1
|
Carvalho FEL, Montenegro AC, Escobar-Pachajoa LD, Rojas-Molina J, Camacho-Diaz JE, Rengifo-Estrada GA. Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry. PLANTS (BASEL, SWITZERLAND) 2025; 14:1101. [PMID: 40219169 PMCID: PMC11991088 DOI: 10.3390/plants14071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Global cacao production, primarily led by African countries, is facing a crisis, which presents growth potential for South American countries like Colombia, Peru, and Ecuador. However, a significant challenge for these countries is cadmium (Cd) contamination in cacao beans. Agroforestry systems with cacao (CAFSs) improve soil health and can remediate Cd through tree phytoextraction. Effective phytoremediation requires Cd-tolerant, high-biomass species and preferential Cd allocation to stems. This study evaluated the phytoremediation potential of four forest species (Cariniana pyriformis Miers, Terminalia superba Engl. and Diels, Swietenia macrophylla King, and Cedrela odorata L.) under cadmium (Cd) exposure. C. pyriformis exhibited hypertolerance, showing minimal biomass reduction (less than 15%, changing from 1.619 to 1.343 g plant-1) under excess Cd conditions, compared to Cedrela odorata and T. superba, which showed significant biomass reductions. C. pyriformis and T. superba showed notable Cd accumulation in stems (652.99 and 635.39 mg Cd kg-1), an essential feature for wood tree-mediated phytoextraction, while C. odorata allocated more Cd to leaves (35.35 mg Cd kg-1). C. pyriformis maintained high photosynthesis (12.8 μmol CO2 m-2 s-1), light use efficiency (0.086 mol CO2 mol photons-1), and an increased relative growth rate (0.575 g g-1 day-1) under Cd exposure. Overall, C. pyriformis demonstrated significant potential for use in phytoremediation due to its high Cd tolerance (84%), efficient allocation to stems (17%), and sustained physiological performance under Cd exposure. Conversely, C. odorata allocates Cd to leaves (16%), which can reintroduce Cd into the soil, and exhibits a low tolerance index (54%) under higher cadmium contamination. Further studies are still needed to understand the specific mechanisms of Cd accumulation in stems of promising species like C. pyriformis and T. superba.
Collapse
Affiliation(s)
- Fabricio E. L. Carvalho
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Andrea C. Montenegro
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Mosquera 250047, Cundinamarca, Colombia;
| | - Laura D. Escobar-Pachajoa
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Jairo Rojas-Molina
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Jorge E. Camacho-Diaz
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| | - Gersain A. Rengifo-Estrada
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Rionegro 687517, Santander, Colombia; (L.D.E.-P.); (J.R.-M.); (J.E.C.-D.); (G.A.R.-E.)
| |
Collapse
|
2
|
Golia EE, Barbieri E, Papadimou SG, Alexiadis D. Energy, Aromatic, and Medicinal Plants' Potential and Prospects for the Remediation of Potentially Toxic Element-Contaminated Agricultural Soils: A Critical Meta-Analysis. TOXICS 2024; 12:914. [PMID: 39771129 PMCID: PMC11728623 DOI: 10.3390/toxics12120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
A critical meta-analysis of the past decade's investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs' existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As accumulation in different parts of plant species has been investigated using proper indices. Aromatic plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was often used, allowing for the aboveground part to be almost completely free of metallic pollutants. Using plants for remediation was proven to be advantageous within a circular economy model. Such a process is a promising solution, both economically and environmentally, since it provides a useful tool for keeping environmental balance and producing safe goods.
Collapse
Affiliation(s)
- Evangelia E. Golia
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
| | - Edoardo Barbieri
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
- Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Sotiria G. Papadimou
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
- School of Agricultural Sciences, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Dimitrios Alexiadis
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
| |
Collapse
|
3
|
Xu Z, Wang T, Hou S, Ma J, Li D, Chen S, Gao X, Zhao Y, He Y, Yang G. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132871. [PMID: 39492101 DOI: 10.1016/j.jhazmat.2023.132871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Heavy metal pollution has become increasingly prominent, and bioremediation of heavy metal polluted areas is urgently needed. Broussonetia papyrifera is a pioneer tree species for vegetation restoration in the tailings area, while its molecular mechanism of heavy metal adaptation is not clear. Here, we report that a R2R3 MYB from B. papyrifera (BpMYB1) is involved in Cd accumulation by controlling the down-stream genes and mineral accumulation. Overexpression of BpMYB1 in B. papyrifera resulted in a significant increase in Cd accumulation and multiple gene transcription. Among the up-regulated genes, BpMYB1 could bind to ferrochelatase (BpFC2), basic helix-loop-helix transcription factor bHLH93 (BpbHLH93), and basic leucine zipper transcription factor bZIPs (BpbZIP1, BpbZIP-CPC1) by recognizing TATCCAOSAMY (TATCCA) motif and related promoter segments. Further investigations revealed that overexpression of BpbZIP1 promotes the absorption of Cd, BpMYB1 regulate Cd uptake in plant relating to Fe accumulation without Fe-deficiency pathway via recognizing the downstream BpbHLH93 and involving in PCs biosynthetic pathway via recognizing the target BpFC2. Moreover, the Cd response effect mediated by BpMYB1 was boosted by interacting with a DELLA protein BpGAI1, a vital member of GA signaling. These results provide new insights into the molecular feedback mechanisms underlying BpMYB1-BpGAI1 controlled Cd uptake in plants, which will benefit for phytoremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Siyu Hou
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Jiyan Ma
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
4
|
Galvis DA, Jaimes-Suárez YY, Rojas Molina J, Ruiz R, Carvalho FEL. Cadmium up Taking and Allocation in Wood Species Associated to Cacao Agroforestry Systems and Its Potential Role for Phytoextraction. PLANTS (BASEL, SWITZERLAND) 2023; 12:2930. [PMID: 37631142 PMCID: PMC10459764 DOI: 10.3390/plants12162930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Trees in cacao Agroforestry systems (AFS) may present a high potential for cadmium (Cd) phytoextraction, helping to reduce Cd in cacao (Theobroma cacao L.) plants grown in contaminated soils. To assess this potential, four forest fine-woody species commonly found in cacao high-productive sites in Colombia (Tabebuia rosea, Terminalia superba, Albizia guachapele, and Cariniana pyriformis) were exposed to contrasting CdCl2 contamination levels (0, 6, and 12 ppm) on a hydroponic medium. Growth dynamics, tolerance index (TI), and Cd concentration and allocation in leaves, stems, and roots were evaluated for up to 90 days after initial exposure. T. superba, A. guachapele, and C. pyriformis were classified as moderately tolerant (TI > 0.6), and T. rosea was considered a sensitive species (TI < 0.35) under 12 ppm Cd contamination. Despite showing a high stem Cd concentration, C. pyriformis also showed the lowest relative growth rate. Among the evaluated forest species, A. guachapele exhibited the highest Cd accumulation capacity per plant (2.02 mg plant-1) but also exhibited a higher Cd allocation to leaves (4%) and a strong decrease in leaf and stem dry mass after 90 days of exposure (~75% and 50% respectively, compared to control treatments). Taking together all the favorable features exhibited by T. superba as compared to other CAFS tree species and recognized phytoextractor tree species in the literature, such as Cd hyperaccumulation, high tolerance index, low Cd concentration in leaves, and high Cd allocation to the stem (harvestable as wood), this species is considered to have a high potential for cadmium phytoextraction in cocoa agroforestry systems.
Collapse
Affiliation(s)
- Donald A. Galvis
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Córdoba, Colombia
| | - Yeirme Y. Jaimes-Suárez
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
| | - Jairo Rojas Molina
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
| | - Rosalba Ruiz
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Córdoba, Colombia
| | - Fabricio Eulalio Leite Carvalho
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
| |
Collapse
|
5
|
Grygar TM, Hošek M, Elznicová J, Machová I, Kubát K, Adamec S, Tůmová Š, Rohovec J, Navrátil T. Mobilisation of Cd, Mn, and Zn in floodplains by action of plants and its consequences for spreading historical contamination and fluvial geochemistry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40461-40477. [PMID: 36609757 DOI: 10.1007/s11356-022-25113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Cadmium, Mn, and Zn are mobilised by plants commonly growing in floodplains, most notably willows (Salix) and alder (Alnus). These plants accumulate unwanted elements (Cd) or excessive element concentrations (Mn, Zn) in their foliage, thus introducing them into the food web and enriching them in floodplain surface by litterfall. In floodplain of the Litavka River in Czechia, contaminated by historical mining activities, up to 100 mg kg-1 Cd and up to several thousand mg kg-1 Mn and Zn are present in willow leaves in autumn, probably close maxima for sustainable plant growth. Willows and alders show seasonal growth of their foliar Mn and Zn. The willow leaves showed Cd/Zn larger than contaminated fluvisol of the Litavka River. Senesced willow leaves thus contribute to spread of risk elements from historically contaminated floodplains back to river water even without the bank erosion. Alders and willows alter geochemical cycles of Cd, Mn, and Zn in fluvial systems and increase Cd/Zn and Mn/Fe concentration ratios and Cd and Mn concentrations in fluvially transported particles relative to global geochemical averages as well as relative to floodplain sediments. Willows, in particular Salix fragilis L., S. aurita L, and S. cinerea L are particularly important "plant pumps". Other common floodplain plants, such as bird cherry (Prunus padus L.) and herbaceous plants (common nettle, Urtica dioica L. and grasses, Poaceae) do not contribute to those phenomena.
Collapse
Affiliation(s)
- Tomáš Matys Grygar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec 1001, 250 68, Řež, Czech Republic.
| | - Michal Hošek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec 1001, 250 68, Řež, Czech Republic
- Faculty of Environment, J. E. Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Jitka Elznicová
- Faculty of Environment, J. E. Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Iva Machová
- Faculty of Environment, J. E. Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Karel Kubát
- Faculty of Environment, J. E. Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Slavomír Adamec
- Faculty of Environment, J. E. Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Štěpánka Tůmová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec 1001, 250 68, Řež, Czech Republic
- Faculty of Environment, J. E. Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Jan Rohovec
- Geological Institute of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague, Czech Republic
| | - Tomáš Navrátil
- Geological Institute of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague, Czech Republic
| |
Collapse
|
6
|
Zhao R, Huang L, Peng X, Fan L, Chen S, Qin P, Zhang J, Chen A, Huang H. Effect of different amounts of fruit peel-based activator combined with phosphate-solubilizing bacteria on enhancing phytoextraction of Cd from farmland soil by ryegrass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120602. [PMID: 36379291 DOI: 10.1016/j.envpol.2022.120602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To improve the uptake of heavy metals by plants and increase the effectiveness of phytoextraction, chelating agents are employed to change the speciation of heavy metals in soil and increase their bioavailability. However, the effect of a single activator is limited. In recent years, compound activators have been applied widely to improve phytoextraction efficiency. In this study, a fruit peel-based activator (OG) was prepared, containing a mixture of orange peel extracts and tetrasodium glutamate diacetate (GLDA) (1.6% v/v) in a ratio of 1:1 (v/v). The pot experiment was used to investigate the effects of different amounts of OG combined with phosphate-solubilizing bacteria (Acinetobacter pitti, AP) on the extraction of Cd from farmland soil by ryegrass (Lolium perenne L). The results indicated that the addition of OG and AP increased the pH and EC of the soil and improved the content of nutrient elements in the soil. The optimal combination of the application rates of OG and AP improved the growth of ryegrass and enhanced the phytoextraction of Cd. Redundancy analysis (RDA) showed that total soil nitrogen had the greatest influence on phytoextraction, with a contribution rate of 85.3%, followed by pH, with a contribution rate of 7.7%. Total nitrogen, pH, available phosphorus, alkaline nitrogen, and total organic matter were correlated positively with plant Cd, soil Cd decrease ratio, and the bioaccumulation factor but negatively with total Cd and available Cd. Based on the findings of this study, it is feasible to apply the fruit peel-based activator (amended with GLDA) and phosphate-solubilizing bacteria to enhance phytoextraction of Cd, which will provide a valuable reference for the treatment of heavy metal-contaminated soils and the reutilization of fruit peel waste. When applying the compound activator, it is recommended to consider the influence of the additional amount of compound activator on the extraction efficiency.
Collapse
Affiliation(s)
- Rule Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Liuhui Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xin Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lingjia Fan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shuofu Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pufeng Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Ievinsh G, Landorfa-Svalbe Z, Andersone-Ozola U, Karlsons A, Osvalde A. Salinity and Heavy Metal Tolerance, and Phytoextraction Potential of Ranunculus sceleratus Plants from a Sandy Coastal Beach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121959. [PMID: 36556324 PMCID: PMC9782882 DOI: 10.3390/life12121959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to evaluate tolerance to salinity and different heavy metals as well as the phytoextraction potential of Ranunculus sceleratus plants from a brackish coastal sandy beach habitat. Four separate experiments were performed with R. sceleratus plants in controlled conditions: (1) the effect of NaCl gradient on growth and ion accumulation, (2) the effect of different Na+ and K+ salts on growth and ion accumulation, (3) heavy metal tolerance and metal accumulation potential, (4) the effect of different forms of Pb salts (nitrate and acetate) on plant growth and Pb accumulation. A negative effect of NaCl on plant biomass was evident at 0.5 g L-1 Na+ and growth was inhibited by 44% at 10 g L-1 Na+, and this was associated with changes in biomass allocation. The maximum Na+ accumulation (90.8 g kg-1) was found in the stems of plants treated with 10 g kg-1 Na+. The type of anion determined the salinity tolerance of R. sceleratus plants, as Na+ and K+ salts with an identical anion component had a comparable effect on plant growth: nitrates strongly stimulated plant growth, and chloride treatment resulted in slight but significant growth reduction, but plants treated with nitrites and carbonates died within 4 and 5 weeks after the full treatment, respectively. The shoot growth of R. sceleratus plants was relatively insensitive to treatment with Mn, Cd and Zn in the form of sulphate salts, but Pb nitrate increased it. Hyperaccumulation threshold concentration values in the leaves of R. sceleratus were reached for Cd, Pb and Zn. R. sceleratus can be characterized as a shoot accumulator of heavy metals and a hyperaccumulator of Na+. A relatively short life cycle together with a high biomass accumulation rate makes R. sceleratus useful for dynamic constructed wetland systems aiming for the purification of concentrated wastewaters.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
- Correspondence:
| | - Zaiga Landorfa-Svalbe
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Andis Karlsons
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Anita Osvalde
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| |
Collapse
|
8
|
Life in a Contaminated Environment: How Soil Nematodes Can Indicate Long-Term Heavy-Metal Pollution. J Nematol 2022; 54:20220053. [DOI: 10.2478/jofnem-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract
We investigated the genera, trophic groups, and functional guilds of soil nematodes at five alluvial meadows along the Litavka River in the Czech Republic to assess their usefulness as indicators of heavy metal pollution in soils. The Litavka River flows around the waste-sedimentation pond of a smelter in the city of Příbram in the Central Bohemian Region. Lead, zinc, and arsenic are the main pollutants in the soils in the vicinity of the smelter. The alluvial meadows closest to the pond and mine waste were the most heavily polluted sites, and contamination decreased downstream along the river with increasing distance from the sources of pollution. The nematode communities were sensitive to pollution, with the most contaminated sites having considerably fewer nematode individuals, fewer genera, and a less diverse and more degraded food web with less nematode biomass. Arsenic, lead, and zinc contents were significantly negatively correlated with the numbers of bacterivores, predators, omnivores, plant parasites, and fungivores, which were significantly less abundant at highly polluted sites. This correlation suggests that nematode groups with higher c-p values, and those with c-p 1 and 2 designations, can be useful indicators of high heavy-metal contamination in areas polluted for a long time. In contrast, the abundance of c-p 3 plant parasitic nematodes was positively correlated with copper, nickel, and zinc contents and with soil-moisture content in the alluvial meadows. Maturity index (MI) and MI2-5 were the most sensitive indices of the degree of disturbance of the soil ecosystem, with enrichment index, structure index, and basal index indicating the altered decomposition channels and diminished structure of the food web.
Collapse
|
9
|
Mei X, Wang Y, Li Z, Larousse M, Pere A, da Rocha M, Zhan F, He Y, Pu L, Panabières F, Zu Y. Root-associated microbiota drive phytoremediation strategies to lead of Sonchus Asper (L.) Hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23026-23040. [PMID: 34799796 PMCID: PMC8979924 DOI: 10.1007/s11356-021-17353-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/30/2021] [Indexed: 05/06/2023]
Abstract
Intercropping or assistant endophytes promote phytoremediation capacities of hyperaccumulators and enhance their tolerance to heavy metal (HM) stress. Findings from a previous study showed that intercropping the hyperaccumulator Sonchus asper (L.) Hill grown in HM-contaminated soils with maize improved the remediating properties and indicated an excluder-to-hyperaccumulator switched mode of action towards lead. In the current study, RNA-Seq analysis was conducted on Sonchus roots grown under intercropping or monoculture systems to explore the molecular events underlying this shift in lead sequestering strategy. The findings showed that intercropping only slightly affects S. asper transcriptome but significantly affects expression of root-associated microbial genomes. Further, intercropping triggers significant reshaping of endophytic communities associated with a 'root-to-shoot' transition of lead sequestration and improved phytoremediation capacities of S. asper. These findings indicate that accumulator activities of a weed are partially attributed to the root-associated microbiota, and a complex network of plant-microbe-plant interactions shapes the phytoremediation potential of S. asper. Analysis showed that intercropping may significantly change the structure of root-associated communities resulting in novel remediation properties, thus providing a basis for improving phytoremediation practices to restore contaminated soils.
Collapse
Affiliation(s)
- Xinyue Mei
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Marie Larousse
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Arthur Pere
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Martine da Rocha
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Linlong Pu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Franck Panabières
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France.
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
10
|
Physiological Aspects of Absorption, Translocation, and Accumulation of Heavy Metals in Silphium perfoliatum L. Plants Grown in a Mining-Contaminated Soil. MINERALS 2022. [DOI: 10.3390/min12030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil pollution by heavy metals as a result of mining activities is increasingly taking place. Once accumulated in soil, the heavy metals can then be dispersed, with serious effects on the environment and human health. It is therefore necessary to minimize, or even remove, all heavy metals from polluted areas, and one of the environmentally friendly and sustainable methods to do so is phytoremediation. A greenhouse pots experiment was conducted to evaluate the phytoremediation capacity of Silphium perfoliatum L. plants, in the vegetative growth stages, on a soil polluted with Cu, Zn, Cr and Pb, taken from a former mining area compared to an unpolluted soil (Us). The initial heavy metal content of polluted soil (Ps) was 208.3 mg kg−1 Cu; 312.5 mg kg−1 Zn; 186.5 mg kg−1 Cr and 195.2 mg kg−1 Pb. This shows that for Cu and Pb, soil concentrations exceed the intervention threshold, and for Zn and Cr, they are above the alert threshold. The removal efficiency, bioaccumulation factor, translocation factor, metal uptake and contamination factor index of Cu, Zn, Cr and Pb by S. perfoliatum L. were quantified to determine the bioremediation success. The data show that plants grown in Ps accumulated a significantly higher amount of Cu by 189% and Zn by 37.95% compared to Us. The Cr and Pb content of the plants recorded a progressive and significant increase from one developmental stage to another, being more intense between three and five leaves.
Collapse
|
11
|
Metal Accumulation and Biomass Production in Young Afforestations Established on Soil Contaminated by Heavy Metals. PLANTS 2022; 11:plants11040523. [PMID: 35214856 PMCID: PMC8879495 DOI: 10.3390/plants11040523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
The restoration of forest ecosystems on metal-contaminated sites can be achieved whilst producing valuable plant biomass. Here, we investigated the metal accumulation and biomass production of young afforestations on contaminated plots by simulating brownfield site conditions. On 16 3-m2 plots, the 15 cm topsoil was experimentally contaminated with Zn/Cu/Pb/Cd = 2854/588/103/9.2 mg kg−1 using smelter filter dust, while 16 uncontaminated plots (Zn/Cu/Pb/Cd = 97/28/37/< 1) were used as controls. Both the calcareous (pH 7.4) and acidic (pH 4.2) subsoils remained uncontaminated. The afforestations consisted of groups of conifers, deciduous trees, and understorey plants. During the four years of cultivation, 2254/86/0.35/10 mg m−2 Zn/Cu/Pb/Cd were extracted from the contaminated soils and transferred to the aboveground parts of the plants (1279/72/0.06/5.5 mg m−2 in the controls). These extractions represented 3/2/3% of the soluble soil Zn/Cu/Cd fractions. The conifers showed 4–8 times lower root-to-shoot translocation of Cu and Zn than the deciduous trees. The contamination did not affect the biomass of the understorey plants and reduced that of the trees by 23% at most. Hence, we conclude that the afforestation of brown field sites with local tree species is an interesting option for their reclamation from an ecological as well as economic perspective.
Collapse
|
12
|
Skiba E, Pietrzak M, Glińska S, Wolf WM. The Combined Effect of ZnO and CeO 2 Nanoparticles on Pisum sativum L.: A Photosynthesis and Nutrients Uptake Study. Cells 2021; 10:3105. [PMID: 34831328 PMCID: PMC8624121 DOI: 10.3390/cells10113105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| |
Collapse
|
13
|
Matys Grygar T, Faměra M, Hošek M, Elznicová J, Rohovec J, Matoušková Š, Navrátil T. Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51183-51198. [PMID: 33978947 DOI: 10.1007/s11356-021-14331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Willows, woody plants of genus Salix common in floodplains of temperate regions, act as plant pumps and translocate the Cd and Zn in the soil profiles of uncontaminated and weakly contaminated floodplains from the sediment bulk to the top strata. We suggest this process occurs because the Cd and Zn concentrations in willow leaves exceed those in the sediments. Senescing foliage of plant species common in floodplains can increase the Cd and Zn ratios as compared to other elements (Pb and common 'lithogenic elements' such as Al) in the top strata of all floodplains, including those that have been severely contaminated. The top enrichment is caused by the root uptake of specific elements by growing plants, which is followed by foliage deposition. Neither the shallow groundwater nor the plant foliage shows that Cd, Zn, and Pb concentrations are related to those in the sediments, but they clearly reflect the shallow groundwater pH, with the risk element mobilised by the acidity that is typical for the subsurface sediments in floodplains. The effect that plants have on the Pb in floodplains is significantly lower than that observed for Cd and Zn, while U can be considered even less mobile than Pb. Groundwater and plant leaves can contribute to secondary contamination with Cd and Zn from floodplain pollution hotspots, meaning that plants can accumulate these elements on the floodplain surface or even return them back to the fluvial transport, even if bank erosion would not occur. For Pb and U at the sites studied, these risks were negligible.
Collapse
Affiliation(s)
- Tomáš Matys Grygar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 01, Řež, Czech Republic.
| | - Martin Faměra
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 01, Řež, Czech Republic
| | - Michal Hošek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 01, Řež, Czech Republic
- Faculty of Environment, J.E. Purkyně University in Ústí and Labem, Pasteurova 3632/15, ,400 96, Ústí nad Labem, Czech Republic
| | - Jitka Elznicová
- Faculty of Environment, J.E. Purkyně University in Ústí and Labem, Pasteurova 3632/15, ,400 96, Ústí nad Labem, Czech Republic
| | - Jan Rohovec
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic
| | - Šárka Matoušková
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic
| | - Tomáš Navrátil
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic
| |
Collapse
|
14
|
Matys Grygar T. Comments on "Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus" - Pidlisnyuk et al. (2019). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:113038. [PMID: 32392693 DOI: 10.1016/j.envpol.2019.113038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 06/11/2023]
Affiliation(s)
- T Matys Grygar
- Institute of Inorganic Chemistry AS CR, v.v.i., Řež, Czech Republic.
| |
Collapse
|
15
|
He X, Zhang J, Ren Y, Sun C, Deng X, Qian M, Hu Z, Li R, Chen Y, Shen Z, Xia Y. Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. CHEMOSPHERE 2019; 237:124483. [PMID: 31404738 DOI: 10.1016/j.chemosphere.2019.124483] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 05/11/2023]
Abstract
Traditional metal chelators, such as ethylenediaminetetraacetic acid (EDTA), have been gradually replaced due to their poor biodegradability in soil and high risk of heavy metal leaching into groundwater, which pose high environmental risks to the health of humans and animals. In this study, a liquid amino acid fertilizer (LAAF, waste proteins from hydrolysates of animal carcasses) and polyaspartate (PASP) were used as additives to enhance the phytoextraction of cadmium (Cd) and lead (Pb) from contaminated soil. We conducted pot experiments to investigate the phytoextraction capacity of Solanum nigrum, a Cd accumulator, grown on soil highly contaminated with Cd and Pb in the absence (as controls) or presence of PASP and LAAF. Both PASP and LAAF significantly improved plant growth, Cd accumulation, and total Cd and Pb content in S. nigrum shoots and roots. PASP and LAAF application promoted Cd translocation from roots to shoots in S. nigrum and Cd bio-accessibility in rhizosphere soils, but this was not the case for Pb. Both PASP and LAAF increased Cd and Pb phytoextraction by S. nigrum plants, and Cd phytoextraction was more effective in LAAF-assisted S. nigrum than in PASP-assisted S. nigrum. These findings demonstrate that the low cost and ecofriendly features of recycled waste proteins make them good candidates for chelant-enhanced phytoextraction from heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Xiaoman He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingnan Ren
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanyu Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Meng Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Rong Li
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
16
|
Wang Y, Meng D, Fei L, Dong Q, Wang Z. A novel phytoextraction strategy based on harvesting the dead leaves: Cadmium distribution and chelator regulations among leaves of tall fescue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:3041-3047. [PMID: 30373080 DOI: 10.1016/j.scitotenv.2018.10.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
The treatment of large amount of hazardous plant residues from phytoextraction is costly and has been a burden for the society. This experiment was designed to evaluate the possibility of cadmium (Cd) phytoextraction by harvesting the dead leaves instead of the whole plant in tall fescue (Festuca arundinacea). Results showed that Cd was preferentially distributed in the senescent and dead leaves. EDTA, DTPA and EGTA enhanced Cd accumulations in the dead leaves which could be associated to the increase of the water-soluble inorganic Cd and Cd-organic acid complexes in shoots. The dead leaves were only 12.6-16.3% of the total shoot biomass but accumulated 73.4-87.2% of the total shoot Cd. The results indicate that a novel strategy of Cd phytoextraction based on harvesting the dead leaves is feasible to save the high treatment cost of hazardous plant residues while maintaining the acceptable phytoextraction efficiency.
Collapse
Affiliation(s)
- Yun Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China; Department of Landscape Architecture, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Depeng Meng
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Ling Fei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Qin Dong
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Zhaolong Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China.
| |
Collapse
|
17
|
Zeng L, Lin X, Zhou F, Qin J, Li H. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:520-530. [PMID: 30384059 DOI: 10.1016/j.ecoenv.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Cassava (Manihot esculenta Crantz) intercropped with peanut (Arachis hypogaea) has good complementary effects in time and space. In the field plot test, the land equivalent ratio (LER) of cassava-peanut intercropping system was 1.43, showing obvious intercropping yield advantage. Compared with monocropping, Cd contents in the roots of cassava and seeds of peanut were significantly reduced by 20.00% and 31.67%, respectively (p < 0.05). Under the unit area of hectare, compared with monocropping of cassava and peanut, the bioconcentration amount (BCA) of Cd in the intercropping system increased significantly by 24.98% and 25.59%, respectively (p < 0.05), and the metal removal equivalent ratio (MRER) of Cd was 1.25, indicating that the intercropping pattern had advantage in Cd removal. In the cement pool plot test, compared with the control, cassava intercropped with peanut under biochar and crushed straw additions did not only enhance the available nutrients and organic matter contents in rhizosphere soil but also promoted the crop growth and increased the content of chlorophyll (SPAD values) of plant leaves. The peanut seeds biomass under biochar and straw additions were significantly increased by 112.34% and 59.38% (p < 0.05), respectively, while the cassava roots biomass under biochar addition was significantly increased by 63.54% (p < 0.05). Applying biochar significantly decreased the content of Cd which extracted by diethylenetriaminepentaacetic acid (DTPA-Cd) in soil and reduced Cd uptake as well as translocation into plant tissues. The BCA of Cd of cassava under biochar addition decreased significantly by 53.87% in maturity stage (p < 0.05), thus reduced the ecological risk of Cd to crops and was of great significance to produce high quality and safe agricultural products. Besides, the crushed straw enhanced the biomass of crops, reduced Cd content in all tissues and maintained Cd uptake in the intercropping system. Therefore, it can realize the integration of ecological remediation and economic benefit of two energy plants in Cd contaminated soil after applied crushed straw in cassava-peanut intercropping system.
Collapse
Affiliation(s)
- Luping Zeng
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou 510642, PR China
| | - Xianke Lin
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Fei Zhou
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China
| | - Junhao Qin
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou 510642, PR China
| | - Huashou Li
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou 510642, PR China.
| |
Collapse
|
18
|
Abstract
This Technical Report contains a description of the activities within the work programme of the EU-FORA Fellowship on the risk assessment of white willow in food. The bark of different varieties of willow has had a long history of medical use as a means to reduce fever and as a painkiller. Willow bark is also used in weight loss and sports performance food supplements. The labelling of these products usually does not mention any restrictions to the length of use. The recommended doses for foods differ, sometimes exceeding doses recommended for pharmaceuticals. A systematic literature review on adverse effects potentially resulting from oral exposure to white willow (Salix alba) was performed. The aim of the study was to assess the risk for humans when consuming white willow bark in food. The preliminary results show that despite the long history of use only very limited data on toxicity of white willow bark are available. However, anaphylactic reactions in people with a history of allergy to salicylates may occur. Some other adverse effects of salicylates are considered to be of low relevance for the long-time consumption of white willow bark, mainly due to relatively low concentrations of salicin and the presence of compounds with gastroprotective action. However, it seems that the content of heavy metals, mainly cadmium, should be further addressed in risk assessment of white willow bark in food.
Collapse
|
19
|
Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Wani SA, Mosa KA. Engineering plants for heavy metal stress tolerance. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0702-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|