1
|
Sales Junior SF, da Costa NM, de Farias Araújo G, Soares LOS, Mannarino CF, Correia FV, Saggioro EM. Antioxidant system alterations, oxidative, and genotoxic effects in Danio rerio (zebrafish) exposed to leachate from a dumpsite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10737-10749. [PMID: 38206461 DOI: 10.1007/s11356-024-31883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Water body contamination by leachate originated from dumpsites is a concern for municipal solid waste (MSW) management. In this context, this study aimed to evaluate antioxidant system alterations and oxidative and genotoxic effects in Danio rerio (zebrafish) exposed to leachate from a closed dumpsite. Groups comprising 50 fish were exposed (96 h) to different leachate concentrations (5, 15, 30, and 50%) to evaluate effects on liver and brain superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities and reduced glutathione (GSH) and metallothionein (MT) concentrations, as well as malondialdehyde (MDA) and protein carbonylation (PTC) levels. Blood genotoxicity was evaluated by the comet assay. The investigated dumpsite leachate pond presented high chloride concentrations (Cl-; 2288.4 ± 69.5 mg L-1) and high electrical conductivity (EC; 8434.0 mS cm-1), indicating the presence of leachate. Concerning Danio rerio exposure, higher SOD (37%), CAT (67%), and GST (39%) activities and higher GSH (57%) concentrations were observed in liver following exposure to 50% leachate, while decreased brain GST (42%) activities and GSH (90%) levels were observed at the same leachate concentration. A significant increase in the olive tail moment (OTM; 280%) indicative of genotoxicity in blood was observed. A principal component analysis indicated that increased enzymatic activities and high levels of both GSH and MT were not sufficient to prevent the accumulation of reactive oxygen species, resulting in PTC and genotoxicity. Therefore, leachate exposure causes sublethal Danio rerio effects, altering the antioxidant system, increasing ROS production, and leading to PTC and genotoxicity. The findings demonstrate the need to further develop sublethal level assessments in zebrafish using leachate from different sources to subsidize risk assessments regarding MSW management.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Post-graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brazil Ave, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Nicolle Martins da Costa
- Post-graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Gabriel de Farias Araújo
- Post-graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brazil Ave, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Lorena Oliveira Souza Soares
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brazil Ave, Rio de Janeiro, RJ, 21045-900, Brazil
- Post-graduation Program in Biological Sciences (Neotropical Biodiversity), Department of Natural Sciences, Federal University of the State of Rio de Janeiro, 458 Pasteur Ave., 22290-20 Urca, Rio de Janeiro, Brazil
| | - Camille Ferreira Mannarino
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Fábio Veríssimo Correia
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brazil Ave, Rio de Janeiro, RJ, 21045-900, Brazil
- Post-graduation Program in Biological Sciences (Neotropical Biodiversity), Department of Natural Sciences, Federal University of the State of Rio de Janeiro, 458 Pasteur Ave., 22290-20 Urca, Rio de Janeiro, Brazil
- Department of Natural Sciences, Federal University of the State of Rio de Janeiro, 458 Pasteur Ave., 22290-20 Urca, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Post-graduation Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, 1480 Leopoldo Bulhões Ave, Rio de Janeiro, RJ, 21041-210, Brazil.
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brazil Ave, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
2
|
Sales Junior SF, Costa Amaral IC, Mannarino CF, Hauser-Davis RA, Correia FV, Saggioro EM. Long-term landfill leachate exposure modulates antioxidant responses and causes cyto-genotoxic effects in Eisenia andrei earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117351. [PMID: 34000669 DOI: 10.1016/j.envpol.2021.117351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
It is estimated that approximately 0.4% of the total leachate produced in a landfill is destined for treatment plants, while the rest can reach the soil and groundwater. In this context, this study aimed to perform leachate toxicity evaluations through immune system cytotoxic assessments, genotoxic (comet assay) appraisals and antioxidant system (superoxide dismutase - SOD; catalase - CAT, glutathione-S-transferase - GST; reduced glutathione - GSH and metallothionein - MT) evaluations in Eisenia andrei earthworms exposed to a Brazilian leachate for 77 days. The leachate sample contained high organic matter (COD - 10,630 mg L-1) and ammoniacal nitrogen (2398 mg L-1), as well as several metals, including Ca, Cr, Fe, Mg, Ni and Zn. Leachate exposure resulted in SOD activity alterations and increased CAT activity and MT levels. Decreased GST activity and GSH levels were also observed. Antioxidant system alterations due to leachate exposure led to increased malondialdehyde levels as a result of lipid peroxidation after the 77 day-exposure. An inflammatory process was also observed in exposed earthworms, evidenced by increased amoebocyte density, and DNA damage was also noted. This study demonstrates for the first time that sublethal effect assessments in leachate-exposed earthworms comprise an important tool for solid waste management.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Isabele Campos Costa Amaral
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360, Rio de Janeiro, Brazil
| | - Fábio Veríssimo Correia
- UNIRIO,Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Prestes JG, De Souza MRDP, Kandalski PK, Herrerias T, Machado C, de Arruda Martins E, Dos Anjos VA, Neundorf AKA, Pereira DMC, Moura MO, Donatti L. Biomarkers of oxidative stress and cell damage in freshwater bivalves Diplodon parodizi exposed to landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28384-28395. [PMID: 32418097 DOI: 10.1007/s11356-020-08721-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Landfill is a public and environmental health problem; establishing and understanding methodologies to decrease its toxicity are thus necessary. Leachate samples were collected, at a sanitary landfill, immediately after the exit from the landfill, i.e. raw leachate (collection point A), after conventional treatment (point B) and after treatment by wetlands (point C). D. parodizi specimens were exposed to 3%, 10% and control (0%) dilutions of leachate from these collection points for 7 days. Markers of antioxidant defences and cell damage were analysed. At point B, the gills of D. parodizi showed higher glutathione-S-transferase (GST) and glutathione reductase (GR) activity; the latter is a supplier of glutathione reductase (GSH). The low GST activity at point A was associated with the hormesis effect. Higher levels of superoxide dismutase (SOD), ethoxyresorufin-O-deethylase (EROD) and glutathione peroxidase (GPx) occurred at point A. Glucose-6-phosphate dehydrogenase (G6PDH) was inhibited at the points with the highest pollutant load and at the highest leachate dilutions. Higher levels of markers at point A may be related to the high pollutant charge and specific compounds present in the untreated leachate. The multi-xenobiotic resistance mechanism (MXR), metallothionein-like proteins (MT) and lipid peroxidation (LPO) did not vary among treatments. The biomarker responses showed negative effects of the leachate on the freshwater bivalve and simultaneously showed that the wetland treatment employed at the Caximba sanitary landfill is effective.
Collapse
Affiliation(s)
| | | | | | | | - Cintia Machado
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | - Lucelia Donatti
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Ferreira CP, Lima D, Souza P, Piazza TB, Zacchi FL, Mattos JJ, Jorge MB, Almeida EA, Bianchini A, Taniguchi S, Sasaki ST, Montone RC, Bícego MC, Bainy ACD, Lüchmann KH. Short-term spatiotemporal biomarker changes in oysters transplanted to an anthropized estuary in Southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136042. [PMID: 31905594 DOI: 10.1016/j.scitotenv.2019.136042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Estuarine ecosystems are increasingly being affected by pollution caused by anthropogenic activities. In this study, Crassostrea gasar oysters were transplanted and maintained for seven days at three sites (S1, S2, and S3) in the Laguna Estuarine System (LES)-situated in southern Brazil-that has been exposed to multiple anthropic stresses. On the basis of the concentrations of metal and organic pollutants in oysters, we identified marked spatial variations in pollutant levels, with S3 showing the highest concentration of Ag, Fe, Ni, Zn, and total polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and linear alkylbenzenes (LABs), followed by S2 and S1. Along with the concentrations of pollutants, a set of biomarkers was analyzed. Oysters maintained at S3 showed enhanced protective defenses in gills, as observed by the increased levels of superoxide dismutase (SOD-like) and heat shock protein 90 (HSP90-like) transcripts and catalase (CAT) activity, concomitant with reduced lipid peroxidation (MDA) levels. Decreased antioxidant activities together with increased MDA levels are indicative of the digestive gland being more susceptible to pollutant-induced oxidative damage. Oysters transplanted into LES showed lower levels of cytochrome P450 transcripts (CYP356A1-like and CYP2AU1), and decreased glutathione S-transferase (GST) enzyme activity, suggesting lower biotransformation capacity. By integrating information regarding the concentration of metal and organic pollutants with that of molecular as well as biochemical biomarkers, our study provides novel insights into pollutant exposure and the potential biological impacts of such exposure on estuarine organisms in southern Brazil.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Patrick Souza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Thiago B Piazza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Flávia L Zacchi
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Marianna B Jorge
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Adalto Bianchini
- Institute of Marine Science - ICMar, University of Rio Grande do Sul, Rio Grande 96203-900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil; Institute of Humanities, Arts and Sciences, Formation Center in Environmental Science, Federal University of Southern Bahia, Porto Seguro 45810-000, Brazil
| | - Rosalinda C Montone
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
5
|
Pellegri V, Gorbi G, Buschini A. DNA damage detection by Comet Assay on Daphnia magna: Application in freshwater biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135780. [PMID: 31972938 DOI: 10.1016/j.scitotenv.2019.135780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Monitoring of water genotoxicity still remains underexploited in risk assessment. The present study aimed at standardizing and evaluating the sensitivity and applicability of the Comet Assay adapted for Daphnia magna in genotoxicological investigations in freshwater environments. Two sampling campaigns (2014-2015) were performed in the watercourses of a pilot basin located in the Parma district (Italy). Fourteen sampling stations with different Ecological Status and/or EBI values were selected, all with a good Chemical Status according to the EU-Water Framework Directive 2000/60. The Alkaline Comet Assay was performed on 48 h-aged daphnids exposed (24 h) to 23 water samples. In parallel, the acute toxicity test was carried out. Daphnids exposed to samples, collected upstream the main watercourses in non-impacted areas, showed low DNA migration (Tail Intensity percentage - TI% - in the range 2.97-13.21), similar to laboratory controls. An increase in genotoxicity (TI% in the range 20-40) proceeding from the mountain towards the plain area was observed, in agreement with the land uses and the ES/EBI values of the stations. The highest genotoxic damage was observed after exposure to samples from watercourses of the minor hydrographic network in the plain area and waterbodies receiving wastewater treatment plant outflows. A modified version of the Comet Assay able to identify the presence of genotoxins inducing DNA oxidative damage, after standardization, was applied to daphnids treated with waters from 4 selected monitoring stations. The presence of oxidative contaminants was detected downstream a wastewater treatment plant outflow. The Comet Assay on D. magna has proven to be sensitive and able to discriminate among differently impacted areas and might be applied routinely. The FPG-Comet proved to be able to highlight the presence of contaminants causing oxidative stress. In our knowledge, this is the first time that Comet Assay on Daphnia magna is successfully applied for freshwater monitoring.
Collapse
Affiliation(s)
- Valerio Pellegri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
| | - Gessica Gorbi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy; Centre for Molecular and Translational Oncology-COMT, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
| |
Collapse
|
6
|
Montalvão MF, Chagas TQ, Gabriela da Silva Alvarez T, Mesak C, Pereira da Costa Araújo A, Gomes AR, Emmanuela de Andrade Vieira J, Rocha TL, Malafaia G. Cigarette butt leachate as a risk factor to the health of freshwater bivalve. CHEMOSPHERE 2019; 234:379-387. [PMID: 31228840 DOI: 10.1016/j.chemosphere.2019.06.100] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
The toxicity caused by smoking to human health has been demonstrated in several scientific studies. However, little attention has been given to damages caused to aquatic biota when cigarette butts (CB) are disposed of on water surface. Thus, the main aim of the current study is to evaluate the behavioural toxicity of cigarette butt leachates (CBL) in freshwater bivalve species Anodontites trapesialis exposed to different environmentally-relevant dilutions (CBL1x = 1.375%, CBL10x: 13.75%). There were significant CBL effects on the burrowing performance of the evaluated bivalves, after 14 exposure days. Animals exposed to CBL presented higher latency to foot emission and to start the burrowing process, as well as larger number of cycles required for burial. In addition, there were lower burrowing angle and burrowing rate index in CBL-exposed bivalves than in the unexposed ones. Chemical analyses performed on the muscle tissues of animals exposed to both CBL dilutions evidenced the bioaccumulation of several metals at high concentrations in CBL (Cr, Ni, Pb, Mn, Zn and Na); this outcome enabled associating these metals with behavioural changes observed in CBL-exposed groups. Thus, the current study firstly reports that even highly-diluted CBL concentrations can induce behavioural changes in freshwater bivalves, as well as that CBL extrapolation to natural environments can lead to several damages to the fitness of living organisms and to the dynamics of their population.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Thales Quintão Chagas
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Tenilce Gabriela da Silva Alvarez
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Carlos Mesak
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | - Alex Rodrigues Gomes
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, GO, Brazil.
| |
Collapse
|
7
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
8
|
Oliveira LFD, Cabral MT, Risso WE, Martinez CBDR. Single and combined effects of Zn, Mn and Fe on the Neotropical freshwater bivalve Anodontites trapesialis: Bioaccumulation and biochemical biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:735-745. [PMID: 29957581 DOI: 10.1016/j.ecoenv.2018.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Important concentrations of Zn, Mn and Fe were detected in a stream near a coal mining area and promoted, in field, biomarkers alterations in the bivalve Anodontites trapesialis. In order to understand the isolated and mixed effects of these metals on these Neotropical bivalves, we run short-term experiments under laboratory controlled conditions. After 96 h-exposure, tissues (gills, mantle, digestive gland, muscle, hemolymph) were removed for metal bioaccumulation analysis, oxidative stress biomarkers (reactive oxygen species (ROS), total antioxidant capacity, lipoperoxidation (LPO), proteins carbonylation (PC), metallothionein (MT), activity of superoxide dismutase and glutathione S-transferase and hemocytes DNA damage) and cholinesterase (ChE versus ASCh activity) activity evaluation. We run three independent tests. In Zn test, clams were exposed to three concentrations of Zn (0.18 mg L-1, 1.0 mg L-1, 5.0 mg L-1); in Mn test, clams were exposed to three concentrations of Mn (0.1 mg L-1, 0.5 mg L-1, 5.0 mg L-1) and in Mix test, clams were exposed to the mixture Zn (1 mg L-1) + Mn (0.5 mg L-1), with and without Fe (5.0 mg L-1). After single exposure to 5.0 mg L-1, Zn bioaccumulated in all tissues, but only in mantle and hemolymph after exposure to 1.0 mg L-1. The increased MT in gills of A. trapesialis exposed to Zn appears to be sufficient to avoid damage, since LPO occurred only in digestive glands from animals exposed to 5.0 mg L-1. We suggested that A. trapesialis had a metabolic suppression in consequence of Mn presence, based on the following results: the decrease of ROS in gills, the decrease of the Zn and Mn concentrations in tissues and the decrease of ChE versus ASCh activity in muscle. Despite this, animals exposed to Mn suffer oxidative damages (LPO and PC) in the mantle and digestive gland and MT increased in the mantle. These results showed A. trapesialis responded differently to each metal and Mn caused more damage. When exposed to Fe, gills level of ROS was increased, despite no changes in metal accumulation occurred. On the other hand, after exposure to the mixtures, tissues bioaccumulated Zn and previously observed damages caused by Mn and Fe disappeared. Consequently, biomarkers were less affected under mixture treatments, demonstrating mixtures effects or responses were not simply a combination of single exposures to Zn, Mn and Fe, but depend on metals toxicokinetics.
Collapse
Affiliation(s)
- Luciana Fernandes de Oliveira
- Laboratório de Ecofisiologia Animal-Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380. C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brazil; Instituto Federal do Paraná, Campus Londrina, Rua João XXIII, 600, Jardim Dom Bosco, CEP: 86060-370, Londrina, Paraná, Brasil.
| | - Millena Terezinha Cabral
- Laboratório de Ecofisiologia Animal-Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380. C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brazil; Instituto Federal do Paraná, Campus Londrina, Rua João XXIII, 600, Jardim Dom Bosco, CEP: 86060-370, Londrina, Paraná, Brasil
| | - Wagner Ezequiel Risso
- Laboratório de Ecofisiologia Animal-Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380. C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brazil; Instituto Federal do Paraná, Campus Londrina, Rua João XXIII, 600, Jardim Dom Bosco, CEP: 86060-370, Londrina, Paraná, Brasil
| | - Claudia Bueno Dos Reis Martinez
- Laboratório de Ecofisiologia Animal-Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380. C.P. 10011, CEP: 86051-970 Londrina, Paraná, Brazil; Instituto Federal do Paraná, Campus Londrina, Rua João XXIII, 600, Jardim Dom Bosco, CEP: 86060-370, Londrina, Paraná, Brasil
| |
Collapse
|
9
|
Mahapatra E, Dasgupta D, Bhattacharya N, Mitra S, Banerjee D, Goswami S, Ghosh N, Dey A, Chakraborty S. Sustaining immunity during starvation in bivalve mollusc: A costly affair. Tissue Cell 2017; 49:239-248. [DOI: 10.1016/j.tice.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023]
|
10
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|