1
|
Fu Y, Janczarek M. UV and Visible Light-Induced Photocatalytic Efficiency of Polyaniline/Titanium Dioxide Heterostructures. Molecules 2024; 30:23. [PMID: 39795080 PMCID: PMC11722138 DOI: 10.3390/molecules30010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO2 ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity. Therefore, colorless phenol was used instead of dyes in this study to clarify the real visible light-induced photocatalytic activity of polyaniline/TiO2 composites. This publication also includes a discussion of whether materials derived from bulk (non-nanostructured) polyaniline and TiO2 by the standard in situ oxidative polymerization method are suitable candidates for promising photocatalytic materials. The evaluation of photocatalytic activity was performed in both UV and visible light systems. X-ray diffraction and UV-Vis diffuse reflectance spectroscopy methods were applied to characterize the obtained samples. Obtained polyaniline (pure and in composites) was identified as emeraldine salt. In the UV system, none of the prepared samples with different polyaniline-titania ratios had activity better than reference P25 titania. It has been observed that the presence of polyaniline adversely affects the photocatalytic properties, as the polyaniline layer covering the titania surface can shield the UV light transmission by blocking the contact between the TiO2 surface and organic molecules. In the case of using visible light, no synergies have been observed between polyaniline and titania either. The photodegradation efficiencies of the most active samples were similar to those of pure polyaniline. In conclusion, in order to obtain efficient polyaniline/titania photocatalysts active in UV and/or visible light, it is necessary to take into account the morphological and surface properties of both components.
Collapse
Affiliation(s)
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
2
|
Samarasinghe LV, Muthukumaran S, Baskaran K. Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. CHEMOSPHERE 2024; 349:140818. [PMID: 38056717 DOI: 10.1016/j.chemosphere.2023.140818] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The rapid development in industrialization and urbanization coupled with an ever-increasing world population has caused a tremendous increase in contamination of water resources globally. Synthetic dyes have emerged as a major contributor to environmental pollution due to their release in large quantities into the environment, especially owing to their high demand in textile, cosmetics, clothing, food, paper, rubber, printing, and plastic industries. Photocatalytic treatment technology has gained immense research attention for dye contaminated wastewater treatment due to its environment-friendliness, ability to completely degrade dye molecules using light irradiation, high efficiency, and no generation of secondary waste. Photocatalytic technology is evolving rapidly, and the foremost goal is to synthesize highly efficient photocatalysts with solar energy harvesting abilities. The current review provides a comprehensive overview of the most recent advances in highly efficient visible light-activated photocatalysts for dye degradation, including methods of synthesis, strategies for improving photocatalytic activity, regeneration and their performance in real industrial effluent. The influence of various operational parameters on photocatalytic activity are critically evaluated in this article. Finally, this review briefly discusses the current challenges and prospects of visible-light driven photocatalysts. This review serves as a convenient and comprehensive resource for comparing and studying the fundamentals and recent advancements in visible light photocatalysts and will facilitate further research in this direction.
Collapse
Affiliation(s)
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, College of Sport, Health & Engineering, Victoria University, Melbourne, VIC, 8001, Australia
| | - Kanagaratnam Baskaran
- Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, 3216, Australia
| |
Collapse
|
3
|
Saravanakumar R, Sathiyamoorthi E, Rajkumar S, Lee J, Kottaisamy M. Synergistic effect of adsorption and photo-catalysis on the removal of hazardous dyes using steam exploded banana fiber derived micro-cellulose. Int J Biol Macromol 2024; 258:128970. [PMID: 38154723 DOI: 10.1016/j.ijbiomac.2023.128970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
The utilization of banana fiber derived from micro-cellulose (MC) was exploited as a supporting material for advanced oxidation process (AOP) on the degradation of methylene blue and methyl violet dyes in the presence of H2O2-UV in aqueous medium for the first time using green chemistry protocols. Additionally, it was also effectively utilized for the adsorption of methylene blue dye using addition of H2O2 in the presence of sunlight. The MC powder was fabricated using an acid alkali process from the pseudo-stem of a banana tree. The as-fabricated MC powder was systematically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometer (EDX), and zero point charge (pHzpc). The AOP assisted degradation of dye molecules was monitored by using calorimetric techniques as a function of dye concentration and pH in a batch reactor. In a short period of time, the maximum degradation efficiency of 98 % of methylene blue was achieved using MC powder assisted H2O2 under UV irradiation at a minimum irradiation time of 120 min at pH 7.0 using dosage of 0.2 g/L. However, in the absence of UV light, the degradation efficiency of MC powder assisted H2O2 was only about 5-10 % without UV light irradiation. The dye removal was studied as a function of various operational parameters such as pH (3-11), catalyst dose (0.2-0.6 g/L), and initial dye concentration (100-400 mg/L). In the presence of H2O2-sunlight and 0.2 g/L of dosage at pH 7.0 at a minimum contact time of 120 min, MC fiber showed maximum adsorption capacities of 98% and 85% for 100 mg/L and 400 mg/L of methylene blue concentrations. According to the obtained data, the adsorption of methylene blue dye on MC follows the Freundlich isotherm model (R2 = 0.9886) and pseudo-first-order kinetic model (R2 = 0.9596) due to the higher regression coefficients. This process of dye degradation and adsorption process is a novel one and environmentally benign for an effective removal of hazardous dyes.
Collapse
Affiliation(s)
- Rajagopal Saravanakumar
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virthunagar District, Tamil Nadu, India
| | | | - Subramanium Rajkumar
- Department of Chemistry, SRM Madurai College for Engineering and Technology, Pottapalayam, Tamil Nadu 630611, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muniasamy Kottaisamy
- Department of Chemistry, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India.
| |
Collapse
|
4
|
Wahab A, Minhas MA, Shaikh H, Xiao HM, Malik MI. Enhancement in photocatalytic selectivity of TiO 2-based nano-catalyst through molecular imprinting technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121929-121947. [PMID: 37957496 DOI: 10.1007/s11356-023-30747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Improvement in the photocatalytic selectivity is imperative for the effective and efficient utilization of catalysts. In this study, a molecularly imprinted polymer-coated iron-doped titanium dioxide (Fe-TiO2@MIP) nanocomposite was successfully synthesized by precipitation polymerization while using RB-19 as a template. The synthesized nanocomposites (Fe-TiO2@MIP and Fe-TiO2@NIP) were characterized by Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-EMMETT-Teller (BET), and UV-visible spectrophotometry. The optimized binding experiments revealed a high imprinting factor of 5.0 for RB-19. The catalytic degradation efficiency and selectivity of Fe-TiO2@MIP enhanced to almost complete degradation of RB-19 from 70% for the parent Fe-TiO2 and 76% for Fe-TiO2@NIP. An outstanding degradation selectivity of RB-19 was achieved compared to other competitive dyes. Finally, the analysis of the non-degraded and degraded RB-19 by ESI-MS revealed the presence of different intermediates that fits well with the proposed degradation mechanism. The study opens new possibilities of selective photo-degradation of targeted contaminants that may ultimately lead to efficient use of photocatalysts.
Collapse
Affiliation(s)
- Abdul Wahab
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Ali Minhas
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
- Food Quality and Safety Research Institute, PARC-Southern Zone Agricultural Research Centre, Karachi, 75270, Pakistan
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | - Hua-Ming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Hasan I, Albaeejan MA, Alshayiqi AA, Al-Nafaei WS, Alharthi FA. In Situ Hydrothermal Synthesis of Ni 1-xMn xWO 4 Nanoheterostructure for Enhanced Photodegradation of Methyl Orange. Molecules 2023; 28:molecules28031140. [PMID: 36770807 PMCID: PMC9920565 DOI: 10.3390/molecules28031140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The monoclinic nanocrystalline Ni1-xMnxWO4 heterostructure has been successfully synthesized by the hydrothermal technique for achieving better sensitive and photocatalytic performances. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis), and photoluminescence (PL) spectroscopy have been employed to investigate their structural, microstructural, and optical properties. Mn-ion incorporation in the NiWO4 lattice reduces the particle size of the sample compared with the pure undoped NiWO4 sample, which has been confirmed from the transmission electron microscope image. The Tauc plot of the Ni1-xMnxWO4 sample exhibits a significant decrease in bandgap energy compared with the pure undoped NiWO4 sample due to the quantum confinement effect. Finally, the material was explored as a photocatalyst for the degradation of methyl orange (MO) dye from wastewater under visible light irradiation. Various reaction parameters such as pH, catalyst dose, reaction time, and kinetics of the photodegradation were studied using the batch method. The results showed that the Ni1-xMnxWO4 is highly efficient (94.51%) compared with undoped NiWO4 (65.45%). The rate of photodegradation by Ni1-xMnxWO4 (0.067) was found to be 1.06 times higher than the undoped NiWO4 (0.062).
Collapse
Affiliation(s)
- Imran Hasan
- Correspondence: (I.H.); (F.A.A.); Tel.: +966-507976713 (I.H.)
| | | | | | | | | |
Collapse
|
6
|
Gholizade A, Asadollahfardi G, Rezaei R. Reactive Blue 19 dye removal by UV-LED/chlorine advanced oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1704-1718. [PMID: 35922593 DOI: 10.1007/s11356-022-22273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, advanced oxidation processes (AOPs) have indicated the greatest potential in the removal of stable organic compounds, including dyes. In this study, the ultraviolet light-emitting diodes (UV-LEDs) combined with chlorine was evaluated to remove Reactive Blue 19 (RB19) dye from aqueous solution. The effect of key experimental parameters including pH, initial chlorine concentration, initial dye concentration, and reaction time on the performance of UV-LED irradiation, UV-LED/chlorine, and the chlorination method for the removal of RB19 was studied in this research. Results showed that, more than 99% of RB19 was removed after 30 min of reaction time under optimized conditions (pH = 5, [chlorine] = 300 μM, and [RB19] = 20 mg L-1) with apparent kinetic rate constant (kapp) of 17.1 × 10-2 min-1 in UV-LED/chlorine process. However, for the chlorination method, removal efficiency was 64.7% (kapp = 3.41 × 10-2 min-1) with an apparent kinetic rate constant of 0.0341 min-1. Results also showed that UV-LED irradiation is not effective at all in removing RB19. The scavenging assay showed that OH• radicals (67.23%) had the highest contribution in RB19 removal in UV-LED/chlorine process while Cl• (17.82%) and [Formula: see text] (8.56%) had a minor role in the degradation of the dye. The RB19 degradation kinetics analysis revealed that the processes of UV-LED/chlorine and chlorination degradation followed the pseudo-first-order kinetic model. In this study, the impact of chloride, nitrate, bicarbonate, carbonate, sulfate, and sulfite anions on the performance of the process was investigated. It indicated that sulfite anion has the most negative impact on the RB19 removal process. By evaluating the synergistic effect between UV-LED lamp and chlorine, a synergy index of 5.0 was obtained for the UV-LED/chlorine process. The results presented that the UV-LED/chlorine process has a better performance than each of them alone and has the necessary efficiency for RB19 removal. Measuring COD reported its removal efficiency of 98% during the UV-LED/chlorine process under optimized conditions. Experiments continued with textile factory wastewater and indicated 30.9% of its COD removed after treatment when 1.0 μM chlorine was used.
Collapse
Affiliation(s)
- Alireza Gholizade
- MSc of Environmental Engineering, Kharazmi University, 43 Shahid Mofatteh Ave, Tehran, Iran
| | - Gholamreza Asadollahfardi
- Emeritus professor, Civil Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran.
| | - Reza Rezaei
- Aqua Intelligent Technology, 2366 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Vishwanathan S, Das S. Glucose-mediated one-pot hydrothermal synthesis of hollow magnesium oxide-zinc oxide (MgO-ZnO) microspheres with enhanced natural sunlight photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8512-8525. [PMID: 35460004 DOI: 10.1007/s11356-022-20283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Glucose -mediated one-pot hydrothermal method has been utilized to synthesize hollow spherical MgO-ZnO (xMgO-(1-x)ZnO, x = 0, 0.2, 0.4, 0.6) microstructures which are highly efficient in high-energy ultraviolet (UV) region of natural sunlight. In this process, glucose formed roundish spheres, and simultaneously metal precursors were coated on that spheres during the hydrothermal reaction. X-ray diffraction analysis (XRD) supports the formation of highly crystalline wurtzite structure of MgO-ZnO for Mg loading less than 20%. Higher concentration of Mg produces wurtzite hexagonal ZnO and cubic MgO in the composites. The widening in band gap energy of synthesized MgO-ZnO microspheres compared to ZnO was analyzed by UV-visible diffuse reflectance spectroscopy (UV-DRS) result. Brunauer-Emmett-Teller (BET) surface area analysis showed that with the increase in Mg loading, the specific surface area increases up to 14.27 times as compared to pristine ZnO. The synthesized catalysts were used as an efficient photocatalyst towards the degradation of rhodamine B (RhB), methylene blue (MB), and phenol under natural solar irradiation. Results illustrated that MB and RhB dye solutions were 100% degraded by 0.6 MgO-ZnO in 100 min and 150 min, respectively, whereas pure ZnO samples showed only 65% and 79% degradation. Also, for phenol solution, 0.6 MgO-ZnO showed enhanced degradation efficiency of 72% in 240 min in comparison with 58% degradation shown by ZnO. Additionally, the MgO-ZnO catalysts were stable and showed excellent degradation efficiency up to four consecutive cycles which open a new direction towards potential industrial applications. Hence, the novelty of the current work is to prepare hollow MgO-ZnO microspheres by a single-step hydrothermal process where separate carbon template preparation is not required and to utilize these hollow microspheres as a highly efficient photocatalyst by harnessing the high-energy UV fraction of natural sunlight.
Collapse
Affiliation(s)
- Shalini Vishwanathan
- Department of Chemical Engineering, National Institute of Technology Calicut, Calicut, 673601, India
| | - Susmita Das
- Department of Chemical Engineering, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
8
|
Matthew D, Shetty K V. Visible light irradiated photocatalytic reduction of CO 2 to hydrocarbons using hybrid polyaniline/ CuO nanocomposite in aqueous system. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Deeksha Matthew
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - Vidya Shetty K
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| |
Collapse
|
9
|
Cherif S, Djelal H, Firmin S, Bonnet P, Frezet L, Kane A, Amine Assadi A, Trari M, Yazid H. The impact of material design on the photocatalytic removal efficiency and toxicity of two textile dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66640-66658. [PMID: 35504995 DOI: 10.1007/s11356-022-20452-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
This study deals with the toxicity of the treated solutions of two types of dyes, namely, the anthraquinonic Reactive Bleu 19 dye (RB19) and the bi-azoic Direct Red 227 dye (DR227), which are treated in single and binary mixture systems. The target molecules were removed by the photocatalysis process using ZnO as a catalyst, which was calcined at two temperatures 250 and 420 °C (ZnO250 and ZnO420) prepared in the lab by the one-step calcination method. XRD, TEM, EDX, XPS, FT-IR, BET, RAMAN, and EPR analyses were carried out to characterize the catalyst material. While the phytotoxicity was being conducted using watercress seeds, the cytotoxicity took place using a cell line (raw) and an intestinal cell (caco-2). The XRD analysis showed the partial calcination of ZnO250 and the presence of anhydrous zinc acetate along with the ZnO nanoparticles (NPs). This result was not observed for ZnO420. Despite the complete discoloration (100%) of all the final solutions, ZnO250 exhibited a high cytotoxicity and phytotoxicity against the RB19 dye after the photocatalytic treatment; however, it was not the case of ZnO420 which was selected as an eco-friendly photocatalyst for the degradation of organic dyes based on the results of removal efficiency, cytotoxicity, and phytotoxicity.
Collapse
Affiliation(s)
- Sonia Cherif
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32 Al Alia, 16111, Algiers, Algeria.
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France.
| | - Hayet Djelal
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France
| | - Stephane Firmin
- UniLaSalle, Aghyle UP2018.C101, 19 rue Pierre Waguet, BP 30313 Cedex, F-60026, Beauvais, France
| | - Pierre Bonnet
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
| | - Lawrence Frezet
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
| | - Abdoulaye Kane
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France
| | - Aymen Amine Assadi
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, 3500, Rennes, France
| | - Mohamed Trari
- Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers, Algeria
| | - Hynda Yazid
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32 Al Alia, 16111, Algiers, Algeria
| |
Collapse
|
10
|
Bagheri M, Vesali-Naseh M, Farhadian M. Enhanced photocatalytic activity and charge carrier separation of CNT/TiO 2/WO 3/CdS catalyst for the visible-light photodegradation of reactive blue 19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61080-61092. [PMID: 35434755 DOI: 10.1007/s11356-022-20172-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The novel quaternary CNT/TiO2/WO3/CdS nanostructure was fabricated to be employed in the photocatalytic degradation of reactive blue 19 (RB19) under the visible light irradiation. The physicochemical properties of the pure TiO2, CNT/TiO2, CNT/TiO2/WO3, and CNT/TiO2/WO3/CdS were characterized using XRD, FTIR, FESEM, EDX, DRS, PL, and BET analyses. The photodegradation results showed that the optimum weight percentage of CNT, WO3, and CdS was 4%, 35%, and 5%, respectively. The highest RB19 degradation efficiency of CNT/TiO2/WO3/CdS was achieved 97%. Besides, the central composite design was applied to model and optimize the photocatalytic activity of CNT/TiO2/WO3/CdS nanocatalyst and assess the effects of processing variables including RB19 concentration, catalyst concentration, pH, and irradiation time on the response. RB19 concentration and pH had the most and the second most significant role in the removal efficiency. While increasing the catalyst concentration and irradiation time positively enhanced the removal efficiency to more than 82%, increasing the pH and dye concentration showed the remarkable hindering effects on the removal efficiency by about 45% reduction. The reusability of the synthesized catalysts was studied under the optimum conditions as follows: [RB19] = 25 mg/L, [catalyst] = 1 g/L, pH of 4, and irradiation time = 2 h. The COD and TOC analyses were also conducted during photodegradation process. The COD and TOC removal efficiencies were achieved about 67% and 62%, respectively.
Collapse
Affiliation(s)
- Marzieh Bagheri
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Masoud Vesali-Naseh
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
11
|
In-situ generated SrWO4/g-C3N4 heterojunction photocatalyst for enhanced visible light degradation activity of tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Visible Light Mediated Photocatalytic Reduction of CO2 to Non-fossil Fuel and Valuable Products by Polyaniline-TiO2 Nanocomposites. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06450-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Highly efficient photocatalytic overall water splitting on plasmonic Cu 6Sn 5/polyaniline nanocomposites. J Colloid Interface Sci 2021; 609:785-793. [PMID: 34839913 DOI: 10.1016/j.jcis.2021.11.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022]
Abstract
A plasmonic Cu6Sn5/polyaniline (Cu6Sn5/PANI) nanocomposite was synthesized by chemical reduction and hydrothermal methods. The best photocatalytic overall water splitting performance was achieved by the Cu6Sn5/PANI3wt% composite, which contains 3 wt% PANI, which is approximately three times more than that of pure Cu6Sn5. Meanwhile, Cu6Sn5/PANI3wt% exhibited excellent photocatalytic stability for water splitting during the stability investigation. The dramatic promotion of the photocatalytic activity performance can be ascribed to the cocatalyst PANI. The existence of PANI can remarkably promote the separation and transfer efficiency of the photoinduced electron-hole pairs, and therefore enhance the photocatalytic activity. Our results also verify that the photogenerated charge comes from plasmonic Cu6Sn5 with the surface plasmon resonance (SPR) effect, which is different from traditional semiconductor-based photocatalysts. This work sheds some light on plasmonic photocatalyst development and provides an alternative pathway for photocatalytic reactions.
Collapse
|
14
|
Rodrigues J, Hatami T, Rosa JM, Tambourgi EB. Photocatalytic degradation of Reactive Blue 21 dye using ZnO nanoparticles: experiment, modelling, and sensitivity analysis. ENVIRONMENTAL TECHNOLOGY 2021; 42:3675-3687. [PMID: 32148175 DOI: 10.1080/09593330.2020.1740330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
This paper presents the photocatalysis, adsorption, and photolysis of C.I. Reactive Blue 21 dye using synthesized zinc oxide nanoparticles. The density, mean particle diameter, surface area, and porosity of the catalyst were 5550 kg/m3, 1.19 × 10-7, 16,830 m2/kg, and 0.08, respectively. The impact of catalyst mass per volume of solution (0.2-1.0 kg/m3) was experimentally investigated in terms of the percentage of dye degradation. Due to the small catalyst porosity, adsorption contributed little to overall degradation. However, the photolysis of the dye was around 12.5%, which occurred predominantly between 0 and 5 min. In the second part of the present study, the photocatalytic degradation of C.I. Reactive Blue 21 was modelled mathematically based on the mass conservation law in the solution and catalyst. The model had two adjustable variables: the convection mass transfer coefficient and the photocatalytic reaction rate constant. The model was solved numerically using the finite difference method and was validated with the experimental data. The validated model was employed to examine the impact of catalyst size and initial pollutant concentration on the photocatalytic degradation.
Collapse
Affiliation(s)
- Jorge Rodrigues
- School of Chemical Engineering, University of Campinas, São Paulo, Brazil
| | - Tahmasb Hatami
- School of Chemical Engineering, University of Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
15
|
Investigation of copper plates as anode and TiO2/glycine/ZnFe2O4 stabilized on graphite as cathode for textile dyes degradation from aqueous solution under visible light. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01580-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Ebrahimpour Z, Pliekhova O, Cabrera H, Abdelhamid M, Korte D, Segbéya Gadedjisso-Tossou K, Niemela J, Lavrencic Stangar U, Franko M. Photodegradation mechanisms of reactive blue 19 dye under UV and simulated solar light irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119481. [PMID: 33524821 DOI: 10.1016/j.saa.2021.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/01/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
In this work we performed dye photodegradation experiments in presence of TiO2 and Cu/Zr modified TiO2. The changes in the shape of the spectra of RB19 caused by photocatalysts under the simulated solar or UV light were monitored. Since the predominant photocatalytic mechanism can only be observed in very dilute solution of RB19, UV-Vis absorption spectrometry for higher concentrations and thermal lens spectrometry for lower concentrations have been applied to elucidate the mechanistic details of degradation processes. Bleaching of the dye was a characteristic feature, that occurred under both simulated solar and UV lights. It was also evident, that the absorption peak with maximum centered at 592 nm undergoes a slight blue shift during irradiation. The experiments carried out using UV and simulated solar light demonstrated, that two different processes responsible for the RB19 dye degradation occurred. In the initial stage of irradiation one of the processes appears under the UV light and can be recognized by a characteristic blue shift in the absorption spectrum of the solution. The second process is characteristic for irradiation by the simulated solar light which involve a blue shift at longer periods (100 min). These phenomena were attributed to the photocatalytic and photosensitization mechanisms, respectively. However, photocatalytic mechanism was also observed under simulated solar radiation, when the initial dye concentration was decreased to 5 mgL-1, and was recognized by the increase of the thermal lens signal during the initial stages of degradation process. This was possible because the thermal lens spectroscopy technique provides a limit of quantification for RB19 at the concentration level of 0.12 mg L-1, while UV-Vis spectrometry enables quantification of RB19 only down to 4 mg L-1 levels.
Collapse
Affiliation(s)
- Zeinab Ebrahimpour
- Optics Lab., The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy
| | - Olena Pliekhova
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica 5000, Slovenia
| | - Humberto Cabrera
- Optics Lab., The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy.
| | - Mahmoud Abdelhamid
- Optics Lab., The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy; National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Dorota Korte
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica 5000, Slovenia.
| | - Komlan Segbéya Gadedjisso-Tossou
- Optics Lab., The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy; Laboratoire de Physique des Matériaux et Composants à Semi-conducteurs (LPMCS), Département de Physique, Université de Lomé, Togo
| | - Joseph Niemela
- Optics Lab., The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy
| | - Urska Lavrencic Stangar
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica 5000, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Mladen Franko
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica 5000, Slovenia
| |
Collapse
|
17
|
Rezaei Ardani M, Azwina F, Wern TY, Ramli SF, Rezan SA, Aziz HA, Mohamed AR. Characterization of titanium oxide optical band gap produced from leachate sludge treatment with titanium tetrachloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17587-17601. [PMID: 33403630 DOI: 10.1007/s11356-020-12097-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the coagulation performance of titanium tetrachloride (TiCl4) for leachate treatment and preparation of titanium oxide (TiO2) from generated sludge through calcination process at different temperatures and times. TiCl4 with chitosan as coagulant aid employed to perform coagulation process on Alor Ponhsu Landfill leachate. Further calcination process was done to synthesize TiO2 from produced sludge for photocatalytic applications. The studied factors included pH, TiCl4 dosage, and chitosan dosage. The results indicated that maximum reduction in suspended solids was 92.02% at pH 4, 1200 mg/L TiCl4, and 250 mg/L chitosan addition, and maximum reduction in chemical oxygen demand was 71.92% at experimental condition of 1200 mg/L TiCl4 and 500 mg/L chitosan with pH 10. The maximum and minimum band gaps of prepared TiO2 achieved at 3.35 eV and 2.75 eV, respectively. Morphology and phase analysis of prepared TiO2 characterized using scanning electron microscope (SEM) and X-ray diffraction (XRD). The XRD spectrums showed the anatase phase at lower calcination temperature and the rutile phase at elevated temperature. The photocatalysis activity of produced TiO2 investigated under UV irradiation and showed almost fast degradation similar to commercial TiO2. The results indicated that TiO2 powder was successfully prepared from generated sludge from TiCl4 coagulation for photocatalytic applications.
Collapse
Affiliation(s)
- Mohammad Rezaei Ardani
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | - Fathin Azwina
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | - Tan Yee Wern
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | - Siti Fatihah Ramli
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | - Sheikh Abdul Rezan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| |
Collapse
|
18
|
Gadgil DJ, Shetty Kodialbail V. Suspended and polycaprolactone immobilized Ag @TiO 2/polyaniline nanocomposites for water disinfection and endotoxin degradation by visible and solar light-mediated photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12780-12791. [PMID: 33090347 DOI: 10.1007/s11356-020-11206-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
In the present study, water contaminated with Escherichia coli (E. coli) cells was photocataytically disinfected using Ag core-TiO2 shell/Polyaniline nanocomposite (Ag@TiO2/PANI) under visible light irradiation. Ag@TiO2/PANI containing 13 weight % of Ag@TiO2 was found to offer maximum disinfection activity. Band gap energy of Ag@TiO2/PANI was found to be 2.58 eV. Ag@TiO2/PANI nanocomposites were efficient in water disinfection in their suspended and immobilized form. Rate of disinfection with Ag@TiO2/PANI was faster than that with Ag@TiO2 nanoparticles. Water containing 50 × 108 CFU/mL cells was completely disinfected within 120 min with 1 g/L Ag@TiO2/PANI nanocomposite. Simultaneous disinfection and endotoxins degradation were achieved. The photocatalytic disinfection of water and endotoxin degradation using Ag@TiO2/PANI nanocomposite under visible light irradiation followed second order kinetics. The nanocomposite also exhibited a good solar photocatalytic activity.
Collapse
Affiliation(s)
- Dhanashri Jayant Gadgil
- Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal, Srinivasnagar Post, Mangalore, 575025, India
| | - Vidya Shetty Kodialbail
- Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal, Srinivasnagar Post, Mangalore, 575025, India.
| |
Collapse
|
19
|
Kalikeri S, Shetty Kodialbail V. Auto-combustion synthesis of narrow band-gap bismuth ferrite nanoparticles for solar photocatalysis to remediate azo dye containing water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12144-12152. [PMID: 33009616 DOI: 10.1007/s11356-020-10879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Narrow band gap of ferrites makes it a good photocatalyst, and it plays very prominent role in the level of degradation of organic dyes by photocatalysis. In the current study, bismuth ferrite (BFO) nanoparticles were synthesized by auto-combustion technique. The synthesized BFO particles have the average crystallite size of 33 nm and band gap energy of 1.9 eV. As revealed by microscopic images, uniform, distinct, and hexahedral shaped BFO nanoparticles of 42.7 nm are formed. The BFO nanoparticles exhibited visible and solar light-mediated photocatalytic activity in degrading Acid Yellow-17. The optimum pH and catalyst loading were found to be pH 5 and 0.2 g/L respectively. Around complete degradation under solar and 95% degradation under visible light could be achieved within 135 min of irradiation. Around 85% and 83% chemical oxygen demand (COD) removal could also be achieved under solar and visible light respectively. The degradation followed first-order kinetics in terms of COD removal. The BFO nanoparticles are promising as solar light active catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Shankramma Kalikeri
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasanagar Post, Mangalore, Karnataka, 575025, India
| | - Vidya Shetty Kodialbail
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasanagar Post, Mangalore, Karnataka, 575025, India.
| |
Collapse
|
20
|
Chkirida S, Zari N, Achour R, Qaiss AEK, Bouhfid R. Efficient hybrid bionanocomposites based on iron-modified TiO 2 for dye degradation via an adsorption-photocatalysis synergy under UV-Visible irradiations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14018-14027. [PMID: 33201510 DOI: 10.1007/s11356-020-11664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
To overcome the titanium oxide limitations, Fe2O3- and Fe3O4-modified TiO2 (3:1) nanoparticles were synthesized by a humid and solid path, respectively. These nanoparticles were embedded in sodium alginate biopolymer to prepare beads with efficient adsorption and photocatalytic behaviors in cationic dye degradation under both UV and visible irradiations. Operating conditions were investigated such as initial methylene blue (MB) concentration and contact time to evaluate their impact on the process. The bead recycling was also scrutinized. We have come to the conclusion that Fe2O3-modified TiO2-Alg displayed superiorities, including expanded responsive wavelength range in the visible region (up to 700 nm), narrower band gap (1.79 eV), and better efficiency for MB removal in terms of adsorption capacities and photocatalytic effectiveness under both UV and visible irradiations. Furthermore, these beads can be effortlessly recovered from the reaction medium after the photocatalytic process and reused up to 5 cycles without any noteworthy decline in their initial properties.
Collapse
Affiliation(s)
- Soulaima Chkirida
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Nadia Zari
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Redouane Achour
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Abou El Kacem Qaiss
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Rachid Bouhfid
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco.
| |
Collapse
|
21
|
Cai J, Hu S, Xiang J, Zhang H, Men D. The effect of graphitized carbon on the adsorption and photocatalytic degradation of methylene blue over TiO 2/C composites. RSC Adv 2020; 10:40830-40842. [PMID: 35519181 PMCID: PMC9057691 DOI: 10.1039/d0ra01105c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/02/2020] [Indexed: 11/21/2022] Open
Abstract
The TiO2/C composites with approximately 40 wt% of carbon were prepared by calcination of precursors, formed from a one-pot liquid phase reaction between Ti(SO4)2 and flour. All TiO2/C composites displayed mesoporous structures with high BET surface areas (117-138 m2 g-1) and small crystal sizes of TiO2 (8-27 nm). The contents of graphitic carbon and rutile TiO2 increased, while the surface area and TiO2 crystal size decreased for the TiO2/C composite on increasing the calcination temperature from 650 to 800 °C; when calcinated at 800 °C, the anatase TiO2 completely changed into rutile TiO2 in the TiO2/C composite. The TiO2/C composite calcinated at higher temperatures exhibited better adsorptive and photocatalytic degradation performance in the removal of methylene blue (MB). For the entire rutile TiO2/C-800 composite, the adsorption process of MB can be well described by the pseudo-second-order kinetic model and is governed by chemical adsorption with the maximum adsorption capacity value equal to about 15 mg g-1. Under continuous illumination with a 254 nm UV lamp (15 W) for 3 h, the percentage of MB (14 mg l-1) photocatalytic degradation on 50 mg of TiO2/C-800 was 25.1% higher than that of the maximum adsorption removal. These results suggest that the graphitized carbon has a significant effect on the adsorptivity and photocatalytic activity of the TiO2/C composite.
Collapse
Affiliation(s)
- Jinlu Cai
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University Xuefu Road 589 Nanchang 330038 China
| | - Shenghua Hu
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University Xuefu Road 589 Nanchang 330038 China
| | - Junhuai Xiang
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University Xuefu Road 589 Nanchang 330038 China
| | - Honghua Zhang
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University Xuefu Road 589 Nanchang 330038 China
| | - Dandan Men
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University Xuefu Road 589 Nanchang 330038 China
| |
Collapse
|
22
|
Nair VR, Shetty Kodialbail V. Floating bed reactor for visible light induced photocatalytic degradation of Acid Yellow 17 using polyaniline-TiO 2 nanocomposites immobilized on polystyrene cubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14441-14453. [PMID: 32072418 DOI: 10.1007/s11356-020-07959-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
In the present study, PANI-TiO2 nanocomposites have been used in suspended and immobilized form for photocatalytic degradation of Acid Yellow 17 (AY-17) dye under visible light. PANI-TiO2 nanocomposites were immobilized in polystyrene cubes to form PANI-TiO2 @ polystyrene cubes. The nanocomposites were found to be visible light active both in suspended and immobilized form. PANI-TiO2 nanocomposite with 13% TiO2 loading was found to be the optimum in terms of maximum degradation of AY-17. The efficiency of floating bed photoreactor (FBR) operated in liquid recycle mode using PANI-TiO2 @ polystyrene cubes was studied. In this reactor, around 89% degradation of 1 L of AY-17 with an initial concentration of 10 mg/L could be achieved with 2.83 g/L per pass of immobilized catalyst. The FBR operated with PANI-TiO2 @ polystyrene cubes has exhibited good performance as a photocatalytic reactor and may be recommended over other conventional photo reactors for treatment of wastewater contaminated with synthetic dyes. The kinetics of degradation of AY-17 by photocatalysis under visible light with suspended PANI-TiO2 and PANI-TiO2 @ polystyrene cubes followed first-order kinetics. The values of apparent kinetic parameter for degradation by immobilized photocatalysts are lower than the corresponding kinetic parameter for suspended photocatalysts. It confirms the existence of diffusional limitations in photocatalysis by PANI-TiO2 @polystyrene cubes.
Collapse
Affiliation(s)
- Veni Ramachandran Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal, Srinivasnagar Post, Mangalore, 575025, India
| | - Vidya Shetty Kodialbail
- Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal, Srinivasnagar Post, Mangalore, 575025, India.
| |
Collapse
|
23
|
González T, Dominguez JR, Cuerda-Correa EM, Correia SE, Donoso G. Selecting and improving activated homogeneous catalytic processes for pollutant removal. Kinetics, mineralization and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109972. [PMID: 31989988 DOI: 10.1016/j.jenvman.2019.109972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The degradation of a model pollutant, tartrazine, very used in food industry and usually present in WWTPs effluents and surface waters, was investigated by nine activated homogeneous catalytic processes, namely, Fe3+/H2O2, Fe2+/H2O2, UV/H2O2, UV/S2O82-, UV/Fe2+/H2O2, UV/Fe3+/H2O2, UV, VIS/Fe3+/H2O2, and VIS/Fe3+/H2O2/C2O42-. In order to compare the mineralization and oxidation ability of each process, the removal of dye, chemical oxygen demand (COD) and total organic carbon (TOC) were analyzed, as well as the overall kinetic rate constant. Also, the different oxidation path-ways (direct photolysis and/or oxidation by free radicals) were estimated for each system. After the comparison, the Fenton process, which had the highest mineralization values, was tested in luminous and dark phases using designed experiments, and the influences of all operating variables were studied by RSM.
Collapse
Affiliation(s)
- T González
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain.
| | - J R Dominguez
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - E M Cuerda-Correa
- Dept. Organic and Inorganic Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - S E Correia
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - G Donoso
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| |
Collapse
|
24
|
Li Y, Wang X, Huo H, Li Z, Shi J. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Li Z, Liu D, Zhao Y, Li S, Wei X, Meng F, Huang W, Lei Z. Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO 2 for organic pollutants degradation: Performance and mechanism. CHEMOSPHERE 2019; 233:549-558. [PMID: 31195260 DOI: 10.1016/j.chemosphere.2019.05.291] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
In this study, CuO-CeO2 was synthesized via an easy hydrothermal-calcination method and innovatively applied to peroxymonosulfate (PMS) activation for pollutants degradation under a non-radical oxidation pathway. Singlet oxygen (1O2) was the dominated reactive oxygen species in the CuO-CeO2/PMS system, leading to a dramatical degradation efficiency with Rhodamine B (RhB) as model compounds. The observed rate constant of the CuO-CeO2/PMS system was 7-11 times higher than that of only PMS, CeO2/PMS and CuO/PMS systems. Also, under the reaction conditions of 1.6 mM PMS, 0.4 g/L catalyst and initial pH 7, the degradation efficiencies of RhB, Methylene Blue, Reactive Blue 19 and atrazine were respectively up to 100%, 85.39%, 72.84% and 98.44% in 60 min. X-ray photoelectron microscopy analysis indicated that the electrons transfer between CuO and CeO2 and the formation of oxygen vacancy in CeO2 should be responsible for the enhanced 1O2 production, which involved a new non-radical oxidation pathway for PMS activation by CuO-CeO2 catalyst. Moreover, the combination of CuO and CeO2 increased reusability and stability of catalyst, allowing it remove more than 92% of RhB over a wide pH range (pH = 3-9). This study not only proved that CuO-CeO2 is an efficient and stable PMS activator but also provided a new insight into PMS activation through a non-radical oxidation pathway for organic contaminants removal from wastewater.
Collapse
Affiliation(s)
- Zhendong Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Dongfang Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yingxin Zhao
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300384, PR China
| | - Songrong Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Xiaocheng Wei
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Fansheng Meng
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Wenli Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
27
|
Enhanced photocatalytic decolorization of methyl orange dye and its mineralization pathway by immobilized TiO2/polyaniline. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03762-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Lv M, Yang L, Wang X, Cheng X, Song Y, Yin Y, Liu H, Han Y, Cao K, Ma W, Qi G, Li S. Visible-light photocatalytic capability and the mechanism investigation of a novel PANI/Sn3O4 p–n heterostructure. RSC Adv 2019; 9:40694-40707. [PMID: 35542680 PMCID: PMC9076232 DOI: 10.1039/c9ra07562c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 12/03/2022] Open
Abstract
A novel polyaniline (PANI)/Sn3O4 heterojunction composed of PANI nanofibers and Sn3O4 nanosheets was fabricated by a facile physical milling technique. Modification of Sn3O4 with a PANI conductive polymer contributes to facilitating interfacial charge transfer efficiency, and thus, significantly enhances the visible-light Rhodamine B (RhB) photo-degradation. Results indicate that PANI/Sn3O4 heterostructures with 10 wt% PANI reached the maximum degradation efficiency (around 97%) for RhB within 5 h, which is 2.27 times higher than that of Sn3O4 alone. This improvement is due to the p–n heterostructure formation in PANI/Sn3O4. Moreover, the outcome of reactive species capturing experiments demonstrated that in PANI/Sn3O4, holes made the largest contribution to RhB degradation under visible light illumination, while hydroxyl radicals showed less significance under the same conditions. In addition, the photocatalytic mechanism was proposed based on evidence from the reactive species test and energy band structure analysis. A novel polyaniline (PANI)/Sn3O4 heterojunction composed of PANI nanofibers and Sn3O4 nanosheets was fabricated by a facile physical milling technique.![]()
Collapse
|
29
|
Wang T, Wu D, Wang Y, Huang T, Histand G, Wang T, Zeng H. One-step solvothermal fabrication of Cu@PANI core-shell nanospheres for hydrogen evolution. NANOSCALE 2018; 10:22055-22064. [PMID: 30452053 DOI: 10.1039/c8nr06245e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyaniline(PANI)-decorated Cu nanoparticles were prepared by a facile solvothermal method. Different reaction temperatures resulted in different morphologies of the Cu/PANI composites, which exhibited good photocatalytic activities. When the mass ratio of PANI increased to 2.5 wt%, the H2 evolution rate reached 1.97 mmol g-1 h-1 in lactic acid solution under solar light irradiation, which is about 2 times higher than that of pure Cu nanoparticles (1.06 mmol g-1 h-1). The introduction of PANI can improve the separation efficiency of the photo-generated electron-hole pairs, where PANI acts as a hole reservoir for trapping holes generated by the Cu NPs and hindering the recombination of the electron-hole pairs. A possible mechanism is presented to explain the photocatalytic process using Cu@PANI core-shell nanospheres as the photocatalyst.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination. Catalysts 2018. [DOI: 10.3390/catal8110491] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of titanium dioxide, TiO2 as a photocatalyst in water decontamination has witnessed continuous interest due to its efficiency, stability, low toxicity and cost-effectiveness. TiO2 use is limited by its large band gap energy leading to light absorbance in the UV region of the spectrum, and by the relatively fast rate of recombination of photogenerated electrons and positive holes. Both limitations can be mitigated by using carbon-TiO2 nanocomposites, such as those based on graphene (G) and graphene oxide (GO). Relative to bare TiO2, these nanocomposites have improved photocatalytic activity and stability under the UV–visible light, constituting a promising way forward for improved TiO2 photocatalytic performance. This review focuses on the recent developments in the chemistry of TiO2/G and TiO2/GO nanocomposites. It addresses the mechanistic fundamentals, briefly, of TiO2 and TiO2/G and TiO2/GO photocatalysts, the various synthesis strategies for preparing TiO2/G and TiO2/GO nanocomposites, and the different characterization techniques used to study TiO2/G and TiO2/GO nanocomposites. Some applications of the use of TiO2/G and TiO2/GO nanocomposites in water decontamination are included.
Collapse
|