1
|
Han X, Wang J, Xiong Z, Li S, Jing J, Wang L, Liang T. Spatial and ecological health impacts of potentially toxic elements in road dust from long-term mining activities: A case study of the Bayan Obo deposit. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137595. [PMID: 39955990 DOI: 10.1016/j.jhazmat.2025.137595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
The long-term impacts of mining activities at the Bayan Obo deposit on potentially toxic elements (PTEs) in road dust remain insufficiently understood. This study aims to enrich knowledge in this area by investigating the spatial and eco-health impacts of PTEs in both bulk road dust (BRD) and resuspended road dust (RRD) from mining. An integrated approach combining Monte Carlo simulations with multiple statistical and geostatistical methods was used to quantify mining-related impacts. The findings revealed that Cd was the most polluted element. Concentrations of Cd, Mo, Pb and Zn were notably higher near the mine and decreased with increasing distance, with mining activities directly contributing over 20 % to these PTEs. Moderate and considerable eco-risks were identified for BRD and RRD, respectively, primarily driven by Cd and Mo, with higher risks closer to the mine. While non-carcinogenic risks were negligible, carcinogenic risks for adults required attention. Mining-related sources accounted for over 30 % of eco-risks but less than 10 % of health risks. This research integrates multiple methods, providing a more comprehensive understanding of the spatial and eco-health impacts of mining activities on PTEs in road dust. These findings offer critical insights and guidance for managing similar environmental challenges in other mining regions.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhunan Xiong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jing
- School of Geographic and Environmental Sciences, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Xiang H, Yang Z, Liu X, Lu F, Zhao F, Chai L. Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications. Adv Colloid Interface Sci 2025; 338:103403. [PMID: 39862803 DOI: 10.1016/j.cis.2025.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater. Despite the growing interest in adsorption-based REEs separation, comprehensive reviews of both traditional and novel adsorbents toward REEs recovery remain limited. This review aims to provide a thorough analysis of various adsorbents for the recovery of REEs. The types of adsorbents examined include activated carbons, functionalized silica nanoparticles, and microbial synthetic adsorbents, with a detailed evaluation of their adsorption capacities, selectivity, and regeneration potential. This study focuses on the mechanisms of REEs adsorption, including electrostatic interactions, ion exchange, surface complexation, and surface precipitation, highlighting how surface modifications can enhance REEs recovery efficiency. Future efforts in designing high-performance adsorbents should prioritize the optimization of the density of functional groups to enhance both selectivity and adsorption capacity, while also maintaining a balance between overall capacity, cost, and reusability. The incorporation of covalently bonded functional groups onto mechanically robust adsorbents can significantly strengthen chemical interactions with REEs and improve the structural stability of the adsorbents during reuse. Additionally, the development of materials with high specific surface areas and well-defined porous structures is benifitial to facilitating mass transfer of REEs and maximizing adsorption efficiency. Ultimately, the advancement of the design of efficient, highly selective and recyclable adsorbents is critical for addressing the growing demand for REEs across diverse industrial applications.
Collapse
Affiliation(s)
- Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoyun Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiyu Lu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
3
|
Han X, Xiong Z, Wang S, Wang L, Liang T. Long-term open-pit mining activities at the world's largest light rare earth mine significantly affect light rare earth elements in road dust over long distances. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136287. [PMID: 39488983 DOI: 10.1016/j.jhazmat.2024.136287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The long-term effects of decades of open-pit mining at the Bayan Obo deposit, the world's largest light rare earth mine, on the concentrations of several elements in road dust over long distances are unknown. Here, bulk road dust (BRD) and resuspended road dust (RRD) were collected from different distances from the mine for subsequent analysis of mining impacts. As a result of mining activities, light rare earth elements (LREEs), especially La, Ce, Pr and Nd, show different statistical and spatial variations compared to other elements. These LREEs decrease with increasing distance from the mine, and the values found in RRD are higher than those in other particle sizes. Mining emissions and soil have the most significant influence on these LREEs compared to other factors. Spatially, these four LREEs changed significantly over a large area (up to 60 km from the mine) due to mining emissions. However, long-term mining activities affect these elements mainly through mining-contaminated soil as opposed to mining emissions. This study confirms the significant impact of mining activities on LREEs in road dust via a comprehensive data-driven framework, emphasizing the significant environmental effects of long-term open pit mining.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhunan Xiong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Sun M, Liu J, Lin K, Yuan W, Liang X, Wu H, Zhang Y, Dai Q, Yang X, Song G, Wang J. Distribution and migration of rare earth elements in sediment profile near a decommissioned uranium hydrometallurgical site in South China: Environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121832. [PMID: 39038435 DOI: 10.1016/j.jenvman.2024.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Rare earth elements have garnered increasing attention due to their strategic properties and chronic toxicity to humans. To better understand the content, migration, and ecological risk of rare earth elements in a 180 cm depth sediment profile downstream of a decommissioned uranium hydrometallurgical site in South China, X-ray powder diffraction (XRD) and High-resolution transmission electron microscope (HRTEM) were additionally used to quantify and clarify the mineral composition features. The results showed a high enrichment level of total rare earth elements in the sediment depth profile (range: 129.6-1264.3 mg/kg); the concentration variation of light rare earth elements was more dependent on depth than heavy rare earth elements. Overall, there was an obvious enrichment trend of light rare earth elements relative to heavy rare earth elements and negative anomalies of Ce and Eu. The fractionation and anomaly of rare earth elements in sediments were closely related to the formation and weathering of iron-bearing minerals and clay minerals, as confirmed by the correlation analysis of rare earth elements with Fe (r2 = 0.77-0.90) and Al (r2 = 0.50-0.71). The mineralogical composition of sediments mainly consisted of quartz, feldspar, magnetite, goethite, and hematite. Pollution assessment based on the potential ecological risk index, pollution load index (PLI), enrichment factor, and geological accumulation index (Igeo) showed that almost all the sediments had varying degrees of pollution and a high level of ecological risk. This study implied that continued environmental supervision and management are needed to secure the ecological health in terms of rare earth elements enrichment around a decommissioned uranium hydrometallurgical site. The findings may provide valuable insights for other uranium mining and hydrometallurgical areas globally.
Collapse
Affiliation(s)
- Mengqing Sun
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Juan Liu
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Xiao Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jin Wang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
5
|
Thiruvengadam R, Easwaran M, Rethinam S, Madasamy S, Siddiqui SA, Kandhaswamy A, Venkidasamy B. Boosting plant resilience: The promise of rare earth nanomaterials in growth, physiology, and stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108519. [PMID: 38490154 DOI: 10.1016/j.plaphy.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Senthil Rethinam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Anandhi Kandhaswamy
- Post Graduate Research Department of Microbiology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, 621212, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
6
|
Jiang D, Gao W, Chen G. Toxic effects of lanthanum(III) on photosynthetic performance of rice seedlings: Combined chlorophyll fluorescence, chloroplast structure and thylakoid membrane protein assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115627. [PMID: 37890244 DOI: 10.1016/j.ecoenv.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Rare earth elements (REEs) are emerging as an anticipated pollution in the environment due to their active use in many areas. However, the effects of REEs on the photosynthesis of rice have not been thoroughly explored. Therefore, this study emphasizes how high levels of La(III) affect the thylakoid membrane of rice seedlings, thereby inhibiting photosynthesis and growth. Here, we reported that rice plants treated with La(III) exhibited an increase in La accumulation in the leaves, accompanied by a decrease in chlorophyll content and photosynthetic capacity. La(III) exposure decreased Mg content in leaves, but possibly increased other nutrients including Cu, Mn, and Zn through systemic endocytosis. K-band and L-band appeared in the fluorescence OJIP transients, indicating La(III) stress destroyed the donor and receptor sides of photosystem II (PSII). Numerous reaction centers (RC/CSm) were inactivated by La(III) treatment, which resulted in a reduction in electron transport capacity (decreased ETo/RC and ETo/CSm) and an increase in the dissipation of the excess excitation energy by heat (increased DIo/RC and DIo/CSm). The BN-PAGE analysis of thylakoid membrane protein complexes showed that La(III) induced the degradation of supercomplexes, PSII core, LHCII, PSI core, LHCI, and F1-ATPase binding Cyt b6f complex. Collectively, this study revealed that La(III) causes significant degradation of thylakoid membrane proteins, thereby promoting the decomposition of photosynthetic complexes, ultimately destroying the chloroplast structure and reducing the photosynthetic performance of rice seedlings.
Collapse
Affiliation(s)
- Dexing Jiang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211222, China; Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenwen Gao
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Chen
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Xia X, Jiang C, Hu M, Li Y. Geochemical characteristics and ecological risks of rare earth elements in river sediments of coal-grain composite area in eastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1428. [PMID: 37938430 DOI: 10.1007/s10661-023-12071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Coal and grain complex areas influence the geochemical characterization of REEs through coal mining activities and agricultural production. However, there is a lack of relevant studies. In this study, we investigated the geochemical characterization and risk assessment of REEs in river sediments of the northern Anhui plain, a typical coal-grain composite area. The results showed that the average concentrations of ∑REE in the sediments ranged from 134.7 to 220.3 μg/g, and LREE was significantly enriched. Among the 14 REEs, Gd and Eu were the most enriched, with enrichment factors of 1.792 and 1.764, respectively. In addition, the differences in REEs content and enrichment between different rivers were related to the location of coal mines and the degree of population concentration. The average values of δCe and δEu in the sediments were 0.990 and 1.080, respectively, and most of the sampling sites showed a weak positive Ce, Eu anomaly. The results of Pearson's correlation and RDA redundancy analyses showed that Fe, Al, Mn and sand contributed more to the enrichment of REEs. The river sediments in the whole area had a slight potential ecological risk, with Eu (Er=13.05) and Lu (Er=14.07) having the highest potential risk. The ADD results also showed that the average daily dose of REEs by children was around 2.000 (μg/(kg·day)), which was significantly higher than that of adults. The results of this study can be used as a basis for the prevention and control of REEs in rivers in northern Anhui Province.
Collapse
Affiliation(s)
- Xiang Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
- School of Resources and Geoscience, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| | - Mingyu Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | | |
Collapse
|
8
|
Krasavtseva E, Maksimova V, Slukovskaya M, Ivanova T, Mosendz I, Elizarova I. Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic. TOXICS 2023; 11:898. [PMID: 37999550 PMCID: PMC10674527 DOI: 10.3390/toxics11110898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Mining activities create disturbed and polluted areas in which revegetation is complicated, especially in northern areas. For the first time, the state of the ecosystems in the impact zone of tailings formed during the processing of rare earth element deposits in the Subarctic have been studied. This work aimed to reveal aspects of accumulation and translocation of trace and biogenic elements in plants (Avenella flexuosa (L.) Drejer, Salix sp., and Betula pubescens Ehrh.) that are predominantly found in primary ecosystems on the tailings of loparite ores processing. The chemical composition of soil, initial and washed plant samples was analyzed using inductively coupled plasma mass spectrometry. Factor analysis revealed that anthropogenic and biogenic factors affected the plants' chemical composition. A deficiency of nutrients (Ca, Mg, Mn) in plants growing on tailings was found. The absorption of REE (Ce, La, Sm, Nd) by A. flexuosa roots correlated with the soil content of these elements and was maximal in the hydromorphic, which had a high content of organic matter. The content of these elements in leaves in the same site was minimal; the coefficient of REE bioaccumulation was two orders of magnitude less than in the other two sites. The high efficiency of dust capturing and the low translocation coefficient of trace elements allow us to advise A. flexuosa for remediation of REE-contained tailings and soils.
Collapse
Affiliation(s)
- Eugenia Krasavtseva
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14a, 184209 Apatity, Russia;
| | - Victoria Maksimova
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14a, 184209 Apatity, Russia;
| | - Marina Slukovskaya
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 26a, 184209 Apatity, Russia
| | - Tatiana Ivanova
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 26a, 184209 Apatity, Russia
| | - Irina Mosendz
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 26a, 184209 Apatity, Russia
| | - Irina Elizarova
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14a, 184209 Apatity, Russia;
| |
Collapse
|
9
|
Zhao C, Yang J, Zhang X, Fang X, Zhang N, Su X, Pang H, Li W, Wang F, Pu Y, Xia Y. A human health risk assessment of rare earth elements through daily diet consumption from Bayan Obo Mining Area, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115600. [PMID: 37862749 DOI: 10.1016/j.ecoenv.2023.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Rare earth elements (REEs) have been broad application in a range of industries, including the electronics industry, advanced materials, and medicine. However, health risks associated with REEs received increasing attention. 31 residents (16 males and 15 females) from Bayan Obo mining in Inner Mongolia, China, were enrolled in this study. In total, 677 food samples, the major human exposure matrices (drinking water and duplicate diets), and bio-samples (urine and blood) of 31 participants were obtained. The concentrations of REEs were measured to characterize their external and internal exposures, and the potential health risk of exposure to REE through the ingestion route was analyzed. The results revealed that the detection rate in blood samples (100%) is higher than in urine (32.86%), and only a few REEs were detected in water samples (8.06%), the urine concentrations were considerably lower than in blood. Exposure to REEs through drinking water was considered negligible compared to food intake. Lanthanum and cerium were the most concentrated REEs in food samples. Health risks were calculated based on a dose-response model, the total hazard quotients (THQ) values for all food groups were within normal levels, and the Monte Carlo simulation results show that the 5th, the 50th, and the 95th percentile values of HI were found as 1.45 × 10-2, 3.52 × 10-2, and 9.13 × 10-2, respectively, neither exceeds the threshold, indicating low health risks associated with food intake exposure for this area. The sensitivity results suggest that underweight people are at higher risk, cerium, lanthanum, and yttrium concentrations, and food intake contributes more to health risks. The use of probability distribution methods can improve the accuracy of the results. The cumulative health risk through food intake is negligible, and further attention should be paid to the health risk induced by other routes of exposure to REEs by the local residents.
Collapse
Affiliation(s)
- Chen Zhao
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Jianye Yang
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Huhhot 010031, Inner Mongolia, China
| | - Xingguang Zhang
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Xin Fang
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Nan Zhang
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Xiong Su
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Hui Pang
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Wuyuntana Li
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Fenghong Wang
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Yunxia Pu
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Huhhot 010031, Inner Mongolia, China.
| | - Yuan Xia
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China.
| |
Collapse
|
10
|
Zerizghi T, Guo Q, Wei R, Ziteng W, Du C, Deng Y. Rare earth elements in soil around coal mining and utilization: Contamination, characteristics, and effect of soil physicochemical properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121788. [PMID: 37164222 DOI: 10.1016/j.envpol.2023.121788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
REEs are emerging contaminants, and soils nearby coal and coal ash with high REEs composition are vulnerable to REEs contamination. Besides, coal industry alters surrounding soil characteristics. However, there is information paucity about REEs contamination and geochemical behaviors along with soil characteristics around coal industrial areas, which are essential for understanding their toxicity and mobilization. The study was conducted in soils surrounding Kriel coal-fired power plant (KCM) and Greenside coal mining in Witbank (GSCM), South Africa. Multivariate statistical analysis, pollution and fractionation indices, and BCR sequential extraction were applied. The ∑REEs in the soils were compared to abundance of ∑REEs in the upper earth's crust (UEC), and slightly higher ∑REEs were found in KCM but slightly lower in GSCM. Generally, LREEs are abundant. The REEs in the soils were normalized using the Post-Archean Australian Shale (PAAS) and then Eu and Gd in KCM and Gd in GSCM were >1. Contamination assessment revealed slightly to moderately contaminated soils by REEs. ∑REEs in KCM was significantly correlated with soil particle sizes of 2.00-50.00 μm, Al2O3, Fe2O3, and MnO, while with 2.00-3.00 μm and Al2O3 in GSCM. Fractionation characteristics showed a positive Ce anomaly with positive linear regressions with Fe2O3 and MnO. In contrast, a negative Eu anomaly was found with positive linear regressions with Al, Ca, and Mg-oxides. Oxidizable fractioned REEs accounted for 32.33% of the ∑REEs in GSCM and 35.85% in KCM, and their high EF suggest enrichment that could be due to coal mining and utilization. Most soil physicochemical properties appear to be negatively correlated with the exchangeable REEs. Overall, the soils are contaminated by REEs, and characteristics of the REEs are considerably influenced by the major elements oxide, U, and Th contents. Therefore, more attention should be paid to REEs contamination and impacts around coal mining and utilization.
Collapse
Affiliation(s)
- Teklit Zerizghi
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hamelmalo Agricultural College, National Commission for Higher Education, Keren, P.O. Box 397, Eritrea
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wang Ziteng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenjun Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinan Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; School of Earth Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
11
|
Liu Z, Gu X, Lian M, Wang J, Xin M, Wang B, Ouyang W, He M, Liu X, Lin C. Occurrence, geochemical characteristics, enrichment, and ecological risks of rare earth elements in sediments of "the Yellow river-Estuary-bay" system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121025. [PMID: 36621719 DOI: 10.1016/j.envpol.2023.121025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Recent studies have suggested that rare earth elements (REEs) are contaminants of emerging concern. Moreover, the understanding of the occurrence and risks of REEs in river-estuary-bay systems is limited. The present study investigated the distributions, geochemical characteristics, and ecological risks of Y and 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in sediments from the Yellow River to its estuary and adjacent Laizhou Bay. The average total concentrations of Y and REEs in the sediments generally increased from the Yellow River (149 mg/kg) to the estuary (165 mg/kg) and Laizhou Bay (173 mg/kg). In the estuarine core sediments, the concentrations of Y, light REEs (LREEs), and heavy REEs (HREEs) were in the ranges of 19.5-31.4 mg/kg, 58.6-156 mg/kg, and 12.3-19.1 mg/kg, respectively, from the 1700s to 2018, showing no obvious increasing or decreasing trends. The surface and core sediments from the river to the bay were characterized by obvious fractionation between LREEs and HREEs. In sediments, Fe minerals and clay are believed to promote the accumulation of REEs, especially HREEs. The enrichment levels of REEs generally increased from the middle reaches of the Yellow River to the bay, and Gd, Tb, Dy, Ho, Yb, and Lu were the most enriched elements in the sediments. Lu had moderate potential ecological risks in sediments of "the Yellow River-estuary-bay" system, and other REEs had relatively low ecological risks. The potential ecological risk indices of Y and REEs ranged from 78.7 to 144, showing increasing trends from the Yellow River to its estuary and adjacent bay, which should raise concerns regarding emerging contaminant management around estuarine and coastal regions.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Maoshan Lian
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jing Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Wei Ouyang
- School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
12
|
Jiang C, Li Y, Li C, Zheng L, Zheng L. Distribution, source and behavior of rare earth elements in surface water and sediments in a subtropical freshwater lake influenced by human activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120153. [PMID: 36113641 DOI: 10.1016/j.envpol.2022.120153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
As tracers, rare earth elements (REEs) can reflect the influence of human activities on the environmental changes in aquatic systems. To reveal the geochemical behavior of REEs in a water-sediment system influenced by human activities, the contents of REEs in the surface water and sediment in the Chaohu Lake Basin were measured by inductively coupled plasma mass spectrometry (ICP-MS). The results show that the ΣREE contents in the surface water are 0.10-0.850 μg L-1, the ΣREE contents in the sediments are 71.14-210.01 μg g-1, and the average contents are 0.24 μg L-1 and 126.72 μg g-1, respectively. Almost all water and sediment samples have obvious light REE (LREE) enrichment, which is the result of the input of LREE-rich substances released by natural processes and human activities (industrial and agricultural production). Under the alkaline water quality conditions of Chaohu Lake, REEs (especially LREEs) are easily removed from water by adsorption/coprecipitation reactions with suspended colloidal particles, which leads to the enrichment of LREEs in sediments. The Ce anomaly of the water-sediment system is related to the oxidation environment, while the Eu anomaly is related to the plagioclase crystallization. Significant Gd anomalies was observed in the downstream of rivers flowing through urban areas, which was related to the anthropogenic Gd wastewater discharged by hospitals. The ∑REE-δEu and provenance index (PI) discrimination results are consistent, indicating that the sediments in Chaohu Lake mainly come from rivers flowing through the southwest farmland. Furthermore, the spatial distribution of REEs shows that these tributaries are significantly affected by agricultural activities. The distribution and accumulation of REEs in Chaohu Lake are the result of the interaction of natural and human processes. The results can provide a scientific reference for the distribution and environmental behavior of REEs in aquatic environments disturbed by human beings.
Collapse
Affiliation(s)
- Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Yanhao Li
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Lanlan Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| |
Collapse
|
13
|
Lian Z, Han Y, Zhao X, Xue Y, Gu X. Rare earth elements in the upland soils of northern China: Spatial variation, relationships, and risk assessment. CHEMOSPHERE 2022; 307:136062. [PMID: 35981620 DOI: 10.1016/j.chemosphere.2022.136062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
While global demand for rare earth elements (REEs) is rapidly growing, recent studies have suggested that REEs are pollutants of emerging concern. In this study, the spatial distribution and risk assessments of REEs in the upland soils of northern China were comprehensively investigated. The total REE concentrations ranged from 81 to 180 mg/kg, with average concentrations of 123, 128, and 98.3 mg/kg in the northwestern, northern, and northeastern zones, respectively. The decreasing trend of REE contents from northwest to northeast might be influenced by variation in the REE metallogenic belt distribution, mining activities, and precipitation intensity in these regions. The ratio of light rare elements (LREEs) to heavy rare elements (HREEs) ranged from 5.04 to 9.06, revealing obvious fractionation between them in upland soils and indicating that LREEs enrichment was common in northern China. The significantly positive correlations between the REEs indicated that REEs might frequently coexist and share similar sources in the upland soils of northern China. Based on a modified ecological risk index (eRI), REEs were estimated to pose relatively low ecological risks to current environmental residues, with eRI values ranging from 0.564 to 0.984. Fortunately, the estimated daily intakes of REEs from soils for children (1.08-2.41 μg/kg/day) and adults (0.119-0.312 μg/kg/day) were well below the safety thresholds. However, the health risks posed by REEs in upland soils were estimated to be higher for children. Thus, the continuous monitoring of REE abundance in soils is essential to avoid potential health risks.
Collapse
Affiliation(s)
- Zhongmin Lian
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yixuan Han
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xumao Zhao
- College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Yinglan Xue
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, 100190, China; State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing, 100012, China.
| | - Xiang Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
14
|
Pereira WVDS, Ramos SJ, Melo LCA, Braz AMDS, Dias YN, Almeida GVD, Fernandes AR. Levels and environmental risks of rare earth elements in a gold mining area in the Amazon. ENVIRONMENTAL RESEARCH 2022; 211:113090. [PMID: 35278468 DOI: 10.1016/j.envres.2022.113090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Artisanal gold (Au) mining may have increased the concentrations of rare earth elements (REEs) in the Serra Pelada mine (southeastern Amazon, Brazil), which has not been evaluated so far. The objectives of this study were to determine the concentrations of cerium (Ce), lanthanum (La), scandium (Sc), and yttrium (Y) in the surroundings of the Serra Pelada mine, as well as the environmental risks associated with these elements. Therefore, 27 samples were collected in agricultural, forest, mining, and urban areas, and submitted to chemical and particle size characterization. The concentrations of REEs were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and used to estimate pollution indices and environmental risks of the studied elements. All REEs had higher levels in the anthropized areas when compared to the forest area, except Sc in the mining and urban areas. Pollution load indices revealed that all areas are contaminated (>1) by the combined effect of REEs, especially the agricultural areas (index of 2.3). The element of greatest enrichment in the studied areas was Y, with enrichment factors of 18.2, 39.0, and 44.4 in the urban, agriculture, and mining areas, respectively. However, the potential ecological risk indices were low (<150) in all areas, indicating that there are no current environmental risks by the studied REEs.
Collapse
Affiliation(s)
| | - Sílvio Junio Ramos
- Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil
| | - Leônidas Carrijo Azevedo Melo
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900, Lavras, Minas Gerais, Brazil
| | | | - Yan Nunes Dias
- Institute of Agricultural Sciences, Federal Rural University of the Amazon, 66077-830, Belém, Pará, Brazil
| | | | | |
Collapse
|
15
|
Godwyn-Paulson P, Jonathan MP, Rodríguez-Espinosa PF, Rodríguez-Figueroa GM. Rare earth element enrichments in beach sediments from Santa Rosalia mining region, Mexico: An index-based environmental approach. MARINE POLLUTION BULLETIN 2022; 174:113271. [PMID: 34968827 DOI: 10.1016/j.marpolbul.2021.113271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Baseline data on concentration, fractionation, pollution level and ecological risk index for seventeen beach sediments from Santa Rosalia mining region of Baja California Sur, Mexico were assessed. Higher concentrations of Rare Earth Elements (REEs) (mean. 341.49 μg/g) indicated that it is higher than most of the mining regions around the world. Normalization pattern showed enrichment of Eu (>4) and calculated geochemical indices revealed that light and middle REEs are moderately polluted with most of the sampling points located closer to the river discharge. Potential Ecological Risk Index (PERI) showed that Eu (20.2), Tb (20.88), and Lu (28.57) pose moderate ecological risk to the soil at selected stations (10, 11, 15 and 16) with a risk index value ranging from 245 to 359. Pearson's correlation matrix suggested that all REEs are highly correlated (r2 0.95) with each other having similar geochemical characteristics and indicating identical source due to continuous mining activity.
Collapse
Affiliation(s)
- P Godwyn-Paulson
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340 Ciudad de México, Mexico
| | - M P Jonathan
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340 Ciudad de México, Mexico.
| | - P F Rodríguez-Espinosa
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340 Ciudad de México, Mexico
| | - G M Rodríguez-Figueroa
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Avenida de IPN s/n, Col. Playa Palo de Santa Rita, Apdo. Postal 592, La Paz, Baja California Sur 23096, Mexico
| |
Collapse
|
16
|
Liu H, Liu H, Yang Z, Wang K. Bone Mineral Density in Population Long-Term Exposed to Rare Earth Elements from a Mining Area of China. Biol Trace Elem Res 2021; 199:453-464. [PMID: 32361884 DOI: 10.1007/s12011-020-02165-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
This study aims to investigate the effects of individuals' exposure to rare earth elements (REEs) on bone metabolism. Adopting the inductively coupled plasma mass spectrometry, we measured REEs and eight other elements (Ca, Fe, Cu, Na, K, Zn, Mg, and P) in the hair of 53 miners exposed to REEs from Baiyunebo and 57 healthy farmers as the control group. Furthermore, bone mineral density (BMD) in both groups was assessed by dual-energy X-ray absorptiometry. Analysis of variance showed that the concentrations of La, Ce, Pr, Nd, Tb, Ho, Tm, and Yb in male hair of exposed group were significantly higher compared with the control group, whereas the concentrations of Ca and Fe in exposed group were significantly lower; the results of female hair, except for Ce, Tb, Ho, Tm, and Yb, were consistent with male hair. Student's t test showed that the BMD of exposed males at lumbar vertebrae, femoral neck, greater trochanter, and intertrochanter was significantly lower than that of controls, and exposed females reported lower BMD values at lumbar vertebrae and femoral neck. Multiple linear regression analysis showed that concentrations of differential REEs were inversely related to BMD in males, and concentrations of Ca and Fe were positively related to BMD both in males and females. Our study suggests that long-term environmental and occupational exposure leads to REE accumulation, and a low level of iron and calcium due to the competitive binding of REEs, which together induce bone metabolism disorders, and further reduce BMD.
Collapse
Affiliation(s)
- Heming Liu
- Department of Orthopaedics, The 1st Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Province, China.
| | - Haiyan Liu
- Department of Intervention Therapy, The 1st Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Province, China
| | - Zenghua Yang
- Department of Orthopaedics, The 1st Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Province, China
| | - Kunzheng Wang
- Department of Orthopaedics, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi Province, China
| |
Collapse
|
17
|
Tian S, Li K, Møller P, Ying SC, Wang L, Li Z, Roursgaard M, Liang T. Assessment of reactive oxygen species production and genotoxicity of rare earth mining dust: Implications for public health and mining management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139759. [PMID: 32569908 DOI: 10.1016/j.scitotenv.2020.139759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Mining rare earth elements (REEs) can release large amounts of metal(loid)-rich dust, which can pose significant health risks to local residents. However, compared to other types of particulates, toxicity of mining dust has been largely overlooked. To provide experimental evidence on toxicity of REE mine dust, the study assessed the oxidative stress potential and genotoxicity of inhalable particles collected in a REE mining area, and associated toxicological response with source compositions. Both source types (i.e., mine and tailing area) and distances from source (i.e., industrial and residential areas) were considered when selecting the 44 sampling sites. The particle samples contained 2.3-3.5 folds higher concentrations of tested metal(loid)s than background concentrations in soil. Specially, elevated Fe, REEs, Cd, Pb were found. In spite of low cytotoxicity in lung epithelial A549 cells, there was increased cellular ROS production by of particle exposure. Samples with higher mining-originated source contributions (Provenance Index <0.3) had higher cellular ROS production (1.72 fold, 95%CI: 1.66-1.79 fold) than samples with lower mining contributions (1.58 fold, 95%CI: 1.52-1.65 fold). The factors soil (~46%), mine (~22%), and heavy metal (~20%) sources were recognized by source apportionment analysis as the main contributors to cellular ROS production; importantly, mine and heavy metal sources counted more in industrial samples. While samples generated genotoxicity, there were no differences in DNA damage between the location groups of sampling. Collectively, the results indicate that particles in mining areas may cause ROS production and DNA damage in lung cells depending on mine dust. Coupled with the long-range transportation potential of mine dust, safety measures on open pit and dust disposal sites should be adopted.
Collapse
Affiliation(s)
- Shuhan Tian
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Samantha C Ying
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyi Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
de Albuquerque Pereira B, da Silva YJAB, do Nascimento CWA, da Silva YJAB, Nascimento RC, Boechat CL, Barbosa RS, Singh VP. Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:514. [PMID: 31346771 DOI: 10.1007/s10661-019-7658-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Despite the rare earth elements (REEs) being considered as emerging contaminants, their natural values and possible anthropogenic enrichments in soils have not been studied well in Brazil. The intensive use of conditioners and fertilizers in agricultural frontiers from Brazilian Cerrado can increase the concentration of REE in soils of the region. In this context, the objectives of this study were to determine the natural content and establish quality reference values (QRV) for REEs in soils of a watershed from Brazilian Cerrado composed of sedimentary rocks and to evaluate the influence of agricultural cultivation and the spatial variability of these elements. Thirty and twenty-six composite soil samples were collected under native vegetation and soybean cultivation, respectively. The background concentrations followed the order (mg kg-1) Ce > Nd > La > Pr > Sm > Yb > Er > Eu > Dy. The QRVs established were as follows (mg kg-1): La (1.76), Ce (5.20), Pr (0.74), Nd (1.35), Sm (0.38), Eu (0.06), Dy (0.15), Er (0.12), and Yb (0.14). Lantanium, Ce, and Er exhibited strong spatial dependence, while Eu, Dy, and Yb showed weak or total absence of spatial dependence. The spherical model was most suitable for the spatial characteristics of REEs. The parent material, mainly characterized by soils derived from sedimentary rocks (i.e., sandstone), was the primordial source of REEs for soils and that there was no or little effect of agricultural practices on these levels. Our data reinforced the need for geochemical mapping at the watershed scale, since they are important conservation units.
Collapse
Affiliation(s)
| | | | | | - Ygor Jacques Agra Bezerra da Silva
- Agronomy Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros street, s/n-Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Rennan Cabral Nascimento
- Agronomy Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros street, s/n-Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Cácio Luiz Boechat
- Agronomy Department, Federal University of Piaui (UFPI), Planalto horizonte, Bom Jesus, PI, 64900-000, Brazil
| | - Ronny Sobreira Barbosa
- Agronomy Department, Federal University of Piaui (UFPI), Planalto horizonte, Bom Jesus, PI, 64900-000, Brazil
| | - Vijay P Singh
- Biological and Agricultural Engineering Department and Zachry Department of Civil Engineering, Texas A&M University, College Station, TX, 77843-2117, USA
- National Water Center, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Wang L, Han X, Ding S, Liang T, Zhang Y, Xiao J, Dong L, Zhang H. Combining multiple methods for provenance discrimination based on rare earth element geochemistry in lake sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:264-274. [PMID: 30959293 DOI: 10.1016/j.scitotenv.2019.03.484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Geochemical properties of rare earth elements (REEs) have the potential to represent the provenance and depositional history of surface sediment in aquatic environments. In this study, both surface and core sediment samples were collected from Dongting Lake to investigate the distribution characteristics and source of REEs by combining the methodologies of geostatistics, positive matrix factorization (PMF) model, discriminant function (DF), and provenance index (PI) based on REEs geochemical parameters. The results indicated that the total REEs content in sediment samples ranged from 129.12 to 284.02 μg g-1, with the average REEs content calculated to be 197.95 μg g-1. Light REEs (LREEs) comprised >90% of the total REEs, indicating that there was an enrichment of LREEs in the sediment samples. The REEs of the surface sediment showed strong spatial variation, with relatively high values located in Eastern Dongting Lake and relatively lower levels in Western Dongting Lake. Moreover, the vertical distributions of ∑REEs, ∑LREEs and ∑HREEs at most sampling sites behaved similarly with rapid increase until about 6-8 cm, followed by a downward trend with some irregularities. The strong association between most REEs confirmed that they often have a positive correlation and co-existence in sediment. The PMF model revealed that most of the REEs in the surface sediment were derived from natural sources with some anthropogenic inputs also serving as contributing sources. The DF and PI results indicated that the REEs distribution pattern in the surface sediment of Dongting Lake was similar to that of the Yangtze River, suggesting that Yangtze River had been more of an influence on sediment loads than the upstream tributaries. This study highlights the broader applicability of the REEs tracing method in sediment transport processes and can provide new knowledge regarding source apportionment analysis of sediment-related contaminants in aquatic environments.
Collapse
Affiliation(s)
- Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Ding
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Linlin Dong
- Suzhou academy of agricultural sciences, Suzhou 215155, China
| | - Haidong Zhang
- Suzhou academy of agricultural sciences, Suzhou 215155, China
| |
Collapse
|
20
|
Wang L, Han X, Liang T, Guo Q, Li J, Dai L, Ding S. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China. CHEMOSPHERE 2019; 217:851-857. [PMID: 30458420 DOI: 10.1016/j.chemosphere.2018.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Geochemical distribution of trace elements in sediments could reflect the impact of anthropogenic activities on environmental changes in aquatic ecosystems. In this study, rare earth elements (REEs) were used as geochemical tracers to study the environmental processes in a complex and dynamic aquatic environment. Both surface and core sediment samples were collected from Poyang Lake, the largest freshwater lake located in the middle-low region of the Yangtze River. Sediment samples were analyzed for their respective REE spatial distributions, fractionation, and co-occurrence patterns. The inner relationships and geochemistry characters of REEs were assessed by geostatistics and co-occurrence network analysis. Results indicated that total REE concentrations in the sediments from Poyang Lake ranged from 145.1 to 351.1 μg g-1, with an average concentration of 254.0 μg g-1. Light rare earth element (LREE, La - Sm) enrichment was evident in all sediment samples, indicating the effects of river-lake interactions and the contributions from terrestrial inputs. The negative Ce and Eu anomalies were found in most sediment samples, indicating the differentiation between Ce, Eu, and other REEs in the processes of sediment transportation and deposition. Collectively, the identification of the major contamination sources of REEs in sediment, analyzed by the patterns of the co-occurrence networks and REE fractionation, revealed that the REEs in sediments from Poyang Lake originated both natural and anthropogenic sources and were disturbed by the impact of anthropogenic activities.
Collapse
Affiliation(s)
- Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingjun Guo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiming Ding
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
21
|
Cunha CSM, da Silva YJAB, Escobar MEO, do Nascimento CWA. Spatial variability and geochemistry of rare earth elements in soils from the largest uranium-phosphate deposit of Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1629-1643. [PMID: 29470688 DOI: 10.1007/s10653-018-0077-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The Itataia uranium-phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg-1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P-U reserve.
Collapse
Affiliation(s)
| | - Ygor Jacques Agra Bezerra da Silva
- Agronomy Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros Street, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Maria Eugenia Ortiz Escobar
- Soil Science Department, Federal University of Ceará (UFC), Av. Mister Hull, s/n, Campus do Pici, Fortaleza, CE, 60455760, Brazil
| | | |
Collapse
|