1
|
Chen B, Liang H, Li A, Ji B, Zhang X, Liu Y. Impact of ibuprofen on microalgal-bacterial granular sludge: Metabolic pathways, functional gene responses and biodegradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138180. [PMID: 40215934 DOI: 10.1016/j.jhazmat.2025.138180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
Ibuprofen (IBU), a persistent and toxic emerging pollutant widely used as a nonsteroidal anti-inflammatory drug, poses significant challenges for wastewater treatment. This study investigates the effects of IBU on the microalgal-bacterial granular sludge (MBGS) process, a promising approach for wastewater treatment. Results indicate that MBGS can enhance its resilience by secreting more extracellular polymeric substances for effective adsorption. Proteobacteria displayed high adaptability to IBU, while the abundance of Cyanobacteria exhibited considerable fluctuations, leading to cellular structural deformation and a decrease in abundance under 1 mg/L IBU stress. The abundance of functional genes involved in nitrogen and organic matter metabolism, including GDH2, ACSS1_2, and mqo, was significantly influenced by IBU stress, thereby affecting overall system performance. Additionally, several degradation by-products of IBU which have lower toxicity were identified, suggesting the effective biodegradation within the MBGS system. Structural equation modeling indicated that IBU exerted a greater negative impact on microalgae than on bacteria. This study confirms the adaptability of the MBGS system to wastewater containing IBU, highlighting its promising application in treating wastewater with emerging contaminants.
Collapse
Affiliation(s)
- Bingheng Chen
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hua Liang
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Sesay F, Sesay REV, Kamara M, Li X, Niu C. Biodegradation of pharmaceutical contaminants in wastewater using microbial consortia: Mechanisms, applications, and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125564. [PMID: 40306218 DOI: 10.1016/j.jenvman.2025.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/09/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Pharmaceuticals, including non-steroidal anti-inflammatory drugs and antibiotics, have been increasingly detected in wastewater and pose substantial ecological and public health concerns due to their persistence and bioactivity. Conventional treatment processes are often insufficient for their complete removal, highlighting the need for advanced bioremediation strategies. This review critically examines the mechanisms, applications, and challenges of microbial consortia for pharmaceutical biodegradation. It emphasizes their synergistic metabolic pathways, such as cross-feeding, co-metabolism, and enzymatic cascades, that enable efficient degradation of complex contaminants. Recent advancements, such as membrane bioreactors, bioaugmentation with genetically engineered consortia, and integrated systems coupling microbial processes with advanced oxidation processes, are reviewed for their potential to enhance treatment efficacy, scalability, and sustainability. Comparative analysis underscores microbial consortia's superiority over single-strain systems and adsorption techniques in treating complex contaminant mixtures, achieving up to 100 % removal efficiency for specific compounds. Persistent challenges include microbial community instability, the toxicity of transformation products, and regulatory constraints related to genetically modified organisms. Strategic solutions are proposed, such as pilot-scale implementation of tailored consortia, Internet of things (IoT)-enabled real-time monitoring, and circular economy approaches for resource recovery. By addressing these challenges, microbial consortia-based biodegradation emerges as a transformative solution for pharmaceutical wastewater treatment, aligning with global sustainability goals. This review provides actionable insights for optimizing bioremediation frameworks, informing policy, and advancing research in environmental microbiology and wastewater engineering.
Collapse
Affiliation(s)
- Fatmata Sesay
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Richard Edmond Victor Sesay
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; UNEP-Tongji Institute of Environment and Sustainable Development, Tongji University, Shanghai, 200092, PR China
| | - Musa Kamara
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; UNEP-Tongji Institute of Environment and Sustainable Development, Tongji University, Shanghai, 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chengxin Niu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Hinzke T, Schlüter R, Mikolasch A, Zühlke D, Müller P, Kleditz R, Riedel K, Lalk M, Becher D, Sheikhany H, Schauer F. Transformation of the drug ibuprofen by Priestia megaterium: reversible glycosylation and generation of hydroxylated metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11981-11995. [PMID: 40259079 PMCID: PMC12049389 DOI: 10.1007/s11356-025-36393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/05/2025] [Indexed: 04/23/2025]
Abstract
As one of the most-consumed drugs worldwide, ibuprofen (IBU) reaches the environment in considerable amounts as environmental pollutant, necessitating studies of its biotransformation as potential removal mechanism. Here, we screened bacteria with known capabilities to degrade aromatic environmental pollutants, belonging to the genera Bacillus, Priestia (formerly also Bacillus), Paenibacillus, Mycobacterium, and Cupriavidus, for their ability to transform ibuprofen. We identified seven transformation products, namely 2-hydroxyibuprofen, carboxyibuprofen, ibuprofen pyranoside, 2-hydroxyibuprofen pyranoside, 4-carboxy-α-methylbenzene-acetic acid, 1-[4-(2-hydroxy-2-methylpropyl)phenyl]ethanone, and 2-hydroxyibuprofenmethyl ester. Based on our screening results, we focused on ibuprofen biotransformation by Priestia megaterium SBUG 518, to identify structures of transformation products, and to shed light on the drug's impact on bacterial physiology. Biotransformation reactions by P. megaterium SBUG 518 involved (A) the hydroxylation of the isobutyl side chain at two positions, and (B) conjugate formation via esterification with a sugar molecule of the carboxylic group of ibuprofen and an ibuprofen hydroxylation product. Glycosylation seems to be a detoxification process, since the ibuprofen conjugate (ibuprofen pyranoside) was considerably less toxic than the parent compound to P. megaterium SBUG 518. Based on proteome profile changes and inhibition assays, cytochrome P450 systems appear to be central for ibuprofen transformation in P. megaterium SBUG 518. The toxic effect of ibuprofen appears to be caused by interference of the drug with different physiological pathways, especially sporulation.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany.
- Helmholtz Institute for One Health (HIOH), Helmholtz-Centre for Infection Research (HZI), 17489, Greifswald, Germany.
| | - Rabea Schlüter
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Patrick Müller
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Robert Kleditz
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Halah Sheikhany
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Frieder Schauer
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| |
Collapse
|
4
|
Klim M, Żmijowska A, Cycoń M. Potential of newly isolated strain Pseudomonas aeruginosa MC-1/23 for the bioremediation of soil contaminated with selected non-steroidal anti-inflammatory drugs. Front Microbiol 2025; 16:1542875. [PMID: 40099187 PMCID: PMC11912566 DOI: 10.3389/fmicb.2025.1542875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
The widespread usage of non-steroidal anti-inflammatory drugs (NSAIDs) has resulted in their significant accumulation in the environment, necessitating the development of effective methods for their removal. This study primarily isolated a bacterial strain capable of degrading specific NSAIDs and evaluated its potential for eliminating these drugs from contaminated soil through bioaugmentation. The objectives were achieved by assessing the degradation rates of ibuprofen (IBF), diclofenac (DCF), and naproxen (NPX) in liquid media and soil samples inoculated with a newly identified strain, Pseudomonas aeruginosa MC-1/23. In addition, the effect of natural soil microflora and abiotic conditions on the breakdown of the tested NSAIDs was examined. The findings revealed that strain MC-1/23 could metabolize these compounds in a mineral salt medium, utilizing them as carbon and energy sources, suggesting metabolic degradation. When nonsterile soil was augmented with the P. aeruginosa MC-1/23 strain, the degradation rates of the drugs significantly improved, as evidenced by reductions in t1/2 values by 5.3-, 1.4-, and 5.8-fold for IBF, DCF, and NPX, respectively, compared with soil containing only natural microflora. These results confirm that the introduced strain enhances the catabolic potential of existing microflora. Thus, the strain’s degradation and bioremediation capabilities offer valuable applications for remediating NSAID-contaminated soils.
Collapse
Affiliation(s)
- Magdalena Klim
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Sosnowiec, Poland
| | - Agnieszka Żmijowska
- Ecotoxicology Research Group, Laboratory of Analytical Chemistry, Łukasiewicz Research Network-Institute of Industrial Organic Chemistry Branch Pszczyna, Warsaw, Poland
| | - Mariusz Cycoń
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
5
|
Marchlewicz A, Dzionek A, Wojcieszyńska D, Borgulat J, Jałowiecki Ł, Guzik U. Changes in Ibuprofen Toxicity and Degradation in Response to Immobilization of Bacillus thuringiensis B1(2015b). Molecules 2024; 29:5680. [PMID: 39683839 DOI: 10.3390/molecules29235680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Ibuprofen is one of the most commonly used anti-inflammatory drugs by humans, resulting in its appearance in the environment, which can negatively affect organisms living in it. The studies undertaken have shown that the immobilized Bacillus thuringiensis B1(2015b) strain can decompose this drug at a rate of qmax = 0.36 mg/L*h, with a Ks constant of 0.95 mg/L for this process. An analysis of the effect of ibuprofen on the metabolic profile of the immobilized strain B1(2015b) showed an increase in the consumption of carbon, nitrogen, phosphorus, and sulfur compounds by this strain compared to the free strain. Studies on the toxicity of ibuprofen against the B1(2015b) strain indicated a small protective effect of the carrier, manifested by a slightly higher EC50 value = 1190 mg/L (for the free strain EC50 = 1175 mg/L). A toxicity analysis of intermedia formed during ibuprofen degradation indicated that the increase in toxicity is positively correlated with the degree of hydroxylation of ibuprofen metabolites. A toxicity analysis of the post-culture fluid obtained after ibuprofen degradation by the immobilized and free strain indicated that the products formed due to this process are completely safe.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Dzionek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Jacek Borgulat
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Łukasz Jałowiecki
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
6
|
Huang J, Zhu Z, Chen R, Pan D, Li QX, Wu X. Identification of a Novel Ibuprofen Biotransformation Pathway in Streptomyces sp. D218 and Detoxification as Indicated by the Green Algae Scenedesmus obliquus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22199-22207. [PMID: 39315890 DOI: 10.1021/acs.jafc.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ibuprofen, a widely used nonsteroidal anti-inflammatory drug, contaminates agricultural products and potentially threatens human health due to its frequent detection and poor biodegradability. Microbial metabolism dominates the elimination of residual ibuprofen in the environment. In mineral salt medium at pH 6 with 5 mM glucose, Streptomyces sp. D218 transformed ibuprofen concentrations ranging from 0.05 to 0.40 mM in 24 h. The optimal temperature, pH, and initial OD600 nm for ibuprofen transformation by strain D218 were 25-37 °C, 5.0-6.0, and 1.0-1.5, respectively. Strain D218 could simultaneously transform ibuprofen into the intermediates 2-hydroxyibuprofen and ibuprofen amide (IBUA). The two intermediates were further metabolized to 2-hydroxyibuprofen amide (2HIBUA), thus relieving the growth inhibition of ibuprofen in Scenedesmus obliquus. This is the first complete pathway reported for the detoxification of ibuprofen transformation by a Gram-positive strain. These findings further our understanding of the microbial catabolism of the IBU.
Collapse
Affiliation(s)
- Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Zilin Zhu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Ruomu Chen
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| |
Collapse
|
7
|
Li K, Chen M, Shi J, Mao T. An overview of the production and use of Bacillus thuringiensis toxin. Open Life Sci 2024; 19:20220902. [PMID: 39119481 PMCID: PMC11306962 DOI: 10.1515/biol-2022-0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/10/2024] Open
Abstract
The widespread utilization of traditional chemical pesticides has given rise to numerous negative impacts, leading to a surge in interest in exploring environmentally friendly alternatives. Bacillus thuringiensis (Bt), a bacterium renowned for its insecticidal properties, produces Cry proteins during its lifecycle. These proteins have distinct advantages over traditional chemical pesticides, including higher environmental safety, broader insecticidal spectra, and lower pesticide residues. Consequently, the discovery and application of Bt hold immense significance in plant disease and pest management, as well as in plant protection. Currently, Bt preparations occupy a prominent position as the world's largest and most widely used biopesticides. This article comprehensively reviews the fundamental aspects, insecticidal mechanisms, practical applications, and fermentation technologies related to Bt.
Collapse
Affiliation(s)
- Kaixiao Li
- College of Life Science and Technology, Xinjiang University, 666 Shengli Road, Xinjiang Uygur Autonomous Region, Urumqi, 830000, People’s Republic of China
| | - Mingzhu Chen
- College of Textiles and Clothing, Xinjiang University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Jingyi Shi
- Graduate School of Xinjiang Medical University, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Tian Mao
- College of Life Science and Technology, Xinjiang University, 666 Shengli Road, Xinjiang Uygur Autonomous Region, Urumqi, 830000, People’s Republic of China
| |
Collapse
|
8
|
Rastogi A, Chaudhary S, Tiwari MK, Ghangrekar MM. Ibuprofen degradation by mixed bacterial consortia: Metabolic pathway and microbial community analysis. CHEMOSPHERE 2024; 359:142354. [PMID: 38759812 DOI: 10.1016/j.chemosphere.2024.142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/08/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Degradation of ibuprofen, one of the most consumed drugs globally, by a mixed bacterial consortium was investigated. A contaminated hospital soil was used to enrich a bacterial consortium possessing the ability to degrade 4 mg/L ibuprofen in 6 days, fed on 6 mM acetate as a supplementary carbon source. Maximum ibuprofen degradation achieved was 99.51%, and for optimum ibuprofen degradation modelled statistically, the initial ibuprofen concentration, and temperature were determined to be 0.515 mg/L and 35 °C, respectively. The bacterial community analyses demonstrated an enrichment of Pseudomonas, Achromobacter, Bacillus, and Enterococcus in the presence of ibuprofen, suggesting their probable association with the biodegradation process. The biodegradation pathway developed using open-source metabolite predictors, GLORYx and BioTransformer suggested multiple degradation routes. Hydroxylation and oxidation were found to be the major mechanisms in ibuprofen degradation. Mono-hydroxylated metabolites were identified as well as predicted by the bioinformatics-based packages. Oxidation, dehydrogenation, super-hydroxylation, and hydrolysis were some other identified mechanisms.
Collapse
Affiliation(s)
- A Rastogi
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| | - S Chaudhary
- Department of Biotechnology, College of Commerce, Arts and Science, Patna, 800020, India.
| | - M K Tiwari
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, 208016, India; School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
9
|
Peng L, Yun H, Ji J, Zhang W, Xu T, Li S, Wang Z, Xie L, Li X. Biotransformation activities of fungal strain apiotrichum sp. IB-1 to ibuprofen and naproxen. Arch Microbiol 2024; 206:232. [PMID: 38658486 DOI: 10.1007/s00203-024-03963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.
Collapse
Affiliation(s)
- Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Wenjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Ting Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Li Xie
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
10
|
Wu S, Zhong J, Lei Q, Song H, Chen SF, Wahla AQ, Bhatt K, Chen S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 236:116699. [PMID: 37481057 DOI: 10.1016/j.envres.2023.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.
Collapse
Affiliation(s)
- Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Abdul Qadeer Wahla
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
12
|
Evaluation of the Defined Bacterial Consortium Efficacy in the Biodegradation of NSAIDs. Molecules 2023; 28:molecules28052185. [PMID: 36903430 PMCID: PMC10004385 DOI: 10.3390/molecules28052185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Due to the increasing pollution of wastewater with non-steroidal anti-inflammatory drugs, preparations need to be developed to decompose these drugs. This work aimed to develop a bacterial consortium with a defined composition and boundary conditions for the degradation of paracetamol and selected non-steroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, naproxen, and diclofenac. The defined bacterial consortium consisted of Bacillus thuringiensis B1(2015b) and Pseudomonas moorei KB4 strains in a ratio of 1:2. During the tests, it was shown that the bacterial consortium worked in the pH range from 5.5 to 9 and temperatures of 15-35 °C, and its great advantage was its resistance to toxic compounds present in sewage, such as organic solvents, phenols, and metal ions. The degradation tests showed that, in the presence of the defined bacterial consortium in the sequencing batch reactor (SBR), drug degradation occurred at rates of 4.88, 10, 0.1, and 0.05 mg/day for ibuprofen, paracetamol, naproxen, and diclofenac, respectively. In addition, the presence of the tested strains was demonstrated during the experiment as well as after its completion. Therefore, the advantage of the described bacterial consortium is its resistance to the antagonistic effects of the activated sludge microbiome, which will enable it to be tested in real activated sludge conditions.
Collapse
|
13
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
14
|
Ding M, Xu H, Wang A, Yao C, Wang A, Gao L. Water recovery from wastewater by γFe2O3@Ti3C2Tx nanocomposites based on peroxymonosulfate activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Show S, Sarkar P, Barman S, Halder G. Microbial remediation of ibuprofen contaminated water using novel isolate Microbacterium paraoxydans. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Wojcieszyńska D, Guzik H, Guzik U. Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155317. [PMID: 35452725 PMCID: PMC9015952 DOI: 10.1016/j.scitotenv.2022.155317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
From 2019, life in the world has mainly been determined by successive waves of the COVID-19 epidemic. During this time, the virus structure, action, short- and long-term effects of the infection were discovered, and treatments were developed. This epidemic undoubtedly affected people's lives, but increasing attention is also being paid to the effects of the epidemic on the environment. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines, a global scoping review of peer-reviewed information has been conducted on the use of over-the-counter non-steroidal anti-inflammatory drugs in the treatment of symptoms of SARS-CoV-2 infections and their positive and negative effects on the human body, the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on aquatic organisms, and their adverse effects on non-target organisms. The literature from 1998 to 2021 was analysed using the Scopus®, Web of Science™ (WoS) and Google Scholar databases. As non-steroidal anti-inflammatory drugs place a heavy burden on the environment, all reports of the presence of these drugs in the environment during the pandemic period have been thoroughly analysed. Of the 70 peer-reviewed records within the scope, only 14% (n = 10) focussed on the analysis of non-steroidal anti-inflammatory drugs concentrations in wastewater and surface waters during the pandemic period. The percentage of these works indicates that it is still an open topic, and this issue should be supplemented with further reports in which the results obtained during the pandemic, which has been going on for several years, will be published. The authors hope this review will inspire scientists to investigate the problem of non-steroidal anti-inflammatory drugs in the environment to protect them for the next generation.
Collapse
Affiliation(s)
- Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Henryk Guzik
- Department of Orthopaedics and Traumatology, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
17
|
Luis López-Miranda J, Molina GA, Esparza R, Alexis González-Reyna M, Silva R, Estévez M. Ecofriendly and sustainable Sargassum spp.-based system for the removal of highly used drugs during the COVID-19 pandemic. ARAB J CHEM 2022; 15:104169. [PMID: 35957843 PMCID: PMC9356597 DOI: 10.1016/j.arabjc.2022.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Analgesic consumption increased significantly during the COVID-19 pandemic. A high concentration of this kind of drug is discarded in the urine, reaching the effluents of rivers, lakes, and seas. These medicines have brought serious problems for the flora and, especially, the ecosystems’ fauna. This paper presents the results of removing diclofenac, ibuprofen, and paracetamol in an aqueous solution, using Sargassum spp. from the Caribbean coast. The study consisted of mixing each drug in an aqueous solution with functionalized Sargassum spp in a container under constant agitation. Therefore, this work represents an alternative to solve two of the biggest problems in recent years; first, the reduction of the overpopulation of sargassum through its use for the remediation of the environment. Second is the removal of drug waste used excessively during the COVID-19 pandemic. Liquid samples of the solution were taken at intervals of 10 min and analyzed by fluorescence to determine the concentration of the drug. The sorption capacity for diclofenac, ibuprofen, and paracetamol was 2.46, 2.08, and 1.41 μg/g, corresponding to 98 %, 84 %, and 54 % of removal, respectively. The removal of the three drugs was notably favored by increasing the temperature to 30 and 40 °C, reaching efficiencies close to 100 %. Moreover, the system maintains its effectiveness at various pH values. In addition, the Sargassum used can be reused for up to three cycles without reducing its removal capacity. The wide diversity of organic compounds favors the biosorption of drugs, removing them through various kinetic mechanisms. On the other hand, the Sargassum used in the drugs removal was analyzed by X-ray diffraction, FTIR spectroscopy, TGA analysis, and scanning electron microscopy before and after removal. The results showed an evident modification in the structure and morphology of the algae and demonstrated the presence of the biosorbed drugs. Therefore, this system is sustainable, simple, economical, environmentally friendly, highly efficient, and scalable at a domestic and industrial level that can be used for aquatic remediation environments.
Collapse
Affiliation(s)
- J Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Gustavo A Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Marlen Alexis González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| |
Collapse
|
18
|
Chopra S, Kumar D. Characteristics and growth kinetics of biomass of Citrobacter freundii strains PYI-2 and Citrobacter portucalensis strain YPI-2 during the biodegradation of Ibuprofen. Int Microbiol 2022; 25:615-628. [PMID: 35553276 DOI: 10.1007/s10123-022-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Ibuprofen (IBU) is the third most commonly used analgesic drug in the world. It enters the water system as a result of human excretion-based wastewater discharges. Hence, it attracts the attention of environmentalists for its ecological fate and degradation behavior. In this study, the two IBU degrading bacterial strains, Citrobacter freundii strain PYI-2 (MT039504) and Citrobacter portucalensis strain YPI-2 (MN744335), were isolated from industrial wastewater samples using an enrichment culture method, identified, and characterized. Physiological and batch culture degradation studies have indicated that these strains involved in IBU degradation and the intermediates produced during the process were analyzed. These strains degrade IBU in the batch culture. The optimum pH was reported for degradation of the PYI2 strain (6.9) and YPI2 strain (5.8), and the optimum temperatures were 42°C and 32°C, respectively. Biomass kinetic analysis of these strains was performed based on physical parameters (temperature, pH, and rpm) and confirmed by the experimental study. As indicated in the GC-MS chromatogram peaks, viz., hydroxyibuprofen, 2-(4-hydroxyphenylpropionic acid), 1,4-hydroquinone, and 2-hydroxy-1,4-quinol various intermediates compounds of degradation pathway were observed. Finally, through the GC-MS data, the metabolic pathway for degradation was predicted. In the study, it was confirmed that Citrobacter freundii strain PYI-2 and Citrobacter portucalensis strain YPI-2 exhibit metabolic potential for the biodegradation of IBU and can be further deployed in bioremediation.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
19
|
Chattopadhyay I, J RB, Usman TMM, Varjani S. Exploring the role of microbial biofilm for industrial effluents treatment. Bioengineered 2022; 13:6420-6440. [PMID: 35227160 PMCID: PMC8974063 DOI: 10.1080/21655979.2022.2044250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biofilm formation on biotic or abiotic surfaces is caused by microbial cells of a single or heterogeneous species. Biofilm protects microbes from stressful environmental conditions, toxic action of chemicals, and antimicrobial substances. Quorum sensing (QS) is the generation of autoinducers (AIs) by bacteria in a biofilm to communicate with one other. QS is responsible for the growth of biofilm, synthesis of exopolysaccharides (EPS), and bioremediation of environmental pollutants. EPS is used for wastewater treatment due to its three-dimensional matrix which is composed of proteins, polysaccharides, humic-like substances, and nucleic acids. Autoinducers mediate significantly the degradation of environmental pollutants. Acyl-homoserine lactone (AHL) producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve the performance of wastewater treatment. Biofilms-based reactors due to their economic and ecofriendly nature are used for the treatment of industrial wastewaters. Electrodes coated with electro-active biofilm (EAB) which are obtained from sewage sludge, activated sludge, or industrial and domestic effluents are getting popularity in bioremediation. Microbial fuel cells are involved in wastewater treatment and production of energy from wastewater. Synthetic biological systems such as genome editing by CRISPR-Cas can be used for the advanced bioremediation process through modification of metabolic pathways in quorum sensing within microbial communities. This narrative review discusses the impacts of QS regulatory approaches on biofilm formation, extracellular polymeric substance synthesis, and role of microbial community in bioremediation of pollutants from industrial effluents.
Collapse
Affiliation(s)
| | - Rajesh Banu J
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - T M Mohamed Usman
- Department of Civil Engineering, PET Engineering College, Vallioor, Tirunelveli, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| |
Collapse
|
20
|
Sruthi L, Janani B, Sudheer Khan S. Ibuprofen removal from aqueous solution via light-harvesting photocatalysis by nano-heterojunctions: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Ivshina IB, Tyumina EA, Bazhutin GA, Vikhareva EV. Response of Rhodococcus cerastii IEGM 1278 to toxic effects of ibuprofen. PLoS One 2021; 16:e0260032. [PMID: 34793540 PMCID: PMC8601567 DOI: 10.1371/journal.pone.0260032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
The article expands our knowledge on the variety of biodegraders of ibuprofen, one of the most frequently detected non-steroidal anti-inflammatory drugs in the environment. We studied the dynamics of ibuprofen decomposition and its relationship with the physiological status of bacteria and with additional carbon and energy sources. The involvement of cytoplasmic enzymes in ibuprofen biodegradation was confirmed. Within the tested actinobacteria, Rhodococcus cerastii IEGM 1278 was capable of complete oxidation of 100 μg/L and 100 mg/L of ibuprofen in 30 h and 144 h, respectively, in the presence of an alternative carbon source (n-hexadecane). Besides, the presence of ibuprofen induced a transition of rhodococci from single- to multicellular lifeforms, a shift to more negative zeta potential values, and a decrease in the membrane permeability. The initial steps of ibuprofen biotransformation by R. cerastii IEGM 1278 involved the formation of hydroxylated and decarboxylated derivatives with higher phytotoxicity than the parent compound (ibuprofen). The data obtained indicate potential threats of this pharmaceutical pollutant and its metabolites to biota and natural ecosystems.
Collapse
Affiliation(s)
- Irina B. Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- * E-mail:
| | - Elena A. Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Grigory A. Bazhutin
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Elena V. Vikhareva
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
22
|
Mulkiewicz E, Wolecki D, Świacka K, Kumirska J, Stepnowski P, Caban M. Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148251. [PMID: 34139498 DOI: 10.1016/j.scitotenv.2021.148251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The presence of the non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is a fact, and aquatic and soil organisms are chronically exposed to trace levels of these emerging pollutants. This review presents the current state of knowledge on the metabolic pathways of NSAIDs in organisms at various levels of biological organisation. More than 150 publications dealing with target or non-target analysis of selected NSAIDs (mainly diclofenac, ibuprofen, and naproxen) were collected. The metabolites of phase I and phase II are presented. The similarity of NSAIDs metabolism to that in mammals was observed in bacteria, microalgae, fungi, higher plants, invertebrates, and vertebrates. The differences, such as newly detected metabolites, the extracellular metabolism observed in bacteria and fungi, or phase III metabolism in plants, are highlighted. Metabolites detected in plants (conjugates with sugars and amino acids) but not found in any other organisms are described. Selected, in-depth studies with isolated bacterial strains showed the possibility of transforming NSAIDs into assimilable carbon sources. It has been found that some of the metabolites show higher toxicity than their parent forms. The presence of metabolites of NSAIDs in the environment is the cumulative effect of their introduction with wastewaters, their formation in wastewater treatment plants, and their transformation by non-target wild-living organisms.
Collapse
Affiliation(s)
- Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Daniel Wolecki
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
23
|
Show S, Chakraborty P, Karmakar B, Halder G. Sorptive and microbial riddance of micro-pollutant ibuprofen from contaminated water: A state of the art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147327. [PMID: 33984700 DOI: 10.1016/j.scitotenv.2021.147327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 04/21/2021] [Indexed: 05/22/2023]
Abstract
Continuous discharge of ibuprofen, a pharmaceutical compound in local water systems is becoming a budding concern as seen from data procured from the past few decades. Increased concentrations of the compound in water reservoirs resulted in adverse effects on the environment. In order to prevent the deleterious impacts of increasing ibuprofen concentration in water bodies, application of cost effective and energy efficient elimination of ibuprofen (IBP) is needed. As a result, various techniques over time have been tested for IBP expulsion from aqueous media. However, adsorption and bioremediation are still the most realistic approaches to remove ibuprofen than conventional methods, like precipitation, reverse osmosis, ion exchange, nano-filtration etc., because of their lower initial cost, reduced electricity consumption, minimized sludge generation, local availability of precursor material etc. Various researchers have reported the applicability of the adsorption and bioremediation process in remediation of ibuprofen from water. Therefore, the present review article confers both the biosorption and bioremediation process towards IBP removal from water bodies and explicates the performances of various adsorbents and microorganisms derived from various sources. The presented review also substantially emphasizes on the effect of different parameters on sorptive uptake of ibuprofen, various isotherms and kinetic models, sorption mechanism and assessment of costs, which could enable future researchers to determine widespread use of reported adsorbents and microbes towards effective elimination of IBP from aqueous media.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Prasenjit Chakraborty
- Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Bisheswar Karmakar
- Department of Chemical Engineering, National Institute of Technology Durgapur, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, India.
| |
Collapse
|
24
|
Aguilera Flores MM, Ávila Vázquez V, Medellín Castillo NA, Carranza Álvarez C, Cardona Benavides A, Ocampo Pérez R, Labrada Delgado GJ, Durón Torres SM. Ibuprofen degradation and energy generation in a microbial fuel cell using a bioanode fabricated from devil fish bone char. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:874-885. [PMID: 34086520 DOI: 10.1080/10934529.2021.1934357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Ibuprofen degradation and energy generation in a single-chamber Microbial Fuel Cell (MFC) were evaluated using a bioanode fabricated from devil fish bone char (BCA) synthesized by calcination in air atmosphere. Its performance was compared with conventional carbon felt (CF). Bone char textural properties were determined by nitrogen adsorption. Before and after, the bacterial colonization on the materials was analyzed by environmental scanning electron microscopy. Energy generation was evaluated by electrochemical techniques as open-circuit potential, linear sweep voltammetry, and electrochemical impedance spectroscopy. Ibuprofen degradation was analyzed by High-Performance Liquid Chromatography-Ultraviolet, and the chemical oxygen demand (COD) removal was measured. Results showed a specific area of 136 m2/g for BCA, having enough space to immobilize microorganisms. The micrographs confirmed the biofilm formation on the electrode materials. Over the 14 days, MFC with BCA reached a maximum power density of 4.26 mW/m2, 175% higher than CF, and an electron transfer resistance 2.1 times lower than it. This coincides with the COD removal and ibuprofen degradation efficiencies, which were 43.6% and 34% for BCA and 31.8% and 27% for CF. Hence, these findings confirmed that BCA in MFC could provide an alternative electrode material for ibuprofen degradation and energy generation.
Collapse
Affiliation(s)
- Miguel Mauricio Aguilera Flores
- Multidisciplinary Graduate Program in Environmental Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politecnico Nacional, Zacatecas, México
| | - Verónica Ávila Vázquez
- Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politecnico Nacional, Zacatecas, México
| | - Nahum Andrés Medellín Castillo
- Multidisciplinary Graduate Program in Environmental Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Faculty of Engineering, Graduate Studies and Research Center, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Candy Carranza Álvarez
- Multidisciplinary Graduate Program in Environmental Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Multidisciplinary Academic Unit, Huasteca Zone Autonomous University of San Luis Potosi, Ciudad Valles, Mexico
| | - Antonio Cardona Benavides
- Multidisciplinary Graduate Program in Environmental Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Faculty of Engineering, Graduate Studies and Research Center, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Raul Ocampo Pérez
- Graduate Studies and Research Center, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | | | | |
Collapse
|
25
|
Palma TL, Magno G, Costa MC. Biodegradation of Paracetamol by Some Gram-Positive Bacterial Isolates. Curr Microbiol 2021; 78:2774-2786. [PMID: 34085101 DOI: 10.1007/s00284-021-02543-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Bacterial isolates with the capacity to remove paracetamol were selected from an activated sludge sample collected in an oxidation ditch of a wastewater treatment plant. Among these, twelve bacterial isolates were selected according to their capacity to grow in the presence of paracetamol. They were identified using the colony morphotype procedure and by 16S rRNA gene sequencing analysis, but only four of them showed the ability to utilise paracetamol as the sole carbon source in the presence of a nitrogen supply. Those four bacterial isolates were assigned to species of the genera Bacillus, [Brevibacterium], Corynebacterium and Enterococcus. Bacterial isolates were cultured in liquid mineral salt medium (MSM) spiked with 200 mg/L of paracetamol at 28 °C in the dark. In cultures inoculated with [Brevibacterium] frigoritolerans, Corynebacterium nuruki and Enterococcus faecium, removal of 97 ± 4%, 97 ± 6% and 86.9 ± 0.8% of paracetamol at 200 mg/L were obtained, respectively, while in the presence of a species belonging to Bacillus cereus group removal of the drug below the limits of detection was attained with evidence of mineralisation, after 144 h of incubation. During the degradation process, the metabolites 4-aminophenol, hydroquinone and 2-hexenoic acid were detected. As far as we know, these species are herein first-time described as paracetamol degraders.
Collapse
Affiliation(s)
- Tânia L Palma
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal.,Faculdade de Ciências E Tecnologias, University of Algarve, Campus de Gambelas, building 8, 8005-139, Faro, Portugal
| | - Gustavo Magno
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal.,Universidade Federal de Itajubá - Instituto de Recursos Naturais, Itajubá, Brazil
| | - Maria C Costa
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal. .,Faculdade de Ciências E Tecnologias, University of Algarve, Campus de Gambelas, building 8, 8005-139, Faro, Portugal.
| |
Collapse
|
26
|
Saifur S, Gardner CM. Loading, transport, and treatment of emerging chemical and biological contaminants of concern in stormwater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2863-2885. [PMID: 34185685 DOI: 10.2166/wst.2021.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stormwater is a largely uncontrolled source of pollution in rural and urban environments across the United States. Concern regarding the growing diversity and abundance of pollutants in stormwater, as well as their impacts on water quality, has grown significantly over the past several decades. In addition to conventional contaminants like nutrients and heavy metals, stormwater is a well-documented source of many contaminants of emerging concern, which can be toxic to both aquatic and terrestrial organisms and remain a barrier to maintaining high quality water resources. Chemical pollutants like pharmaceuticals and personal care products, industrial pollutants such as per- and polyfluoroalkyl substances, and tire wear particles in stormwater are of great concern due to their toxic, genotoxic, mutagenic and carcinogenic properties. Emerging microbial contaminants such as pathogens and antibiotic resistance genes also represent significant threats to environmental water quality and human health. Knowledge regarding the transport, behavior, and the remediation capacity of these pollutants in runoff is key for addressing these pollutants in situ and minimizing ecosystem perturbations. To this end, this review paper will analyze current understanding of these contaminants in stormwater runoff in terms of their transport, behavior, and bioremediation potential.
Collapse
Affiliation(s)
- Sumaiya Saifur
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA 99164, USA E-mail:
| | - Courtney M Gardner
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA 99164, USA E-mail:
| |
Collapse
|
27
|
Farzaneh H, Loganathan K, Saththasivam J, McKay G. Selectivity and competition in the chemical oxidation processes for a binary pharmaceutical system in treated sewage effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142704. [PMID: 33071121 DOI: 10.1016/j.scitotenv.2020.142704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, the removal of ibuprofen and gemfibrozil by chlorination, ozonation and a combination of ozone/hydrogen peroxide (O3/H2O2) advanced oxidation process (AOP) from treated sewage effluent (TSE) has been investigated. The removals were evaluated as single components and in binary systems at different oxidant dosages. Chlorination showed insignificant removal for both pharmaceuticals, while ozonation and O3/H2O2 achieved significant removals for both ibuprofen and gemfibrozil. The highest removal efficiency of ibuprofen achieved with ozonation and O3/H2O2 in TSE was 80% at 1.5 mg/L ozone dosage (0.27 mg O3/mg DOC) within 5 min contact time and was not increased at extended times as the ozone residual approached zero in 5 min. For gemfibrozil, complete removals were achieved at ozone dosages of 1 and 1.5 mg/L by both ozonation and O3/H2O2 within 30 s. The rate constants obtained from the second order kinetics study were almost similar for the binary and single component tests, however, the degradation of ibuprofen was around four times faster by O3/H2O2 with a rate constant of 9 × 104 M-1 s-1 in comparison to ozone alone. The results in the single component and binary systems were almost similar for gemfibrozil, but noticeably lower removals of ibuprofen were obtained in the binary system showing the higher selectivity and oxidation demand of gemfibrozil. Although O3/H2O2 has a higher operation cost, but its capability for faster degradation makes it preferable over ozonation only, as more water can be treated on a daily basis or a smaller treatment plant can be used with lower capital cost, which practically becomes more cost efficient.
Collapse
Affiliation(s)
- Hajar Farzaneh
- Division of Sustainable Development, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Kavithaa Loganathan
- Qatar Environment and Energy Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Jayaprakash Saththasivam
- Qatar Environment and Energy Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Gordon McKay
- Division of Sustainable Development, Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| |
Collapse
|
28
|
Żur J, Marchlewicz A, Piński A, Guzik U, Wojcieszyńska D. Degradation of diclofenac by new bacterial strains and its influence on the physiological status of cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124000. [PMID: 33265034 DOI: 10.1016/j.jhazmat.2020.124000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/20/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Diclofenac (DCF) is one of the most commonly utilized non-steroidal anti-inflammatory drugs (NSAIDs), which is known to pose an ecotoxicological threat. In this study, from activated sludge and contaminated soil, we isolated four new bacterial strains able to degrade DCF under mono-substrate and co-metabolic conditions with glucose supplementation. We found that the effectiveness of DCF removal is strictly strain-specific and the addition of the primary substrate is not always beneficial. To assess the multidirectional influence of DCF on bacterial cells we evaluated the alterations of increasing concentrations of this drug on membrane structure. A significant increase was observed in the content of 17:0 cyclo fatty acid, which is responsible for reduced fluidity and profound changes in membrane rigidity. The cell injury and oxidative stress were assessed with biomarkers used as endpoints of toxicity, i.e. catalase (CAT), superoxide dismutase (SOD), lipids peroxidation (LPX), and both intra- and extracellular alkaline and acid phosphatase activity. Results indicated that DCF induced oxidative stress, frequently intensified by the addition of glucose. However, the response of the microbial cells to the presence of DCF should not be generalized, since the overall picture of the particular alterations greatly varied for each of the examined strains.
Collapse
Affiliation(s)
- Joanna Żur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Ariel Marchlewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| |
Collapse
|
29
|
Surma R, Wojcieszyńska D, Karcz J, Guzik U. Effect of Pseudomonas moorei KB4 Cells' Immobilisation on Their Degradation Potential and Tolerance towards Paracetamol. Molecules 2021; 26:820. [PMID: 33557429 PMCID: PMC7915102 DOI: 10.3390/molecules26040820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas moorei KB4 is capable of degrading paracetamol, but high concentrations of this drug may cause an accumulation of toxic metabolites. It is known that immobilisation can have a protective effect on bacterial cells; therefore, the toxicity and degradation rate of paracetamol by the immobilised strain KB4 were assessed. Strain KB4 was immobilised on a plant sponge. A toxicity assessment was performed by measuring the concentration of ATP using the colony-forming unit (CFU) method. The kinetic parameters of paracetamol degradation were estimated using the Hill equation. Toxicity analysis showed a protective effect of the carrier at low concentrations of paracetamol. Moreover, a pronounced phenomenon of hormesis was observed in the immobilised systems. The obtained kinetic parameters and the course of the kinetic curves clearly indicate a decrease in the degradation activity of cells after their immobilisation. There was a delay in degradation in the systems with free cells without glucose and immobilised cells with glucose. However, it was demonstrated that the immobilised systems can degrade at least ten succeeding cycles of 20 mg/L paracetamol degradation. The obtained results indicate that the immobilised strain may become a useful tool in the process of paracetamol degradation.
Collapse
Affiliation(s)
| | | | | | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (R.S.); (D.W.); (J.K.)
| |
Collapse
|
30
|
A comprehensive study on bisphenol A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12. Biodegradation 2020; 32:1-15. [PMID: 33205349 PMCID: PMC7940318 DOI: 10.1007/s10532-020-09919-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/07/2020] [Indexed: 01/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical. Its extensive use has led to the wide occurrence of BPA in various environmental ecosystems, at levels that may cause negative effects to the ecosystem and public health. Although there are many bacteria able to BPA utilization, only a few of them have a strong capacity for its biodegradation. Therefore, it is important to search for new bacteria strains, investigate their BPA biodegradation ability and potential effect of pH and other organic compounds on the process. These tasks have become the object of the present study. The results of our research show that for the newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12 after 15 days, with an initial BPA concentration of 100 mg L− 1, the highest BPA removal was achieved at pH 8, while sodium glutamate as a biostimulant best accelerated BPA degradation. Kinetic data for BPA biodegradation by both strains best fitted the Monod model. The specific degradation rate and the half saturation constant were estimated respectively as 8.75 mg L− 1 day− 1 and 111.27 mg L− 1 for Acinetobacter sp. K1MN, and 8.6 mg L− 1 day− 1 and 135.79 mg L− 1 for Pseudomonas sp. BG12. The half-maximal effective concentration (EC50) of BPA for Acinetobacter sp. K1MN was 120 mg L− 1 and for Pseudomonas sp. BG12 it was 123 mg L− 1. The toxicity bioassay (Microtox test) showed that elimination of BPA by both strains is accompanied by reduction of its toxic effect. The ability of tested strains to degrade BPA combined with their high resistance to this xenobiotic indicates that Acinetobacter sp. K1MN and Pseudomonas sp. BG12 are potential tools for BPA removal during wastewater treatment plant.
Collapse
|
31
|
Żur J, Piński A, Wojcieszyńska D, Smułek W, Guzik U. Diclofenac Degradation-Enzymes, Genetic Background and Cellular Alterations Triggered in Diclofenac-Metabolizing Strain Pseudomonas moorei KB4. Int J Mol Sci 2020; 21:ijms21186786. [PMID: 32947916 PMCID: PMC7555183 DOI: 10.3390/ijms21186786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/20/2022] Open
Abstract
Diclofenac (DCF) constitutes one of the most significant ecopollutants detected in various environmental matrices. Biological clean-up technologies that rely on xenobiotics-degrading microorganisms are considered as a valuable alternative for chemical oxidation methods. Up to now, the knowledge about DCF multi-level influence on bacterial cells is fragmentary. In this study, we evaluate the degradation potential and impact of DCF on Pseudomonas moorei KB4 strain. In mono-substrate culture KB4 metabolized 0.5 mg L−1 of DCF, but supplementation with glucose (Glc) and sodium acetate (SA) increased degraded doses up to 1 mg L−1 within 12 days. For all established conditions, 4′-OH-DCF and DCF-lactam were identified. Gene expression analysis revealed the up-regulation of selected genes encoding biotransformation enzymes in the presence of DCF, in both mono-substrate and co-metabolic conditions. The multifactorial analysis of KB4 cell exposure to DCF showed a decrease in the zeta-potential with a simultaneous increase in the cell wall hydrophobicity. Magnified membrane permeability was coupled with the significant increase in the branched (19:0 anteiso) and cyclopropane (17:0 cyclo) fatty acid accompanied with reduced amounts of unsaturated ones. DCF injures the cells which is expressed by raised activities of acid and alkaline phosphatases as well as formation of lipids peroxidation products (LPX). The elevated activity of superoxide dismutase (SOD) and catalase (CAT) testified that DCF induced oxidative stress.
Collapse
Affiliation(s)
- Joanna Żur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznan, Poland;
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| |
Collapse
|
32
|
Chopra S, Kumar D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020; 6:e04087. [PMID: 32510000 PMCID: PMC7265064 DOI: 10.1016/j.heliyon.2020.e04087] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are the one of sub-class under emerging organic contaminants (EOCs). Ibuprofen is the world's third most consumable drug. This drug enters into our water system through human pharmaceutical use. It attracts the attention of environmentalist on the basis of risk associated, presence and transformation in the environment. The detection and removal are the two key area where we need to focus. The concentration of such compounds in waterbodies detected through conventional and also by the advanced methods. This review we described the available technologies including chemical, physical and biological methods, etc used the for removal of Ibuprofen. The pure culture based method, mixed culture approach and activated sludge culture approach focused and pathway of degradation of ibuprofen was deciphered by using the various methods of structure determination. The various degradation methods used for Ibuprofen are discussed. The advanced methods coupled with physical, chemical, biological, chemical methods like ozonolysis, oxidation and adsorption, nanotechnology based methods, nanocatalysis and use of nonosensors to detect the presence of small amount in waterbodies can enhance the future degradation of this drug. It is necessary to develop the new detection methods to enhance the detection of such pollutants. With the developments in new detection methods based on GC-MS//MS, HPLC, LC/MS and nanotechnology based sensors makes easier detection of these compounds which can detect even very minute amount with great sensitivity and in less time. Also, the isolation and characterization of more potent microbial strains and nano-photocatalysis will significantly increase the future degradation of such harmful compounds from the environment.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039 Sonepat, Haryana, India
| |
Collapse
|
33
|
Zhang L, Hu Q, Liu B, Li F, Jiang JD. Characterization of a Linuron-Specific Amidohydrolase from the Newly Isolated Bacterium Sphingobium sp. Strain SMB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4335-4345. [PMID: 32207940 DOI: 10.1021/acs.jafc.0c00597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The phenylurea herbicide linuron is globally used and has caused considerable concern because it leads to environmental pollution. In this study, a highly efficient linuron-transforming strain Sphingobium sp. SMB was isolated, and a gene (lahB) responsible for the hydrolysis of linuron to 3,4-dichloroaniline and N,O-dimethylhydroxylamine was cloned from the genome of strain SMB. The lahB gene encodes an amidohydrolase, which shares 20-53% identity with other biochemically characterized amidohydrolases, except for the newly reported linuron hydrolase Phh (75%). The optimal conditions for the hydrolysis of linuron by LahB were determined to be pH 7.0 and 30 °C, and the Km value of LahB for linuron was 37.3 ± 1.2 μM. Although LahB and Phh shared relatively high identity, LahB exhibited a narrow substrate spectrum (specific for linuron) compared to Phh (active for linuron, diuron, chlortoluron, etc.). Sequence analysis and site-directed mutagenesis revealed that Ala261 of Phh was the key amino acid residue affecting the substrate specificity. Our study provides a new amidohydrolase for the specific hydrolysis of linuron.
Collapse
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Qiang Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Bin Liu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Tyumina EA, Bazhutin GA, Cartagena Gómez ADP, Ivshina IB. Nonsteroidal Anti-inflammatory Drugs as Emerging Contaminants. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Sharma K, Kaushik G, Thotakura N, Raza K, Sharma N, Nimesh S. Enhancement effects of process optimization technique while elucidating the degradation pathways of drugs present in pharmaceutical industry wastewater using Micrococcus yunnanensis. CHEMOSPHERE 2020; 238:124689. [PMID: 31524624 DOI: 10.1016/j.chemosphere.2019.124689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceutical effluents released from industries are accountable to deteriorate the aquatic and soil environment through indirect toxic effects. Microbes are adequately been used to biodegrade pharmaceutical industry wastewater and present study was envisaged to determine biodegradation of pharmaceutical effluent by Micrococcus yunnanensis. The strain showed 42.82% COD (Chemical oxygen demand) reduction before optimization. After applying Taguchi's L8 array as an optimization technique, the biodegradation rate was enhanced by 82.95% at optimum conditions (dextrose- 0.15%, peptone 0.1%, inoculum size 4% (wv-1), rpm 200, pH 8 at 25 °C) within 6 h. The confirmation of pharmaceuticals degradation was done by 1H NMR (Nuclear magnetic resonance) studies followed by elucidation of transformation pathways of probable drugs in the effluent through Q-Tof-MS (Quadrupole Time of Flight- Mass Spectrometry). The cytotoxicity evaluation of treated and untreated wastewater was analyzed on Human Embryonic Kidney (HEK 293) cells using Alamar Blue assay, which showed significant variance.
Collapse
Affiliation(s)
- Kritika Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India.
| | - Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| |
Collapse
|
36
|
Wei Z, Li W, Zhao D, Seo Y, Spinney R, Dionysiou DD, Wang Y, Zeng W, Xiao R. Electrophilicity index as a critical indicator for the biodegradation of the pharmaceuticals in aerobic activated sludge processes. WATER RESEARCH 2019; 160:10-17. [PMID: 31129377 DOI: 10.1016/j.watres.2019.05.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Improving biodegradation of pharmaceuticals during wastewater treatment is critical to control the release of emerging micropollutants to natural waters. In this study, biodegradation of six model pharmaceuticals was investigated at different initial concentrations in two discrete activated sludge systems, and moreover, the correlation was explored between the biodegradation rate and key molecular properties of the contaminants. First, the biodegradation rates of the pharmaceuticals were measured fitting a pseudo first-order kinetic model to the experimental kinetic data. The degradation rate constants (kbio) were found to negatively correlate to the initial concentration of the chemicals, indicating an inhibitory effect on the microorganisms by the pharmaceuticals. Further examinations of the rate data against the key molecular properties of the pharmaceuticals revealed, for the first time, that the electrophilicity index (ω), a measure of electrophilic power, served as a better indicator of the biodegradability and predictive parameter for the kbio than the conventional log KOW (a measure of hydrophobicity) in the two discrete aerobic activated sludge systems. However, the correlation strength (goodness‒of‒fit) between ω and kbio deteriorated when the reactor turned from aerobic to anoxic and anaerobic conditions, suggesting that electron transfer from pharmaceutical molecules to enzymes was inhibited when dissolved oxygen was deficit or absent. Our results show that ω can potentially serve as a straightforward and robust indicator for predicting the biodegradability of pharmaceutical in conventional activated sludge processes.
Collapse
Affiliation(s)
- Zongsu Wei
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China; Section for Biological and Chemical Engineering, Department of Engineering, Aarhus University, Hangøvej 2, DK-8200, Aarhus N, Denmark
| | - Wei Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Dongye Zhao
- Section for Biological and Chemical Engineering, Department of Engineering, Aarhus University, Hangøvej 2, DK-8200, Aarhus N, Denmark
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Toledo, OH, 43606, United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221, United States
| | - Yong Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weizhi Zeng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|
37
|
Nguyen PM, Afzal M, Ullah I, Shahid N, Baqar M, Arslan M. Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21109-21126. [PMID: 31134537 DOI: 10.1007/s11356-019-05320-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Post-industrial era has witnessed significant advancements at unprecedented rates in the field of medicine and cosmetics, which has led to affluent use of pharmaceuticals and personal care products (PPCPs). However, this has exacerbated the influx of various pollutants in the environment affecting living organisms through multiple routes. Thousands of PPCPs of various classes-prescription and non-prescription drugs-are discharged directly into the environment. In this review, we have surveyed literature investigating plant-based remediation practices to remove PPCPs from the environment. Our specific aim is to highlight the importance of plant-bacteria interplay for sustainable remediation of PPCPs. The green technologies not only are successfully curbing organic pollutants but also have displayed certain limitations. For example, the presence of biologically active compounds within plant rhizosphere may affect plant growth and hence compromise the phytoremediation potential of constructed wetlands. To overcome these hindrances, combined use of plants and beneficial bacteria has been employed. The microbes (both rhizo- and endophytes) in this type of system not only degrade PPCPs directly but also accelerate plant growth by producing growth-promoting enzymes and hence remediation potential of constructed wetlands.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Environmental Technology, Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Inaam Ullah
- International Join laboratory for Global Climate Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Naeem Shahid
- Department System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, 04318, Germany
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Arslan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan.
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
38
|
Acharya K, Werner D, Dolfing J, Barycki M, Meynet P, Mrozik W, Komolafe O, Puzyn T, Davenport RJ. A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals. WATER RESEARCH 2019; 157:181-190. [PMID: 30953853 DOI: 10.1016/j.watres.2019.03.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The objective of this work was to develop a QSBR model for the prioritization of organic pollutants based on biodegradation rates from a database containing globally harmonized biodegradation tests using relevant molecular descriptors. To do this, we first categorized the chemicals into three groups (Group 1: simple aromatic chemicals with a single ring, Group 2: aromatic chemicals with multiple rings and Group3: Group 1 plus Group 2) based on molecular descriptors, estimated the first order biodegradation rate of the chemicals using rating values derived from the BIOWIN3 model, and finally developed, validated and defined the applicability domain of models for each group using a multiple linear regression approach. All the developed QSBR models complied with OECD principles for QSAR validation. The biodegradation rate in the models for the two groups (Group 2 and 3 chemicals) are associated with abstract molecular descriptors that provide little relevant practical information towards understanding the relationship between chemical structure and biodegradation rates. However, molecular descriptors associated with the QSBR model for Group 1 chemicals (R2 = 0.89, Q2loo = 0.87) provided information on properties that can readily be scrutinised and interpreted in relation to biodegradation processes. In combination, these results lead to the conclusion that QSBRs can be an alternative tool to estimate the persistence of chemicals, some of which can provide further insights into those factors affecting biodegradation.
Collapse
Affiliation(s)
- Kishor Acharya
- School of Engineering, Cassie Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom.
| | - David Werner
- School of Engineering, Cassie Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Jan Dolfing
- School of Engineering, Cassie Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Maciej Barycki
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Paola Meynet
- School of Engineering, Cassie Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Wojciech Mrozik
- School of Engineering, Cassie Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Oladapo Komolafe
- School of Engineering, Cassie Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Russell J Davenport
- School of Engineering, Cassie Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
39
|
Górny D, Guzik U, Hupert-Kocurek K, Wojcieszyńska D. Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:505-512. [PMID: 30368144 DOI: 10.1016/j.ecoenv.2018.10.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 05/09/2023]
Abstract
High level of naproxen consumption leads to the appearance of this drug in the environment but its possible effects on non-target organisms together with its biodegradation are not well studied. The aim of this work was to evaluate naproxen ecotoxicity by using the Microbial Assay for Risk Assessment. Moreover, Bacillus thuringiensis B1(2015b) was tested for both ecotoxicity and the ability of this strain to degrade naproxen in cometabolic conditions. The results indicate that the mean value of microbial toxic concentration estimated by MARA test amounts to 1.66 g/L whereas EC50 of naproxen for B1(2015b) strain was 4.69 g/L. At toxic concentration, Bacillus thuringiensis B1(2015b) showed 16:0 iso 3OH fatty acid presence and an increase in the ratio of total saturated to unsaturated fatty acids. High resistance of the examined strain to naproxen correlated with its ability to degrade this drug in cometabolic conditions. The results of bacterial reverse mutation assay (Ames test) revealed that naproxen at concentrations above 1 g/L showed genotoxic effect but the response was not dose-dependent. Maximal specific naproxen removal rate was observed at pH 6.5 and 30 °C, and in the presence of 0.5 g/L glucose as a growth substrate. Kinetic analysis allowed estimation of the half saturation constant (Ks) and the maximum specific naproxen removal rate (qmax) as 6.86 mg/L and 1.26 mg/L day, respectively. These results indicate that Bacillus thuringiensis B1(2015b) has a high ability to degrade naproxen and is a potential tool for bioremediation.
Collapse
Affiliation(s)
- Dorota Górny
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
40
|
Żur J, Piński A, Marchlewicz A, Hupert-Kocurek K, Wojcieszyńska D, Guzik U. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21498-21524. [PMID: 29923050 PMCID: PMC6063337 DOI: 10.1007/s11356-018-2517-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/07/2018] [Indexed: 05/26/2023]
Abstract
Currently, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are classified as one of the most emerging group of xenobiotics and have been detected in various natural matrices. Among them, monocyclic paracetamol and ibuprofen, widely used to treat mild and moderate pain are the most popular. Since long-term adverse effects of these xenobiotics and their biological and pharmacokinetic activity especially at environmentally relevant concentrations are better understood, degradation of such contaminants has become a major concern. Moreover, to date, conventional wastewater treatment plants (WWTPs) are not fully adapted to remove that kind of micropollutants. Bioremediation processes, which utilize bacterial strains with increased degradation abilities, seem to be a promising alternative to the chemical methods used so far. Nevertheless, despite the wide prevalence of paracetamol and ibuprofen in the environment, toxicity and mechanism of their microbial degradation as well as genetic background of these processes remain not fully characterized. In this review, we described the current state of knowledge about toxicity and biodegradation mechanisms of paracetamol and ibuprofen and provided bioinformatics analysis concerning the genetic bases of these xenobiotics decomposition.
Collapse
Affiliation(s)
- Joanna Żur
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Artur Piński
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
41
|
Basharat Z, Tanveer F, Yasmin A, Shinwari ZK, He T, Tong Y. Genome of Serratia nematodiphila MB307 offers unique insights into its diverse traits. Genome 2018; 61:469-476. [PMID: 29957088 DOI: 10.1139/gen-2017-0250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A pigment-producing species of Serratia was isolated from the rhizosphere of a heavy metal resistant Cannabis sativa plant growing in effluent-affected soil of Hattar Industrial Estate, Haripur, Pakistan. Here, we report the genome sequence of this bacterium, which has been identified as Serratia nematodiphila on the basis of whole genome comparison using the OrthoANI classification scheme. The bacterium exhibited diverse traits, including plant growth promotion, antimicrobial, bioremediation, and pollutant tolerance capabilities including metal tolerance, azo dye degradation, ibuprofen degradation, etc. Plant growth-promoting exoenzyme production as well as phosphate solubilisation properties were observed. Genes for phosphate solubilisation, siderophore production, and chitin destruction were identified in addition to other industrially important enzymes like nitrilase and lipase. Secondary metabolite producing apparatus for high value chemicals in the whole genome was also analysed. The number of antibiotic resistance genes was then profiled in silico, through a match with Antibiotic Resistant Gene and CAR database. This is the first report of a S. nematodiphila genome from a polluted environment. This could significantly contribute to the understanding of pollution tolerance, antibiotic resistance, association with nematodes, production of bio-pesticide, and their role in plant growth promotion.
Collapse
Affiliation(s)
- Zarrin Basharat
- a Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
| | - Faouzia Tanveer
- b Department of Biotechnology, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Azra Yasmin
- a Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
| | - Zabta Khan Shinwari
- b Department of Biotechnology, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Tongtong He
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yigang Tong
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
42
|
Antimicrobial Activity of Ibuprofen against Cystic Fibrosis-Associated Gram-Negative Pathogens. Antimicrob Agents Chemother 2018; 62:AAC.01574-17. [PMID: 29311081 PMCID: PMC5826130 DOI: 10.1128/aac.01574-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Clinical trials have demonstrated the benefits of ibuprofen therapy in cystic fibrosis (CF) patients, an effect that is currently attributed to ibuprofen's anti-inflammatory properties. Yet, a few previous reports demonstrated an antimicrobial activity of ibuprofen as well, although none investigated its direct effects on the pathogens found in the CF lung, which is the focus of this work. Determination of ibuprofen's in vitro antimicrobial activity against Pseudomonas aeruginosa and Burkholderia species strains through measurements of the endpoint number of CFU and growth kinetics showed that ibuprofen reduced the growth rate and bacterial burden of the tested strains in a dose-dependent fashion. In an in vitroPseudomonas biofilm model, a reduction in the rate of biomass accumulation over 8 h of growth with ibuprofen treatment was observed. Next, an acute Pseudomonas pneumonia model was used to test this antimicrobial activity after the oral delivery of ibuprofen. Following intranasal inoculation, ibuprofen-treated mice exhibited lower CFU counts and improved survival compared with the control animals. Preliminary biodistribution studies performed after the delivery of ibuprofen to mice by aerosol demonstrated a rapid accumulation of ibuprofen in serum and minimum retention in lung tissue and bronchoalveolar lavage fluid. Therefore, ibuprofen-encapsulated polymeric nanoparticles (Ibu-NPs) were formulated to improve the pharmacokinetic profile. Ibu-NPs formulated for aerosol delivery inhibited the growth of P. aeruginosa in vitro and may provide a convenient dosing method. These results provide an additional explanation for the previously observed therapeutic effects of ibuprofen in CF patients and further strengthen the argument for its use by these patients.
Collapse
|
43
|
Davids M, Gudra D, Radovica-Spalvina I, Fridmanis D, Bartkevics V, Muter O. The effects of ibuprofen on activated sludge: Shift in bacterial community structure and resistance to ciprofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:291-299. [PMID: 28719845 DOI: 10.1016/j.jhazmat.2017.06.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Ibuprofen (IBP) is ranked at the 4th place among 57 pharmaceutical compounds according to the number of citations in prioritization documents. The response of microbial community of activated sludge to IBP was studied at the concentrations of 50-5000mg/L. Batch incubation was performed in an OxiTop® device for 21days. The reduction of biological oxygen demand depended on the IBP concentration and varied in the range from 321 to 107mg O2/L. Massive DNA sequencing analysis of the activated sludge revealed that Proteobacteria became more dominant when grown in the presence of IBP. Microbial diversity was reduced in the presence of 500-1000mg/L IBP, but increased again in the presence of 5000mg/L IBP, despite the domination of Enterobacteriales (48.1%) in this sample. Incubation of activated sludge in the presence of 1000mg/L IBP led to an increased occurrence of ciprofloxacin-resistant bacteria. The use of Eosin Methylene Blue Agar for disc diffusion assay was shown to be more appropriate in order to reveal the changes in antibiotic resistance. The predominance of Enterobacteriales in the activated sludge is suggested as one of the possible explanations of the enhanced resistance to ciprofloxacin.
Collapse
Affiliation(s)
- Madars Davids
- Institute of Microbiology & Biotechnology, University of Latvia, Jelgavas Str. 1, Riga LV-1004, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV-1067, Latvia
| | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV-1067, Latvia
| | - Vadims Bartkevics
- Faculty of Chemistry, University of Latvia, Jelgavas Str. 1, Riga LV-1004, Latvia
| | - Olga Muter
- Institute of Microbiology & Biotechnology, University of Latvia, Jelgavas Str. 1, Riga LV-1004, Latvia.
| |
Collapse
|
44
|
Marchlewicz A, Guzik U, Smułek W, Wojcieszyńska D. Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation. Molecules 2017; 22:molecules22101676. [PMID: 28991215 PMCID: PMC6151734 DOI: 10.3390/molecules22101676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/29/2022] Open
Abstract
Ibuprofen is one of the most often detected pollutants in the environment, particularly at landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the presence of other compounds which may influence their degradation. This work describes the new degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged in this process. It is known that the key intermediate which transformation limits the velocity of the degradation process is hydroxyibuprofen. As the degradation rate also depends on various factors, the influence of selected heavy metals and aromatic compounds on ibuprofen degradation by the B1(2015b) strain was examined. Based on the values of non-observed effect concentration (NOEC) it was found that the toxicity of tested metals increases from Hg(II) < Cu(II) < Cd(II) < Co(II) < Cr(VI). Despite the toxic effect of metals, the biodegradation of ibuprofen was observed. The addition of Co2+ ions into the medium significantly extended the time necessary for the complete removal of ibuprofen. It was shown that Bacillus thuringiensis B1(2015b) was able to degrade ibuprofen in the presence of phenol, benzoate, and 2-chlorophenol. Moreover, along with the removal of ibuprofen, degradation of phenol and benzoate was observed. Introduction of 4-chlorophenol into the culture completely inhibits degradation of ibuprofen.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|