1
|
Liao J, Jiang M, Lu Y, Yang Y, Gao Y, Chen Q, Luo Z, Yu X. Lead Tolerance and Remediation Potential of Four Indocalamus Species in Lead-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:1823. [PMID: 38999663 PMCID: PMC11244322 DOI: 10.3390/plants13131823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Indocalamus plants are low-growing shrubby bamboos with growth advantages, such as high biomass and strong resistance, and they are rich in germplasm resources in southern China. This study conducted soil lead (Pb) stress experiments on Indocalamus latifolius (Keng) McClure (LA), Indocalamus hunanensis B.M. Yang (HU), Indocalamus chishuiensis Y.L. Yang and Hsueh (CH) and Indocalamus lacunosus Wen (LC). Five Pb treatments (0, 500, 1000, 1500 mg·kg-1 Pb, and 1000 mg·kg-1 Pb + 1000 mg·kg-1 ethylenediamine tetraacetic acid (EDTA)) were established. EDTA was applied to explore the tolerance mechanism of different Indocalamus species after absorbing large amounts of heavy metals. The results were as follows: (1) under Pb treatment, the total relative biomass of LA, HU and LC was <100%, whereas the total relative biomass of CH was >100%; (2) after applying EDTA, the bioconcentration coefficient, translocation factor, and free proline content of the four Indocalamus species increased; and (3) the Pb mobility and distribution rates of the underground parts of the four Indocalamus species were consistently greater than those of the aboveground parts. The Pb mobility and distribution rates in the stems increased after applying EDTA, while those in the leaves decreased, as the plants tended to transfer Pb to their stems, which have lower physiological activity than their leaves.
Collapse
Affiliation(s)
- Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yangcheng Lu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yedan Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Niu Z, Li X, Mahamood M. Accumulation Potential Cadmium and Lead by Sunflower ( Helianthus annuus L.) under Citric and Glutaric Acid-Assisted Phytoextraction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4107. [PMID: 36901118 PMCID: PMC10001555 DOI: 10.3390/ijerph20054107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Organic acid assistance is one of the effective methods for phytoremediation of heavy metal contaminated soil. In this experiment, the addition of citric and glutaric acids was selected to improve the accumulation of cadmium and lead by Helianthus annuus L. Results showed that citric and glutaric acids elevated the growth of the plants and stimulated Cd/Pb uptake by plant in single Cd/Pb treatments, but glutaric acid showed inhibitory action on the uptake of metals in complex treatments. Organic acids impacted the translocation of Cd/Pb differently, and citric acids (30 mg·L-1) enhanced the translocation of Cd to aerial parts of the plants in Cd (5 mg·kg-1) and Cd (10 mg·kg-1) plus Pb treatments. Glutaric acid (30 mg·L-1) could promote the translocation factors in the complex treatments of Cd (5 mg·kg-1) with Pb (50, 100 mg·kg-1) added. The application of citric and glutaric acid could be conducive to increase floral growth when proper doses are used, and incorporation of these organic acids can be a useful approach to assist cadmium and lead uptake by sunflower. However, growth, bioaccumulation, and translocation of metals may differ due to the metals' property, kinds, and concentrations of organic acids.
Collapse
Affiliation(s)
- Zhixin Niu
- Department of Environment, Shenyang University, Shenyang 110021, China
| | - Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mohammad Mahamood
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 52571, Saudi Arabia
| |
Collapse
|
3
|
Sun W, Wu G, Xu H, Wei J, Chen Y, Yao M, Zhan J, Yan J, Chen H, Bu T, Tang Z, Li Q. Malate-mediated CqMADS68 enhances aluminum tolerance in quinoa seedlings through interaction with CqSTOP6, CqALMT6 and CqWRKY88. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129630. [PMID: 35872459 DOI: 10.1016/j.jhazmat.2022.129630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/03/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) stress in acidic soils has severe negative effects on crop productivity. In this study, the alleviating effect and related mechanism of malate on Al stress in quinoa (Chenopodium quinoa) seedlings were investigated. The findings indicated that malate alleviated the growth inhibition of quinoa seedlings under Al stress, maintained the enzymatic and nonenzymatic antioxidant systems, and aided resistance to the damage caused by excessive reactive oxygen species (ROS). Under Al stress, malate significantly increased the contents of chlorophyll and carotenoids in quinoa shoots by 103.8% and 240.7%, and significantly increased the ratios of glutathione (GSH)/oxidized glutathione (GSSG), and ascorbate (AsA)/dehydroascorbate (DHA) in roots by 59.9% and 699.2%, respectively. However, malate significantly decreased the superoxide radical (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA) and Al contents in quinoa roots under Al stress by 32.7%, 60.9%, 63.1% and 49%, respectively. Moreover, the CqMADS family and the Al stress-responsive gene families (CqSTOP, CqALMT, and CqWRKY) were identified from the quinoa genome. Comprehensive expression profiling identified CqMADS68 as being involved in malate-mediated Al resistance. Transient overexpression of CqMADS68 increased Al tolerance in quinoa seedlings. More importantly, we found that CqMADS68 regulated the expression of CqSTOP6, CqALMT6 and CqWRKY88 and further demonstrated the interaction of CqMADS68 with CqSTOP6, CqALMT6 and CqWRKY88 by bimolecular fluorescence complementation (BIFC) experiments. Moreover, transient overexpression and physiological and biochemical analyses demonstrated that CqSTOP6, CqALMT6 and CqWRKY88 could also improve Al tolerance by maintaining the antioxidant capacity of quinoa seedlings. Taken together, these findings reveal that CqMADS68, CqSTOP6, CqALMT6 and CqWRKY88 may be important contributors to the Al tolerance regulatory network in quinoa, providing new insights into Al stress resistance.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guoming Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Haishen Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianglan Wei
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Min Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Junyi Zhan
- College of Life Science, Nanjing Agricultural University, Nanjing 210032, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zizong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
4
|
Tanwir K, Shahid M, Abbas S, Ali Q, Akram MS, Chaudhary HJ, Javed MT. Deciphering distinct root exudation, ionomics, and physio-biochemical attributes of Serratia marcescens CP-13 inoculated differentially Cd tolerant Zea mays cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71632-71649. [PMID: 35599287 DOI: 10.1007/s11356-022-20945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) being a non-essential, mobile, and toxic heavy metal, negatively affects the plant growth and physiology. Current work investigated the impact of Serratia marcescens CP-13 inoculation on root organic acids and nutrient exudates of two maize cultivars varying in Cd tolerance under induced Cd toxicity. Seedlings of Cd-sensitive (Sahiwal-2002) and Cd-tolerant (MMRI-Yellow) cultivars were grown either inoculated or non-inoculated with CP-13 in Petri plates having various Cd stress levels (0, 6, 12, 18, 24, 30 μM). Seedlings were transferred to rhizoboxes for the collection of root exudates and analysis of physio-biochemical traits. Both maize cultivars exuded higher organic acids and nutrient exudates under non-inoculated conditions as compared to inoculated ones. Non-inoculated tolerant cultivar exhibited higher nutrient accumulation, biomass, antioxidants, total chlorophyll, Cd release meanwhile reduced Cd uptake, lipid peroxidation, exudation of organic acids, and nutrients than the sensitive one. However, under CP-13 inoculation, Cd sensitive cultivar exhibited less exudation of organic acids (citric acid, acetic acid, malic acid, glutamic acid, formic acid, succinic acid, and oxalic acid), nutrients mobilization (K, Na, Zn, Ca, and Mg), total chlorophyll, antioxidants (APX, SOD, POD), total soluble sugar, diminished MDA, and Cd uptake. The significant reduction in release of root exudates by both cultivars was likely due to the plant growth promoting traits of CP-13 which confer Cd tolerance. The maximum release of rhizospheric root exudates were documented at 30 μM applied Cd stress. Therefore, the Serratia sp. CP-13 was proposed as a potential inoculant for bioremediation of Cd together with maize cultivars.
Collapse
Affiliation(s)
- Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Qasim Ali
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sohail Akram
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Jin F, Hu Q, Zhao Y, Lin X, Zhang J, Zhang J. Enhancing quinoa growth under severe saline-alkali stress by phosphate solubilizing microorganism Penicillium funicuiosum P1. PLoS One 2022; 17:e0273459. [PMID: 36067185 PMCID: PMC9447905 DOI: 10.1371/journal.pone.0273459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Promoting the growth of plants and improving plant stress-resistance by plant growth-promoting microorganism increasingly become a hotpot. While, most researchers focus on their supply role of nutrition or plant hormone. In this study, a novel mechanism that phosphate solubilizing microorganisms promoted plant growth under saline-alkali stress through secretion of organic acids, was proposed. The effects of desulfurization gypsum, humic acid, organic fertilizer and phosphate-solubilizing microorganism Penicillium funicuiosum P1 (KX400570) on the growth of quinoa (Chenopodium quinoa cv. Longli 1), showed that the survival rate, stem length and dry weight of quinoa treated with P1 were 2.5, 1.5, 1 and 1.5 times higher than those of sterile water (CK) under severe saline-alkali stress. The growth-promoting effect of P1 on quinoa was much better than that of other treatment groups. In addition, P1 promoted the growth of quinoa because the organic acids (malic acid, citric acid, succinic acid, etc.) from P1 stimulated the antioxidant system and promote the photosynthesis of quinoa, further promote quinoa growth.
Collapse
Affiliation(s)
- Fengyuan Jin
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Qilin Hu
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Yingxu Zhao
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaoyu Lin
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Jianfeng Zhang
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiejing Zhang
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
6
|
Cai X, Fu J, Li X, Peng L, Yang L, Liang Y, Jiang M, Ma J, Sun L, Guo B, Yu X. Low-molecular-weight organic acid-mediated tolerance and Pb accumulation in centipedegrass under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113755. [PMID: 35689889 DOI: 10.1016/j.ecoenv.2022.113755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/01/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) is one of the most harmful, toxic pollutants to the ecological environment and humans. Centipedegrass, a fast-growing warm-season turfgrass, is excellent for Pb pollution remediation. Exogenous low-molecular-weight organic acid (LMWOA) treatment is a promising approach for assisted phytoremediation. However, the effects of this treatment on the tolerance and Pb accumulation of centipedegrass are unclear. This study investigated these effects on the physiological growth response and Pb accumulation distribution characteristics of centipedegrass. Applications of 400 μM citric acid (CA), malic acid (MA) and tartaric acid (TA) significantly reduced membrane lipid peroxidation levels of leaves and improved biomass production of Pb-stressed plants. These treatments mainly increased peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and enhanced free protein (Pro), ascorbic acid (AsA) and phytochelatins (PCs) contents, ultimately improving the Pb tolerance of centipedegrass. Their promoting effects decreased as follows: TA>CA>MA. All the treatments decreased root Pb concentrations and increased stem and leaf Pb concentrations, thus increasing total Pb accumulation and TF values. MA had the best and worst effects on Pb accumulation and Pb transportation, respectively. CA had the best and worst effects on Pb transportation and Pb accumulation, respectively. TA exhibited strong effects on both Pb accumulation and transport. Furthermore, all treatments changed the subcellular Pb distribution patterns and distribution models of the chemical forms of Pb in each tissue. The root Pb concentration was more highly correlated with the Pb subcellular fraction distribution pattern, while the stem and leaf Pb concentrations were more highly correlated with the distribution models of the chemical forms of Pb. Overall, TA improved plant Pb tolerance best and promoted both Pb absorption and transportation well and is considered the best candidate for Pb-contaminated soil remediation with centipedegrass. This study provides a new idea for Pb-contaminated soil remediation with centipedegrass combined with LMWOAs.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jingyi Fu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liqi Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yahao Liang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
7
|
Fang Q, Huang T, Wang N, Ding Z, Sun Q. Effects of Herbaspirillum sp. p5-19 assisted with alien soil improvement on the phytoremediation of copper tailings by Vetiveria zizanioides L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64757-64768. [PMID: 34318414 DOI: 10.1007/s11356-021-15091-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial assisted phytoremediation and reclamation are both potential contaminated soil remediation technologies, but little is known about the combined application of the two technologies on real contaminated soils. This study investigated the potential of Herbaspirillum sp. p5-19 (p5-19) assisted with alien soil improvement on improving stress tolerance and enhancing the accumulation of Mn, Cu, Zn, and Cd by Vetiveria zizanioides L. in copper tailings. Phytoremediation potential was evaluated by plant biomass and the ability of plants to absorb and transfer heavy metals. Results showed that the biomass was increased by 19.64-173.81% in p5-19 inoculation treatments with and without alien soil improvement compared with control. Meanwhile, photosynthetic pigment contents were enhanced in co-inoculation treatment (p5-19 with alien soil improvement). In addition, the malondialdehyde (MDA) content was decreased, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in p5-19 treatment, thereby alleviating the oxidative stress. Moreover, co-inoculation significantly (p < 0.05) increased the concentrations of Mn, Cu, Zn, and Cd in the roots and shoots of V. zizanioides. In particular, the highest concentrations of Mn, Zn, and Cd in the shoots (roots) were obtained in covering 10 cm combined with p5-19 inoculation treatment, which were 4.44- (2.71-), 4.73- (3.87-), and 5.93- (4.35-) fold as that of the controls, respectively. These results provided basis for the change of phytoremediation ability of V. zizanioides after inoculation. We concluded that p5-19 assisted with alien soil improvement was a potential strategy for enhancing phytoremediation ability in tailings.
Collapse
Affiliation(s)
- Qing Fang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Tao Huang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ning Wang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ziwei Ding
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Qingye Sun
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China.
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China.
- Academy of Resources and Environmental Engineering, Anhui University, 111 JiuLong Road, 523, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Assessment of the Suitability of Melilotus officinalis for Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons (TPH and PAH), Zn, Pb and Cd Based on Toxicological Tests. TOXICS 2021; 9:toxics9070148. [PMID: 34202316 PMCID: PMC8309879 DOI: 10.3390/toxics9070148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
The article presents issues related to the possibility of using toxicological tests as a tool to monitor the progress of soil treatment contaminated with petroleum substances (TPH, PAH), Zn, Pb and Cd in bio-phytoremediation processes. In order to reduce the high content of petroleum pollutants (TPH = 56,371 mg kg−1 dry mass, PAH = 139.3 mg kg−1 dry mass), the technology of stepwise soil treatment was applied, including basic bioremediation and inoculation with biopreparations based of indigenous non-pathogenic species of bacteria, fungi and yeasts. As a result of basic bioremediation in laboratory conditions (ex-situ method), the reduction of petroleum pollutants TPH by 33.9% and PAH by 9.5% was achieved. The introduction of inoculation with biopraparation-1 prepared on the basis of non-pathogenic species of indigenous bacteria made it possible to reduce the TPH content by 86.3%, PAH by 40.3%. The use of a biopreparation-1 enriched with indigenous non-pathogenic species of fungi and yeasts in the third series of inoculation increased to an increase in the degree of biodegradation of aliphatic hydrocarbons with long carbon chains and PAH by a further 28.9%. In the next stage of soil treatment after biodegradation processes, which was characterized by an increased content of heavy metals (Zn, Pb, Cd) and naphthalene, chrysene, benzo(a)anthracene and benzo(ghi)perylene belonging to polycyclic aromatic hydrocarbons, phytoremediation with the use of Melilotus officinalis was applied. After the six-month phytoremediation process, the following was achieved: Zn content by 25.1%, Pb by 27.9%, Cd by 23.2% and TPH by 42.2% and PAH by 49.9%. The rate of removal of individual groups of hydrocarbons was in the decreasing order: C12–C18 > C6–C12 > C18–C25 > C25–C36. PAHs tended to be removed in the following order: chrysene > naphthalene > benzo(a)anthracene > benzo(ghi)perylene. The TF and BCF coefficients were calculated to assess the capacity of M. officinalis to accumulate metal in tissues, uptake from soil and transfer from roots to shoots. The values of TF translocation coefficients were, respectively, for Zn (0.44), Pb (0.12), Cd (0.40). The calculated BCF concentration factors (BCFroots > BCFshoots) show that heavy metals taken up by M. officinalis are mainly accumulated in the root tissues in the following order Zn > Pb > Cd, revealing a poor metal translocation from the root to the shoots. This process was carried out in laboratory conditions for a period of 6 months. The process of phytoremediation of contaminated soil using M. officinalis assisted with fertilization was monitored by means of toxicological tests: Microtox, Ostracodtoxkit FTM, MARA and PhytotoxkitTM. The performed phytotoxicity tests have indicated variable sensitivity of the tested plants on contaminants occurring in the studied soils, following the sequence: Lepidium sativum < Sorghum saccharatum < Sinapis alba. The sensitivity of toxicological tests was comparable and increased in the order: MARA < Ostracodtoxkit FTM < Microtox. The results of the toxicological monitoring as a function of the time of soil treatment, together with chemical analyses determining the content of toxicants in soil and biomass M. officinalis, clearly confirmed the effectiveness of the applied concept of bioremediation of soils contaminated with zinc, lead and cadmium in the presence of petroleum hydrocarbons.
Collapse
|
9
|
Chen HC, Zhang SL, Wu KJ, Li R, He XR, He DN, Huang C, Wei H. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. Under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109790. [PMID: 31639642 DOI: 10.1016/j.ecoenv.2019.109790] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 05/25/2023]
Abstract
We studied the effects of three organic acids (citric acid, tartaric acid and malic acid) on the biomass, photosynthetic pigment content and photosynthetic parameters of Salix variegata under Cd stress and observed the ultrastructure of mesophyll cells in each treatment. Cd stress significantly reduced photosynthesis by reducing the content of pigments and disrupting chloroplast structure, which consequently decreased the biomass. However, respective addition of three organic acids greatly increased the biomass of S. variegata under Cd stress. Among them, the effect of malic acid or tartaric acid on shoot and total biomass accumulation was greater than that of citric acid. The alleviation of biomass probably related with the photosynthetic process. Results revealed that treatment with each organic acid enhanced the net photosynthesis rate under Cd stress. Malic acid promoted plant growth and biomass by increasing the chlorophyll content and mitigating damage to the photosynthetic apparatus resulting from Cd stress. Tartaric acid had little impact on the photosynthetic pigment content, but it was important in mitigating the ultrastructural damage of plants caused by Cd. Addition of citric acid significantly increased the carotenoid as well as the number and volume of chloroplasts in mesophyll cells, while the mitigation of structural damage in the photosynthetic apparatus was weaker than that in tartaric acid or malic acid treatment. It is concluded that application of tartaric acid or malic acid is effective in increasing the growth potential of S. variegata under Cd stress and thus can be a promising approach for the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Hong-Chun Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Guizhou Provincial Water Conservancy Research Institute, Guiyang, 550002, China
| | - Song-Lin Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ke-Jun Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Rui Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xin-Rui He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dan-Ni He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chao Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hong Wei
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Zhang S, Chen H, He D, He X, Yan Y, Wu K, Wei H. Effects of Exogenous Organic Acids on Cd Tolerance Mechanism of Salix variegata Franch. Under Cd Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:594352. [PMID: 33193554 PMCID: PMC7644951 DOI: 10.3389/fpls.2020.594352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 05/10/2023]
Abstract
Chelate induction of organic acids has been recognized to enhance metal uptake and translocation in plants, but the underlying mechanism remains unclear. In this study, seedlings of Salix variegata were hydroponically exposed to the combinations of Cd (0 and 50 μM) and three exogenous organic acids (100 μM of citric, tartaric, or malic acid). Plant biomass, antioxidant enzymes, non-protein thiol compounds (NPT) content, and the expression of candidate genes associated with Cd accumulation and tolerance were determined. Results showed that Cd significantly inhibited plant biomass but stimulated the activity of antioxidant enzymes in the roots and leaves, while the lipid peroxidation increased as well. Respective addition of three organic acids greatly enhanced plant resistance to oxidative stress and reduced the lipid peroxidation induced by Cd, with the effect of malic acid showing greatest. The addition of organic acids also significantly increased the content of glutathione in the root, further improving the antioxidant capacity and potential of phytochelatin biosynthesis. Moreover, Cd induced the expression level of candidate genes in roots of S. variegata. The addition of three organic acids not only promoted the expression of candidate genes but also drastically increased Cd accumulation in S. variegata. In summary, application of citric, tartaric, or malic acid alleviated Cd-imposed toxicity through the boost of enzymatic and non-enzymatic antioxidants and candidate gene expression, while their effects on Cd tolerance and accumulation of S. variegata differed.
Collapse
Affiliation(s)
- Songlin Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Hongchun Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Guizhou Provincial Water Conservancy Research Institute, Guiyang, China
| | - Danni He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinrui He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Ya Yan
- Guizhou Provincial Water Conservancy Research Institute, Guiyang, China
| | - Kejun Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Hong Wei
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Hong Wei,
| |
Collapse
|
11
|
Kaur R, Yadav P, Sharma A, Kumar Thukral A, Kumar V, Kaur Kohli S, Bhardwaj R. Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:466-475. [PMID: 28780445 DOI: 10.1016/j.ecoenv.2017.07.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 05/03/2023]
Abstract
Cadmium(II) toxicity is a serious environmental issue warranting effective measures for its mitigation. In the present study, ameliorative effects of a bioactive brassinosteroid, castasterone (CS) and low molecular weight organic acid, citric acid (CA) against the Cd(II) toxicity to Brassica juncea L. were evaluated. Seeds of B. juncea treated with CS (0, 0.01, 1 and 100nM) were sown in cadmium spiked soils (0 and 0.6mmolkg-1 soil). CA (0.6mmolkg-1soil) was added to soil one week after sowing seeds. Plants were harvested 30 days after sowing. Phytotoxicity induced by Cd(II) was evident from stunted growth of the plants, malondialdehyde accumulation, reduction in chlorophyll and carotenoid contents, and leaf gas exchange parameters. Cd(II) toxicity was effectively alleviated by seed soaking with CS (100nM) and/ or soil amendment with CA (0.6mMkg-1 soil). Relative gene expression of genes encoding for some of the key enzymes of pigment metabolism were also analysed. Expression of chlorophyllase (CHLASE) was reduced, while that of phytoene synthase (PSY), and chalcone synthase (CHS) genes were enhanced with CS and/or CA treatments with respect to plants treated with Cd(II) only. Cd also affected the activities of antioxidative enzymes. Plants responded to Cd(II) by accumulation of total sugars. CS (100nM) and CA treatments further enhanced the activities of these parameters and induced the contents of secondary plant pigments (flavonoids and anthocyanins) and proline. The results imply that seed treatment with CS and soil application with CA can effectively alleviate Cd(II) induced toxicity in B. juncea by strengthening its antioxidative defence system and enhancing compatible solute accumulation.
Collapse
Affiliation(s)
- Ravdeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Poonam Yadav
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Department of Botany, DAV University, Sarmastpur, Jalandhar 144012, Punjab, India
| | - Ashwani Kumar Thukral
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vinod Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Department of Botany, DAV University, Sarmastpur, Jalandhar 144012, Punjab, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
12
|
Javed MT, Akram MS, Tanwir K, Javed Chaudhary H, Ali Q, Stoltz E, Lindberg S. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:216-225. [PMID: 28349873 DOI: 10.1016/j.ecoenv.2017.03.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 05/07/2023]
Abstract
Our earlier work described that the roots of two maize cultivars, grown hydroponically, differentially responded to cadmium (Cd) stress by initiating changes in medium pH depending on their Cd tolerance. The current study investigated the root exudation, elemental contents and antioxidant behavior of the same maize cultivars [cv. 3062 (Cd-tolerant) and cv. 31P41 (Cd-sensitive)] under Cd stress. Plants were maintained in a rhizobox-like system carrying soil spiked with Cd concentrations of 0, 10, 20, 30, 40 and 50 μmol/kg soil. The root and shoot Cd contents increased, while Mg, Ca and Fe contents mainly decreased at higher Cd levels, and preferentially in the sensitive cultivar. Interestingly, the K contents increased in roots of cv. 3062 at low Cd treatments. The Cd stress caused acidosis of the maize root exudates predominantly in cv. 3062. The concentration of various organic acids was significantly increased in the root exudates of cv. 3062 with applied Cd levels. This effect was diminished in cv. 31P41 at higher Cd levels. Cd exposure increased the relative membrane permeability, anthocyanin (only in cv. 3062), proline contents and the activities of peroxidases (POD) and superoxide dismutase (SOD). The only exception was the catalase activity, which was diminished in both cultivars. Root Cd contents were positively correlated with the secretion of acetic acid, oxalic acid, glutamic acid, citric acid, and succinic acid. The antioxidants like POD and SOD exhibited a positive correlation with the organic acids under Cd stress. It is likly that a high exudation of dicarboxylic organic acids improves nutrient uptake and activities of antioxidants, which enables the tolerant cultivar to acclimatize in Cd polluted environment.
Collapse
Affiliation(s)
- M Tariq Javed
- Department of Botany, Government College University, Faisalabad 38000, Pakistan.
| | - M Sohail Akram
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Kashif Tanwir
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | | | - Qasim Ali
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Eva Stoltz
- The Rural Economy and Agricultural Society, Örebro 701 45, Sweden
| | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|