1
|
Zhang S, Yu M, Zou X, Du S, Xu X, Lu H, Wu D. Rerouting charge transfer for pharmaceutical wastewater electrochemical treatment via interfacial cocatalyst modification. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137012. [PMID: 39742862 DOI: 10.1016/j.jhazmat.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Electrochemical oxidation stands as a pivotal technology for refractory wastewater treatment. However, the high cost and low elemental abundance of commercial electrodes limit its widespread application. This work tries to address this by introducing a charge-transfer rerouting strategy via cocatalyst modification using earth-abundant elements. Here, we uncover the role of the cocatalyst in enhancing electrode performance. The in-situ reconstructed cocatalyst induces a substantial rerouting of the charge transfer pathway, facilitating the mass/charge transfer of organics while concurrently suppressing the oxygen evolution side reaction. The Ti-Fe2O3 electrode, loaded with the cocatalyst PbO2, exhibits both high current efficiency (∼45.4 %) and low energy requirement (∼31.8 kW h kg-1 COD), surpassing other reported electrodes and displaying great versatility in various scenarios with good stability and reusability. Moreover, this charge-transfer rerouting strategy holds promise for synergy with other methodologies, such as nanostructure engineering and molecular imprinting, to further enhance the reactivity and selectivity of electrocatalysts in environment and energy-related domains.
Collapse
Affiliation(s)
- Shuchi Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Department of Materials Science & Engineering, National University of Singapore, Singapore
| | - Mengwen Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xixuan Zou
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Shuwen Du
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Huijie Lu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, China.
| | - Donglei Wu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Bogarin Cantero BC, Zhang Y, Davidson PC. Electrolysis of HTL-AP for nutrient recovery by converting cyclic nitrogen to nitrate-N fertilizer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125069. [PMID: 39374766 DOI: 10.1016/j.envpol.2024.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Valorization of hydrothermal liquefaction aqueous phase (HTL-AP) can be achieved through its use as a nutrient source for lettuce production in hydroponic systems after being treated to reduce the nutrient imbalance. Removing nitrogen cyclic compounds in HTL-AP may impact the availability of some nutrients, such as nitrate-N, that are necessary for plant growth. Previous studies indicate that electrolysis enables nitrate-N accumulation in algal-HTL-AP. In this study, HTL-AP derived from food waste was electrolyzed to convert available nitrogenous compounds into nitrogen forms that are preferred by plants such as nitrate-N. Biochemical properties were assessed for the HTL-AP samples before and after two years of storage. Results from this study show that it is viable to convert heterocyclic amines in HTL-AP into inorganic nitrogen forms such as nitrite-N, nitrate-N, ammonia-N, and fatty acids. Specifically, this study showed that accumulation of 609 mg/L of nitrate-N in the HTL-AP with an initial concentration of 25 mg/L was achieved at the lowest current density. Additionally, electrolysis treatment removed 48%-61% of COD from the HTL-AP at different current densities. Furthermore, water quality characterization before and after storage for two years showed decreased organic matter in the HTL-AP, leading to reduced inorganic nitrogen recovery. Overall, this study indicates that electrolysis can increase the concentration of inorganic nitrogen in the HTL-AP both before and after long-term storage.
Collapse
Affiliation(s)
- Barbara Camila Bogarin Cantero
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Paul C Davidson
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Zeng J, Liu X, Chen Q, Hu D. A chemical coating strategy for assembling a boron-doped diamond anode towards electrocatalytic degradation of late landfill leachate. RSC Adv 2024; 14:18355-18366. [PMID: 38854836 PMCID: PMC11160392 DOI: 10.1039/d4ra03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The high efficiency electrocatalytic degradation of late landfill leachate is still not an easy task due to the complexity and variability of organic pollutants. A chemical coating strategy for assembling a boron-doped diamond anode (BDD) towards electrocatalytic degradation of late landfill leachate was adopted and studied. The results shows the high removal rates of organic carbon (TOC) and ammonia nitrogen (NH3-N) after electrochemical oxidation for 5 h can reach 99% and 100%. Further, the organic migration and transformation depends on current density, A/V value, initial pH, electrochemical degradation time, and composition of the stock solution. Specifically, alkaline conditions can increase both TOC and NH3-N removal rates, which is reflected in the NH3-N removal rate of 100% when the pH is 8.5 after only 5 h. The types of organic matter decreased from 63 species to 24 species in 5 h, in which the removal of fulvic acids is superior to that of soluble biometabolites. Amides/olefins and phenolic alcohols are all degraded and converted into other substances or decomposed into CO2 and H2O by BDD, accompanied by the continuous decomposition of alcohol-phenols into alkanes. In all, this study provides a core reference on electrocatalytic degradation of late landfill leachate.
Collapse
Affiliation(s)
- Juanmei Zeng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Xi Liu
- Guangxi Environmental Protection Industry Development Research Institute Co., Ltd, Guangxi Key Laboratory of Environmental Pollution Control and Ecological Restoration Technology Nanning 530007 China
| | - Qizhi Chen
- Guangxi Huiyuan Manganese Industry Co., Ltd Laibin 546100 China
| | - Dongying Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| |
Collapse
|
4
|
Blach T, Engelhart M. Electrochemical oxidation of refractory compounds from hydrothermal carbonization process waters. CHEMOSPHERE 2024; 352:141310. [PMID: 38320739 DOI: 10.1016/j.chemosphere.2024.141310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Hydrothermal carbonization (HTC) is an emerging technology for treating sewage sludge. However, the resulting HTC process water is heavily contaminated with various carbonaceous and nitrogenous components, some of them being non-biodegradable. To implement HTC as a full-scale treatment alternative for sewage sludge, effective concepts for treating process water are crucial. This study focuses on the electrochemical oxidation (EO) using a boron-doped diamond electrode to treat one HTC process waters with different pretreatments: (i) without pretreatment, (ii) biologically pretreated with chemical oxygen demand (COD) removal, (iii) biologically pretreated with nitrification and denitrification. The EO removed COD of all HTC process waters by over 97%, but as COD concentrations decreased, the instantaneous current efficiency (ICE) dropped below 5% and energy consumption increased. The organically bound and refractory nitrogen was completely mineralized and converted to mainly NO3-N. After EO of process waters without nitrification/denitrification, nitrogen was present as NO3-N with up to 730 mg/L and NH4-N with up to 1813 mg/L. Such high ammonium concentrations treatment could be interesting for nitrogen recovery. In addition, the toxicity towards Vibrio fischeri could be reduced to a large extent. The findings suggest that EO after a biological step with COD removal is a viable solution for HTC process water treatment.
Collapse
Affiliation(s)
- T Blach
- Technical University of Darmstadt, Institute IWAR, Franziska-Braun-Str. 7, 64287, Darmstadt, Germany.
| | - M Engelhart
- Technical University of Darmstadt, Institute IWAR, Franziska-Braun-Str. 7, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Huang L, Cheng L, Ma T, Zhang JJ, Wu H, Su J, Song Y, Zhu H, Liu Q, Zhu M, Zeng Z, He Q, Tse MK, Yang DT, Yakobson BI, Tang BZ, Ren Y, Ye R. Direct Synthesis of Ammonia from Nitrate on Amorphous Graphene with Near 100% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211856. [PMID: 36799267 DOI: 10.1002/adma.202211856] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Indexed: 06/16/2023]
Abstract
Ammonia is an indispensable commodity in the agricultural and pharmaceutical industries. Direct nitrate-to-ammonia electroreduction is a decentralized route yet challenged by competing side reactions. Most catalysts are metal-based, and metal-free catalysts with high nitrate-to-ammonia conversion activity are rarely reported. Herein, it is shown that amorphous graphene synthesized by laser induction and comprising strained and disordered pentagons, hexagons, and heptagons can electrocatalyze the eight-electron reduction of NO3 - to NH3 with a Faradaic efficiency of ≈100% and an ammonia production rate of 2859 µg cm-2 h-1 at -0.93 V versus reversible hydrogen electrode. X-ray pair-distribution function analysis and electron microscopy reveal the unique molecular features of amorphous graphene that facilitate NO3 - reduction. In situ Fourier transform infrared spectroscopy and theoretical calculations establish the critical role of these features in stabilizing the reaction intermediates via structural relaxation. The enhanced catalytic activity enables the implementation of flow electrolysis for the on-demand synthesis and release of ammonia with >70% selectivity, resulting in significantly increased yields and survival rates when applied to plant cultivation. The results of this study show significant promise for remediating nitrate-polluted water and completing the NOx cycle.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Division of Science, Engineering and Health Study, School of Professional Education and Executive Development (PolyU SPEED), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Le Cheng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jun-Jie Zhang
- Department of Materials Science and Nano Engineering and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Haikun Wu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jianjun Su
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yun Song
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Man-Kit Tse
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Boris I Yakobson
- Department of Materials Science and Nano Engineering and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
- X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL, 60439, USA
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
6
|
Li Z, Luo ZM, Huang Y, Wang JW, Ouyang G. Recent trends in degradation strategies of PFOA/PFOS substitutes. CHEMOSPHERE 2023; 315:137653. [PMID: 36581124 DOI: 10.1016/j.chemosphere.2022.137653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global elimination and restriction of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, have urged manufacturers to shift production to their substitutes which still pose threat to the environment with their bioaccumulation, toxicity and migration issues. In this context, efficient technologies and systematic mechanistic studies on the degradation of PFOA/PFOS substitutes are highly desirable. In this review, we summarize the progress in degrading PFOA/PFOS substitutes, including four kinds of mainstream methods. The pros and cons of the present technologies are analyzed, which renders the discussion of future prospects on rational optimizations. Additional discussion is made on the differences in the degradation of various kinds of substitutes, which is compared to the PFOA/PFOS and derives designing principles for more degradable F-containing compounds.
Collapse
Affiliation(s)
- Zizi Li
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Mei Luo
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Wei Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Wang J, Sharaf F, Kanwal A. Nitrate pollution and its solutions with special emphasis on electrochemical reduction removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9290-9310. [PMID: 36464745 DOI: 10.1007/s11356-022-24450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Nitrate pollution has become a serious environmental concern all over the world including in China due to the mismanagement of water resources and human activities. Agricultural runoff and industrial and nuclear waste are among the major sources of nitrate pollution. Consuming nitrate-rich water can cause many chronic diseases including digestive problems, which can lead to many types of cancer and other serious health issues. Denitrification is the natural process for nitrate reduction under aerobic conditions, but it cannot handle an excess of nitrate, so several methods have been adopted for nitrate removal, i.e., biological, chemical, physicochemical, and electrochemical reduction removal. Among all, electrochemical reduction removal is a cost-effective and environmental-friendly process. To obtain the maximal elimination efficiency ideal conditions of current intensity, pH, plate distance, initial nitrate concentration, and type of electrolyte solution should be studied for effective nitrate removal. Electrochemical reduction removal of nitrate involves the transfer of electrons and hydrogenation. Besides an efficient nitrate removal process, electrochemical reduction removal has some drawbacks like sludge formation, low selectivity for nitrogen, and production of brine that limit its long-term implementation. This review focused on nitrate pollution, previous nitrate removal strategies, and essential principles for understanding the mechanism of electrochemical reduction removal and controlling the products of the reaction.
Collapse
Affiliation(s)
- Jiahong Wang
- School of Environmental Science & Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, China.
| | - Faisal Sharaf
- School of Environmental Science & Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, China
| | - Aqsa Kanwal
- School of Environmental Science & Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, China
| |
Collapse
|
8
|
Elaboration of Highly Modified Stainless Steel/Lead Dioxide Anodes for Enhanced Electrochemical Degradation of Ampicillin in Water. SEPARATIONS 2022. [DOI: 10.3390/separations10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lead dioxide-based electrodes have shown a great performance in the electrochemical treatment of organic wastewater. In the present study, modified PbO2 anodes supported on stainless steel (SS) with a titanium oxide interlayer such as SS/TiO2/PbO2 and SS/TiO2/PbO2-10% Boron (B) were prepared by the sol–gel spin-coating technique. The morphological and structural properties of the prepared electrodes were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that the SS/TiO2/PbO2-10% B anode led to a rougher active surface, larger specific surface area, and therefore stronger ability to generate powerful oxidizing agents. The electrochemical impedance spectroscopy (EIS) measurements showed that the modified PbO2 anodes displayed a lower charge transfer resistance Rct. The influence of the introduction of a TiO2 intermediate layer and the boron doping of a PbO2 active surface layer on the electrochemical degradation of ampicillin (AMP) antibiotic have been investigated by chemical oxygen demand measurements and HPLC analysis. Although HPLC analysis showed that the degradation process of AMP with SS/PbO2 was slightly faster than the modified PbO2 anodes, the results revealed that SS/TiO2/PbO2-10%B was the most efficient and economical anode toward the pollutant degradation due to its physico-chemical properties. At the end of the electrolysis, the chemical oxygen demand (COD), the average current efficiency (ACE) and the energy consumption (EC) reached, respectively, 69.23%, 60.30% and 0.056 kWh (g COD)−1, making SS/TiO2/PbO2-10%B a promising anode for the degradation of ampicillin antibiotic in aqueous solutions.
Collapse
|
9
|
Electrochemical Denitrification of Synthetic Aqueous Solution and Actual Contaminated Well Water: RSM Modeling, Kinetic Study, Monte Carlo Optimization, and Sensitivity Analysis. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/1374993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The process of electrochemical denitrification is applied with the aim of converting nitrate (
) to N2 gas by reducing nitrate and oxidizing by-products such as ammonia (
). In this study, Ti/RuO2 and graphite were used as anode and cathode electrodes, respectively, to treat synthetic aqueous solutions containing different concentrations of nitrate ions. Nitrate initial concentration (2.75–55 mg NO3-N/lit), voltage (2.5–30 V), pH (3–13), electrode distance (ED = 0.5–3.5 cm), and reaction time (10–180 min) were the main studied operating parameters for the electrochemical denitrification (ECD) reactor. The experiments were designed using the central composite design (CCD) method. The experimental results were modeled with the response surface methodology (RSM) technique. Scanning electron microscope (SEM), X-ray diffraction analyzer (XRD), and Fourier transform infrared spectroscopy (FTIR) characterized electrodes were performed before and after all experiments. Optimization and sensitivity analysis was performed using the Monte Carlo simulation (MSC) approach. The energy consumption and current efficiency were calculated for the ECD reactor. Kinetic models of zero, first, and second order were evaluated, and the second-order model was selected as the best kinetic model. Also, the effect of adding monovalent, divalent salts, and organic compounds to the process was evaluated. Finally, three nitrate-contaminated water wells were selected near agricultural lands as real samples and investigated the performance of the ECD process on the samples. The performance of the ECD reactor for the real samples showed some decrease compared to the synthetic samples.
Collapse
|
10
|
Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: Investigations and challenges. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wilk BK, Szopińska M, Sobaszek M, Pierpaoli M, Błaszczyk A, Luczkiewicz A, Fudala-Ksiazek S. Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65625-65641. [PMID: 35501433 DOI: 10.1007/s11356-022-19915-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical oxidation (EO), due to high efficiency and small carbon footprint, is regarded as an attractive option for on-site treatment of highly contaminated wastewater. This work shows the effectiveness of EO using three boron-doped diamond electrodes (BDDs) in sustainable management of landfill leachate (LL). The effect of the applied current density (25-100 mA cm-2) and boron doping concentration (B/C ratio: 500 ppm, 10,000 ppm and 15,000 ppm) on the performance of EO was investigated. It was found that, of the electrodes used, the one most effective at COD, BOD20 and ammonia removal (97.1%, 98.8% and 62%, respectively) was the electrode with the lowest boron doping. Then, to better elucidate the ecological role of LLs, before and after EO, cultivation of faecal bacteria and microscopic analysis of total (prokaryotic) cell number, together with ecotoxicity assay (Daphnia magna, Thamnocephalus platyurus and Artemia salina) were combined for the two better-performing electrodes. The EO process was very effective at bacterial cell inactivation using each of the two anodes, even within 2 h of contact time. In a complex matrix of LLs, this is probably a combined effect of electrogenerated oxidants (hydroxyl radicals, active chlorine and sulphate radicals), which may penetrate into the bacterial cells and/or react with cellular components. The toxicity of EO-treated LLs proved to be lower than that of raw ones. Since toxicity drops with increased boron doping, it is believed that appropriate electrolysis parameters can diminish the toxicity effect without compromising the nutrient-removal and disinfection capability, although salinity of LLs and related multistep-oxidation pathways needs to be further elucidated.
Collapse
Affiliation(s)
- Barbara Krystyna Wilk
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland.
| | - Malgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Michał Sobaszek
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Mattia Pierpaoli
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Agata Błaszczyk
- Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Aneta Luczkiewicz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Sylwia Fudala-Ksiazek
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| |
Collapse
|
12
|
Cu2O nanoparticles modified BiO2-x nanosheets for efficient electrochemical reduction of nitrate-N and nitrobenzene from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Xu H, Ma Y, Chen J, Zhang WX, Yang J. Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle. Chem Soc Rev 2022; 51:2710-2758. [PMID: 35274646 DOI: 10.1039/d1cs00857a] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrate enrichment, which is mainly caused by the over-utilization of fertilisers and industrial sewage discharge, is a major global engineering challenge because of its negative influence on the environment and human health. To solve this serious problem, many technologies, such as the activated sludge method, reverse osmosis, ion exchange, adsorption, and electrodialysis, have been developed to reduce the nitrate levels in water bodies. However, the applications of these traditional techniques are limited by several drawbacks, such as a long sludge retention time, slow kinetics, and undesirable by-products. From an environmental perspective, the most promising nitrate reduction technology is enabled to convert nitrate into benign N2, and features low cost, high efficiency, and environmental friendliness. Recently, electrocatalytic nitrate reduction has been proven by satisfactory research achievements to be one of the most promising methods among these technologies. This review provides a comprehensive account of nitrate reduction using electrocatalysis methods. The fundamentals of electrocatalytic nitrate reduction, including the reaction mechanisms, reactor design principles, product detection methods, and performance evaluation methods, have been systematically summarised. A detailed introduction to electrocatalytic nitrate reduction on transition metals, especially noble metals and alloys, Cu-based electrocatalysts, and Fe-based electrocatalysts is provided, as they are essential for the accurate reporting of experimental results. The current challenges and potential opportunities in this field, including the innovation of material design systems, value-added product yields, and challenges for products beyond N2 and large-scale sewage treatment, are highlighted.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Wei-Xian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Nassar H, Zyoud A, Helal HH, Ghannam H, Woo Kim T, Helal MH, Hilal HS. Fluorine tin oxide-supported copper nanofilms as effective and selective de-nitration electrocatalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Process Optimization of Electrochemical Treatment of COD and Total Nitrogen Containing Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020850. [PMID: 35055672 PMCID: PMC8776051 DOI: 10.3390/ijerph19020850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023]
Abstract
In this work, an electrochemical method for chemical oxygen demand (COD) and total nitrogen (TN, including ammonia, nitrate, and nitrite) removal from wastewater using a divided electrolysis cell was developed, and its process optimization was investigated. This process could effectively relieve the common issue of NO3-/NO2- over-reduction or NH4+ over-oxidation by combining cathodic NO3-/NO2- reduction with anodic COD/NH4+ oxidation. The activity and selectivity performances toward pollutant removal of the electrode materials were investigated by electrochemical measurements and constant potential electrolysis, suggesting that Ti electrode exhibited the best NO3-/NO2- reduction and N2 production efficiencies. In-situ Fourier transform infrared spectroscopy was used to study the in-situ electrochemical information of pollutants conversion on electrode surfaces and propose their reaction pathways. The effects of main operating parameters (i.e., initial pH value, Cl- concentration, and current density) on the removal efficiencies of COD and TN were studied. Under optimal conditions, COD and TN removal efficiencies from simulated wastewater reached 92.7% and 82.0%, respectively. Additionally, reaction kinetics were investigated to describe the COD and TN removal. Results indicated that COD removal followed pseudo-first-order model; meanwhile, TN removal followed zero-order kinetics with a presence of NH4+ and then followed pseudo-first-order kinetics when NH4+ was completely removed. For actual pharmaceutical wastewater treatment, 79.1% COD and 87.0% TN were removed after 120 min electrolysis; and no NH4+ or NO2- was detected.
Collapse
|
16
|
Chauhan R, Srivastava VC. Mechanistic kinetic modeling of simultaneous electrochemical nitrate reduction and ammonium ion oxidation in wastewater. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Chen M, Bi J, Huang X, Wang J, Wang T, Wang Z, Hao H. ZIF-8 engineered bismuth nanosheet arrays for boosted electrochemical reduction of nitrate. NANOSCALE 2021; 13:13786-13794. [PMID: 34477653 DOI: 10.1039/d1nr02339j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Removal of nitrate in wastewater is of great importance to environmental protection and humanity. However, the competitive reaction of hydrogen evolution (HER), which could occupy most active sites of the electrocatalyst, is one of the big challenges for nitrate removal. In this study, a novel zeolitic imidazolate framework-8 film engineered bismuth nanosheet electrocatalyst (ZIF-8/Bi-CC) was designed and synthesized for the electrochemical reduction of nitrate. The water contact angle and electrochemical tests demonstrated that the construction of the hydrophobic ZIF-8 film effectively weakened the competition of HER. And the nitrate removal efficiency and ammonium selectivity increased by 25.9% and 34.2% respectively after bismuth nanosheets were embedded into the ZIF-8 film. Besides, the bismuth concentration detection results indicated that the ZIF-8 film as the protective shell could effectively prevent the leaching of bismuth into the solution. More importantly, the final nitrate removal rate of ZIF-8/Bi-CC was close to 90% after 5 h when treating actual garbage fly ash wastewater, the NITRR efficiency stability and the obtained product were confirmed by five electrochemical cycles. The metal-organic framework film engineered electrocatalyst is a promising strategy for designing a new catalyst for the removal of nitrate in industrial wastewater.
Collapse
Affiliation(s)
- Miao Chen
- National Engineering Research Center for Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Unraveling the role of electrolytes during electrochemical oxidation by differential electrochemical mass spectrometry. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Electrochemical Oxidation of Effluents from Food Processing Industries: A Short Review and a Case-Study. WATER 2020. [DOI: 10.3390/w12123546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A short review on the treatment of effluents from food processing industries by electrochemical oxidation (EO) was performed. Olive mill wastewater (OMW) and boron-doped diamond (BDD) are the most reported effluent and anode material, respectively. The addition of NaCl or Na2SO4 as supporting electrolytes is common in these studies, and their influence on the EO performance depends, among other things, on the anode material, since the electrolyte oxidation mechanism is different when active and non-active anode materials are utilized. A case-study on the application of a pilot plant, working in batch mode with recirculation, equipped with a BDD anode, to treat 4 L of OMW, slaughterhouse (SW) and winery (WW) wastewaters, with initial chemical oxygen demands (COD) of 20.5, 3.6 and 0.26 g L−1, respectively, is presented and discussed. In 16 h assays, 94% COD removal was achieved for OMW, and for SW and WW the Portuguese COD legal discharge limit of 150 mg L−1 was accomplished. Process efficiency decreased for lower organic load. NaCl addition increased COD removal in SW and WW, but presented an adverse effect for OMW COD removal, when compared to Na2SO4 addition. Nevertheless, lower specific energy consumptions were attained in chloride medium (48 Wh (g COD)−1).
Collapse
|
20
|
Zheng W, Zhu L, Liang S, Ye J, Yang X, Lei Z, Yan Z, Li Y, Wei C, Feng C. Discovering the Importance of ClO • in a Coupled Electrochemical System for the Simultaneous Removal of Carbon and Nitrogen from Secondary Coking Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9015-9024. [PMID: 32459474 DOI: 10.1021/acs.est.9b07704] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inorganic constituents in real wastewater, such as halides and carbonates/bicarbonates, may have negative effects on the performance of electrochemical systems because of their capability of quenching HO•. However, we discovered that the presence of Cl- and HCO3- in an electrochemical system is conducive to the formation of ClO•, which plays an important role in promoting the simultaneous elimination of biorefractory organics and nitrogen in secondary coking wastewater effluent. The 6-h operation of the coupled electrochemical system (an undivided electrolytic cell with a PbO2/Ti anode and a Cu/Zn cathode) at a current density of 37.5 mA cm-2 allowed the removal of 87.8% of chemical oxygen demand (COD) and 86.5% of total nitrogen. The electron paramagnetic resonance results suggested the formation of ClO• in the system, and the probe experiments confirmed the predominance of ClO•, whose steady-state concentrations (8.08 × 10-13 M) were 16.4, 26.5, and 1609.5 times those of Cl2•- (4.92 × 10-14 M), HO• (3.05 × 10-14 M), and Cl• (5.02 × 10-16 M), respectively. The rate constant of COD removal and the Faradaic efficiency of anodic oxidation obtained with Cl- and HCO3- was linearly proportional to the natural logarithm of the ClO• concentration, and the specific energy consumption was inversely correlated to it, demonstrating the crucial role of ClO• in pollutant removal.
Collapse
Affiliation(s)
- Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Liuyi Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Sheng Liang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhenchao Lei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yongdong Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Xu H, Wu J, Luo W, Li Q, Zhang W, Yang J. Dendritic Cell-Inspired Designed Architectures toward Highly Efficient Electrocatalysts for Nitrate Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001775. [PMID: 32583581 DOI: 10.1002/smll.202001775] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Electrocatalysis for nitrate reduction reaction (NRR) has recently been recognized as a promising technology to convert nitrate to nitrogen. Catalyst support plays an important role in electrocatalytic process. Although porous carbon and metal oxides are considered as common supports for metal-based catalysts, fabrication of such architecture with high electric conductivity, uniform dispersion of nanoparticles, and long-term catalytic stability through a simple and feasible approach still remains a significant challenge. Herein, inspired by the signal transfer mode of dendritic cell, an all-carbon dendritic cell-like (DCL) architecture comprising mesoporous carbon spheres (MCS) connected by tethered carbon nanotubes (CNTs) with CuPd nanoparticles dispersed throughout (CuPd@DCL-MCS/CNTs) is reported. An impressive removal capacity as high as 22 500 mg N g-1 CuPd (≈12 times superior to Fe-based catalysts), high nitrate conversion (>95%) and nitrogen selectivity (>95%) are achieved under a low initial concentration of nitrate (100 mg L-1 ) when using an optimized-NRR electrocatalyst (4CuPd@DCL-MCS/CNTs). Remarkably, nitrate conversion and nitrogen selectivity are both close to 100% in an ultralow concentration of 10 mg L-1 , meeting drinking water standard. The present work not only provides high electrocatalytic performance for NRR but also introduces new inspiration for the preparation of other DCL-based architectures.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jing Wu
- Co-Innovation Center for Textile Industry, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Weixian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
22
|
Ciarlini J, Alves L, Rajarathnam GP, Haynes BS, Montoya A. Electrochemical oxidation of nitrogen-rich post-hydrothermal liquefaction wastewater. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Li X, Tang S, Yuan D, Tang J, Zhang C, Li N, Rao Y. Improved degradation of anthraquinone dye by electrochemical activation of PDS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 177:77-85. [PMID: 30974246 DOI: 10.1016/j.ecoenv.2019.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Electrochemical oxidation (EO) coupled with peroxydisulfate (PDS) activation as a synergistic wastewater treatment process (PDS/EO) was performed to degrade anthraquinone dye-Reactive Brilliant Blue (RBB) in aqueous solution. Introducing PDS into the EO improved the RBB removal than the sole PDS and conventional EO systems. The RBB could activate PDS to a certain degree by itself. By the comparison of various inorganic ions addition, it showed that adding NO3- as the background electrolyte was more effective than the systems using the Cl- and SO42-, respectively. In this PDS/EO-NO3- system, increasing PDS concentration (1-5 mmol L-1) and current density (5-10 mA cm-2) considerably promoted the degradation of RBB. The adjustment of the solution pH displayed that the acidic and neutral condition was beneficial to the RBB removal, and the synergistic effect was inverse ratio to the RBB initial concentration. Furthermore, the scavenger experiments verified that both SO4·- and HO· were the major active substances in the RBB decomposition, and other reactive oxygen species also had considerable contributions. Thereinto NO3- only act a catalytic agent to improve the generation of active matters in the PDS/EO-NO3-. Overall, the proposed synergistic process could serve as an efficient method for the degradation of anthraquinone dye.
Collapse
Affiliation(s)
- Xue Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Shoufeng Tang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Deling Yuan
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Jiachen Tang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Chen Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Na Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Yandi Rao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| |
Collapse
|
24
|
He Y, Lin H, Guo Z, Zhang W, Li H, Huang W. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.056] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Ghazouani M, Akrout H, Jellali S, Bousselmi L. Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1651-1664. [PMID: 30180367 DOI: 10.1016/j.scitotenv.2018.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Agri-food wastewaters are characterized by high contents of hardly biodegradable organics and large amounts of inorganics especially nitrogen and phosphorus. The present work investigates the efficiency of two electrochemical treatment processes, namely electrochemical oxidation/reduction (EOR), electrocoagulation (EC) and their combination for the treatment of two types of effluents collected from poultry slaughterhouse (SHWW) and dairy (DWW) industries. The optimization of these treatment systems in terms of pollutant performance removal and energy cost were carried out. The EOR treatment was assessed on a bipolar cell with Boron-Doped Diamond (BDD) supported on silicon electrodes. While, the EC treatment was performed on a reactor containing mild steel electrodes with parallel configuration. The simultaneous removal efficiencies of the organic matter in term of the chemical oxygen demand (COD), nitrates, ammonium/ammonia and phosphates, as well as the electric energy consumption (EEC), were evaluated for the different electrochemical scenarios. Results indicated that the EOR treatment shows the highest removal efficiencies of COD, nitrates and ammonia from the two studied wastewaters. While, the phosphates were removed only by the EC process. On the other hand, the EC process shows a relatively low cost in term of EEC (0.01 kWh/g COD-1), which is about 13 times lower than the one consumed during the EOR process. The combination of the two processes leads to the improvement of the removal rate of all coexistent pollutants when the EC technology was used as a pre-treatment step. While, this coupling mode has the highest EEC. However, when the EOR process was used before the EC one, the removal rates of COD and nitrates were globally similar to the EOR process alone with a relatively low EEC.
Collapse
Affiliation(s)
- Mouna Ghazouani
- Laboratory of Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE), Technopark Borj Cedria, Touristic road of Soliman, BP 273, 8020, Tunisia
| | - Hanene Akrout
- Laboratory of Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE), Technopark Borj Cedria, Touristic road of Soliman, BP 273, 8020, Tunisia.
| | - Salah Jellali
- Laboratory of Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE), Technopark Borj Cedria, Touristic road of Soliman, BP 273, 8020, Tunisia.
| | - Latifa Bousselmi
- Laboratory of Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE), Technopark Borj Cedria, Touristic road of Soliman, BP 273, 8020, Tunisia.
| |
Collapse
|
26
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
27
|
Jeguirim M, Limousy L. Process engineering for pollution control and waste minimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9827-9830. [PMID: 28382441 DOI: 10.1007/s11356-017-8936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Mejdi Jeguirim
- Institut de Science des Matériaux de Mulhouse, 15 Rue Jean Starcky, 68057, Mulhouse, France.
| | - Lionel Limousy
- Institut de Science des Matériaux de Mulhouse, 15 Rue Jean Starcky, 68057, Mulhouse, France
| |
Collapse
|