Špak
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Hendrik Küpper
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Experimental Plant Biology, University of South Bohemia, České Budějovice, Czechia
- *Correspondence: Hendrik Küpper,
| |
Collapse
|
12
|
da Cruz TNM, Savassa SM, Montanha GS, Ishida JK, de Almeida E, Tsai SM, Lavres Junior J, Pereira de Carvalho HW. A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO 4 and ZnO nanoparticles on plants. Sci Rep 2019; 9:10416. [PMID: 31320668 PMCID: PMC6639404 DOI: 10.1038/s41598-019-46796-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/02/2019] [Indexed: 11/25/2022] Open
Abstract
Understanding nanoparticle root uptake and root-to-shoot transport might contribute to the use of nanotechnology in plant nutrition. This study performed time resolved experiments to probe Zn uptake, biotransformation and physiological effects on Phaseolus vulgaris (L.). Plants roots were exposed to ZnO nanoparticles (40 and 300 nm) dispersions and ZnSO4(aq) (100 and 1000 mg Zn L−1) for 48 h. Near edge X-ray absorption spectroscopy showed that 40 nm ZnO was more easily dissolved by roots than 300 nm ZnO. It also showed that in the leaves Zn was found as a mixture Zn3(PO4)2 and Zn-histidine complex. X-ray fluorescence spectroscopy showed that root-to-shoot Zn-translocation presented a decreasing gradient of concentration and velocity, it seems radial Zn movement occurs simultaneously to the axial xylem transport. Below 100 mg Zn L−1, the lower stem tissue section served as a buffer preventing Zn from reaching the leaves. Conversely, it was not observed for 1000 mg Zn L−1 ZnSO4(aq). Transcriptional analysis of genes encoding metal carriers indicated higher expression levels of tonoplast-localized transporters, suggesting that the mechanism trend to accumulate Zn in the lower tissues may be associated with an enhanced of Zn compartmentalization in vacuoles. The photosynthetic rate, transpiration, and water conductance were impaired by treatments.
Collapse
Affiliation(s)
- Tatiana N M da Cruz
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Susilaine M Savassa
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Gabriel S Montanha
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Juliane K Ishida
- University of São Paulo, Cellular and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Eduardo de Almeida
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Siu M Tsai
- University of São Paulo, Cellular and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - José Lavres Junior
- University of Sao Paulo, Center for Nuclear Energy in Agriculture, Plant Nutrition Laboratory, Piracicaba, 13416000, Brazil
| | - Hudson W Pereira de Carvalho
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.
| |
Collapse
|
13
|
Shen G, Ju W, Liu Y, Guo X, Zhao W, Fang L. Impact of Urea Addition and Rhizobium Inoculation on Plant Resistance in Metal Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1955. [PMID: 31159445 PMCID: PMC6603927 DOI: 10.3390/ijerph16111955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Legume-rhizobium symbiosis has been heavily investigated for their potential to enhance plant metal resistance in contaminated soil. However, the extent to which plant resistance is associated with the nitrogen (N) supply in symbiont is still uncertain. This study investigates the effect of urea or/and rhizobium (Sinorhizobium meliloti) application on the growth of Medicago sativa and resistance in metals contaminated soil (mainly with Cu). The results show that Cu uptake in plant shoots increased by 41.7%, 69%, and 89.3% with urea treatment, rhizobium inoculation, and their combined treatment, respectively, compared to the control group level. In plant roots, the corresponding values were 1.9-, 1.7-, and 1.5-fold higher than the control group values, respectively. Statistical analysis identified that N content was the dominant variable contributing to Cu uptake in plants. Additionally, a negative correlation was observed between plant oxidative stress and N content, indicating that N plays a key role in plant resistance. Oxidative damage decreased after rhizobium inoculation as the activities of antioxidant enzymes (catalase and superoxide dismutase in roots and peroxidase in plant shoots) were stimulated, enhancing plant resistance and promoting plant growth. Our results suggest that individual rhizobium inoculation, without urea treatment, is the most recommended approach for effective phytoremediation of contaminated land.
Collapse
Affiliation(s)
- Guoting Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Wenliang Ju
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuqing Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Xiaobin Guo
- Agriculture Production and Research Division, Department of Fisheries and Land Resources, Government of Newfoundland and Labrador, Corner Brook, NL A2H 6J8, Canada.
| | - Wei Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Moustakas M, Bayçu G, Gevrek N, Moustaka J, Csatári I, Rognes SE. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6613-6624. [PMID: 30623337 DOI: 10.1007/s11356-019-04126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
We investigated changes in mineral nutrient uptake and translocation and photosystem II (PSII) functionality, in the hyperaccumulator Noccaea caerulescens after exposure to 800 μM Zn in hydroponic culture. Exposure to Zn inhibited the uptake of K, Mn, Cu, Ca, and Mg, while the uptake of Fe and Zn enhanced. Yet, Ca and Mg aboveground tissue concentrations remain unchanged while Cu increased significantly. In the present study, we provide new data on the mechanism of N. caerulescens acclimation to Zn exposure by elucidating the process of photosynthetic acclimation. A spatial heterogeneity in PSII functionality in N. caerulescens leaves exposed to Zn for 3 days was detected, while a threshold time of 4 days was needed for the activation of Zn detoxification mechanism(s) to decrease Zn toxicity and for the stomatal closure to decrease Zn supply at the severely affected leaf area. After 10-day exposure to Zn, the allocation of absorbed light energy in PSII under low light did not differ compared to control ones, while under high light, the quantum yield of non-regulated energy loss in PSII (ΦNO) was lower than the control, due to an efficient photoprotective mechanism. The chlorophyll fluorescence images of non-photochemical quenching (NPQ) and photochemical quenching (qp) clearly showed spatial and temporal heterogeneity in N. caerulescens exposure to Zn and provided further information on the particular leaf area that was most sensitive to heavy metal stress. We propose the use of chlorophyll fluorescence imaging, and in particular the redox state of the plastoquinone (PQ) pool that was found to display the highest spatiotemporal heterogeneity, as a sensitive bio-indicator to measure the environmental pressure by heavy metals on plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey.
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Gülriz Bayçu
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Nurbir Gevrek
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - István Csatári
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Sven Erik Rognes
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
15
|
Chen J, Liu YQ, Yan XW, Wei GH, Zhang JH, Fang LC. Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:312-323. [PMID: 30005404 DOI: 10.1016/j.ecoenv.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 07/01/2018] [Indexed: 05/13/2023]
Abstract
Despite numerous reports that legume-rhizobium symbiosis alleviates Cu stress in plants, the possible roles of legume-rhizobium symbiosis and the regulatory mechanisms in counteracting Cu toxicity remain unclear. Here, Sinorhizobium meliloti CCNWSX0020 was used for analyzing the effects of rhizobium inoculation on plant growth in Medicago sativa seedlings under Cu stress. Our results showed that rhizobium inoculation alleviated Cu-induced growth inhibition, and increased nitrogen concentration in M. sativa seedlings. Moreover, the total amount of Cu uptake in inoculated plants was significantly increased compared with non-inoculated plants, and the increase in the roots was much higher than that in the shoots, thus decreasing the transfer coefficient and promoting Cu phytostabilization. Cu stress induced lipid peroxidation and reactive oxygen species production, but rhizobium inoculation reduced these components' accumulation through altering antioxidant enzyme activities and regulating ascorbate-glutathione cycles. Furthermore, legume-rhizobium symbiosis regulated the gene expression involved in antioxidant responses, phytochelatin (PC) biosynthesis, and metallothionein biosynthesis in M. sativa seedlings under Cu stress. Our results demonstrate that rhizobium inoculation enhanced Cu tolerance by affecting Cu uptake, regulating antioxidant enzyme activities and the ascorbate-glutathione cycle, and influencing PC biosynthesis-related gene expression in M. sativa. The results provide an efficient strategy for phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Yu-Qing Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiao-Wu Yan
- School of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ge-Hong Wei
- School of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jian-Hua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong; Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Lin-Chuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
16
|
Duan C, Fang L, Yang C, Chen W, Cui Y, Li S. Reveal the response of enzyme activities to heavy metals through in situ zymography. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:106-115. [PMID: 29547725 DOI: 10.1016/j.ecoenv.2018.03.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Enzymes in the soil are vital for assessing heavy metal soil pollution. Although the presence of heavy metals is thought to change the soil enzyme system, the distribution of enzyme activities in heavy metal polluted-soil is still unknown. For the first time, using soil zymography, we analyzed the distribution of enzyme activities of alfalfa rhizosphere and soil surface in the metal-contaminated soil. The results showed that the growth of alfalfa was significantly inhibited, and an impact that was most pronounced in seedling biomass and chlorophyll content. Catalase activity (CAT) in alfalfa decreased with increasing heavy metal concentrations, while malondialdehyde (MDA) content continually increased. The distribution of enzyme activities showed that both phosphatase and β-glucosidase activities were associated with the roots and were rarely distributed throughout the soil. In addition, the total hotspot areas of enzyme activities were the highest in extremely heavy pollution soil. The hotspot areas of phosphatase were 3.4%, 1.5% and 7.1% under none, moderate and extremely heavy pollution treatment, respectively, but increased from 0.1% to 0.9% for β-glucosidase with the increasing pollution levels. Compared with the traditional method of enzyme activities, zymography can directly and accurately reflect the distribution and extent of enzyme activity in heavy metals polluted soil. The results provide an efficient research method for exploring the interaction between enzyme activities and plant rhizosphere.
Collapse
Affiliation(s)
- Chengjiao Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Congli Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Weibin Chen
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave West, Waterloo, Ontario, Canada N2L 3C5
| | - Yongxing Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Shiqing Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
17
|
Intercropping of Gramineous Pasture Ryegrass (Lolium perenne L.) and Leguminous Forage Alfalfa (Medicago sativa L.) Increases the Resistance of Plants to Heavy Metals. J CHEM-NY 2018. [DOI: 10.1155/2018/7803408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intercropping can increase the biomass of plants and reduce the accumulation of heavy metals in plants. However, the mechanisms of intercropping increasing plant biomass and resistance to heavy metals are still unclear. Therefore, the pot experiment had been conducted to investigate the effect of intercropping treatment on the growth of gramineous pasture ryegrass (Lolium perenne L.) and leguminous forage alfalfa (Medicago sativa L.) in metal-contaminated soil. Our results showed that intercropping alleviated inhibition of heavy metals to plant growth and increased nitrogen and chlorophyll contents in the shoots and roots. Moreover, the Pb concentrations in the shoots and roots of ryegrass and alfalfa in the intercropping were significantly lower than those in the monoculture. And, the contents of saccharase and alkaline phosphatase were significantly increased in the intercropping treatment. Additionally, the intercropping treatment could reduce the oxidative damage and increase enzymatic antioxidant activities to improve the resistance of plants in contaminated soil. The intercropping treatment can increase the resistance of plants to heavy metals through reduction of plant oxidative damage and increase of antioxidant activity. It could provide us with a strategy that intercropping of ryegrass and alfalfa can increase biomass and reduce the absorption of Pb on forage plants.
Collapse
|
18
|
Morina F, Vidović M, Srećković T, Radović V, Veljović-Jovanović S. Biomonitoring of Urban Pollution Using Silicon-Accumulating Species, Phyllostachys aureosulcata 'Aureocaulis'. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:706-712. [PMID: 29032386 DOI: 10.1007/s00128-017-2189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.
Collapse
Affiliation(s)
- Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia.
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budejovice, Czechia.
| | - Marija Vidović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Tatjana Srećković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Vesela Radović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Sonja Veljović-Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| |
Collapse
|
19
|
Vidović M, Morina F, Prokić L, Milić-Komić S, Živanović B, Jovanović SV. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H 2O 2 in (peri)vascular tissue induced by sunlight and paraquat. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:25-39. [PMID: 27688091 DOI: 10.1016/j.jplph.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.
Collapse
Affiliation(s)
- Marija Vidović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Filis Morina
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Sonja Milić-Komić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Bojana Živanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Sonja Veljović Jovanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|