1
|
Li X, Li Y, Chernick M, Hinton DE, Zheng N, Du C, Dong W, Wang S, Hou S. Single and mixture toxicity of cadmium and copper to swim bladder in early life stages of Japanese medaka (Oryzias latipes). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:27. [PMID: 38225481 DOI: 10.1007/s10653-023-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024]
Abstract
Toxicity observed in aquatic ecosystems often cannot be explained by the action of a single pollutant. Likewise, evaluation standards formulated by a single effect cannot truly reflect the environmental quality requirements. The study of mixtures is needed to provide environmental relevance and knowledge of combined toxicity. In this study, the embryos of Japanese medaka (Oryzias latipes) were treated with individual and binary mixture of copper (Cu) and cadmium (Cd) until 12 days post-fertilization (dpf). Hatching, mortality, development, histology and gene expression were assessed. Our results showed that the highest concentration mixture of Cd (10 mg/L) and Cu (1 mg/L) affected survival, hatching time and hatching success. Occurrence of uninflated swim bladder was the highest (value) with exposure to 10 mg/L Cd. Swim bladder was commonly over-inflated in a mixture (0.1 mg/L Cd + 1.0 mg/L Cu) exposure. Individuals exposed to the mixture (0.1 Cd + 1.0 Cu mg/L) showed up to a 7.69% increase in swim bladder area compared to the control group. The mixtures containing 0.1 or 10 mg/L Cd, each with 1.0 mg/L Cu resulted in significantly increased of Pbx1b expression, higher than any Cd or Cu alone (p < 0.01). In the co-exposure group (0.1/10 Cd + 1.0 Cu mg/L), Pbx1b expression was found at 12 dpf but not 7 dpf in controls. Higher concentrations of Cd may progressively reduce Pbx1b expression, potentially explaining why 75% of individuals in the 10 mg/L Cd group failed to inflate their swim bladders. Additionally, the swim bladder proved to be a valuable bio-indicator for biological evaluation.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China.
| | - Chenyang Du
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Inner Mongolia University for Nationalities, Hohhot, 028000, Inner Mongolia, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| |
Collapse
|
2
|
Sofield R, Collier TK. Recent advances in toxicity assessment across taxa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27631-27633. [PMID: 29235016 DOI: 10.1007/s11356-017-0730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Ruth Sofield
- Environmental Toxicology and Chemistry, Huxley College of the Environment, Western Washington University, Bellingham, USA
| | - Tracy K Collier
- Salish Sea Institute, Western Washington University, Bellingham, USA.
| |
Collapse
|