1
|
Kong X, Xie Y, Cao Y, Li Y, Zhang Y, Zou Z, Xia B, Xin T. Expression and functional analysis of adipokinetic hormone reveal its different roles in larval development and female fecundity in Panonychus citri (McGregor) (Acari: Tetranychidae). INSECT MOLECULAR BIOLOGY 2025; 34:394-408. [PMID: 39643596 DOI: 10.1111/imb.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Adipokinetic hormone (AKH), a crucial neuropeptide, participates in the important physiological processes by specially binding to its receptor to activate the AKH signalling pathway. AKH regulates energy metabolism. However, it remains unknown whether AKH affects larval development and adult reproduction by influencing energy metabolism. In the present study, the AKH was identified from Panonychus citri and contained the conserved functional domain 'Q-[LIV]-[NT]-F-[ST]-X (2)-W' that characterises the AKH family. The relative expression levels of PcAKH revealed different patterns of AKH expression at different developmental stages of P. citri. Feeding of double-standard RNA against PcAKH induced decreased fecundity and reduced survival, which was accompanied by the down-regulation of vitellogenin gene expression. In addition, after silencing the PcAKH, lipid metabolism and carbohydrate homeostasis were disrupted, manifested by increased body width and weight, and fasting phenomenon. Further investigation found that compared with the control, physiological changes in trehalose and triglyceride contents were accompanied by variations in the mRNA expression levels of genes related to lipid metabolism and carbohydrate metabolism. The disorder of lipid and carbohydrate metabolism may affect adult female reproduction, which may lead to insufficient vitellogenin deposition. Moreover, the silencing of PcAKH seriously affected the growth and development of larvae, which was manifested as delayed development period and difficulty in moulting. Conclusively, all these results in current study demonstrated that double-stranded RNA silencing system targeting PcAKH effectively inhibited larval development and female fecundity by disturbing lipid and carbohydrate metabolism, and PcAKH is a specific RNAi target for control of P. citri in the design and development of biopesticide in sustainable agriculture.
Collapse
Affiliation(s)
- Xinyan Kong
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Ying Xie
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Ying Cao
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Yujing Li
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Yujie Zhang
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Zhiwen Zou
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Tianrong Xin
- School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Liu S, Li X, Qin S, Zhang H, Zhang T, Zhu J, Lin L, Lian L, Xie F, Tan H, Zhao F. Comprehensive study of flusulfinam in paddy water-sediment microcosms: Enantioselective fate, degradation pathways, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137342. [PMID: 39893985 DOI: 10.1016/j.jhazmat.2025.137342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Flusulfinam, a novel chiral herbicide, demonstrates effective weed control in paddy fields. Nevertheless, a comprehensive investigation into its environmental fate in paddy systems, particularly at the enantiomeric level, remains deficient. Herein, paddy water-sediment microcosms were constructed across four sites to explore the enantiomeric behavior of flusulfinam. Enantioselective environmental behavior results show S-flusulfinam was found to preferentially accumulate in sediment, while R-flusulfinam showed preferential degradation in water and the overall system. Following this, the metabolic pathway of flusulfinam in the microcosms was also proposed. Eight metabolites were identified for the first time, and the synthesis and quantification of main metabolites M299 and M100 further substantiated the proposed flusulfinam metabolic pathways. In addition, enantioselective of R-M299 was also found in the Anhui microcosms. As predicted by Toxicity Estimation Software Tool, acute toxicity assessments revealed that M299 and M100 exhibit lower toxicity toward Danio rerio larvae and Selenastrum capricornutumwere compared to flusulfinam. Then, Illumina sequencing revealed that the degradation of flusulfanam had a significant impact on the abundance of key microbial genera, including Anaeromyxobacter, Nitrospira, Reyranella, and Sphingomonas. Overall, this study offers novel insights into the enantioselective fate of flusulfinam in paddy water-sediment ecosystems, provides a valuable reference for the assessment of environmental and ecological risks associated with flusulfinam. Finally, the R-flusulfinam is considered the safer enantiomer, as evidenced by its preferential degradation in microcosms systems and our prior research highlighting the high efficacy and low toxicity characteristic of R-flusulfinam.
Collapse
Affiliation(s)
- Shiling Liu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaoli Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Siying Qin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Heng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Tengfei Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Lin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co., Ltd., Qingdao, Shandong 266000, China
| | - Fayang Xie
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
3
|
Sattar MN, Naqqash MN, Rezk AA, Mehmood K, Bakhsh A, Elshafie H, Al-Khayri JM. Sprayable RNAi for silencing of important genes to manage red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PLoS One 2024; 19:e0308613. [PMID: 39446907 PMCID: PMC11501036 DOI: 10.1371/journal.pone.0308613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/27/2024] [Indexed: 10/26/2024] Open
Abstract
The red palm weevil, Rhynchophorus ferrugineus (Oliver, 1970) (Coleoptera: Dryophthoridae) is the most devastating insect-pest of palm trees worldwide. Synthetic insecticides are the most preferred tool for the management of RPW. Alternatively, RNA interference (RNAi) mediated silencing of crucial genes provides reasonable control of insect pests. Recently, we have targeted four important genes; ecdysone receptor (EcR), serine carboxypeptidase (SCP), actin and chitin-binding peritrophin (CBP) in the 3rd and 5th instar larvae RPW. The results from 20 days trial showed that the survival rate of 3rd instar larvae fed on SCP and actin dsRNAs exhibited the lowest survival (12-68%). While, in the 5th instar larvae, the lowest survival rate (24%) was recorded for SCP after 20 days of incubation. Similarly, the weight of the 3rd and 5th instar larvae treated with SCP and actin was significantly reduced to 2.30-2.36 g and 4.64-4.78 g after 6 days of dsRNA exposure. The larval duration was also decreased significantly in the larvae treated with all the dsRNA treatments. The qRT-PCR results confirmed a significant suppression of the targeted genes as 90-97% and 85-93% in the 3rd and 5th instar larvae, respectively. The results suggest that the SCP and the actin genes can be promising targets to mediate RNAi-based control of RPW.
Collapse
Affiliation(s)
| | | | - Adel A. Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Khalid Mehmood
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Allah Bakhsh
- Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan
| | - Hamadttu Elshafie
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Liu S, Li X, Zhang H, Qin S, Liang L, Liao Y, Zhu J, Tan H, Zhao F. Comprehensive study of chiral herbicide flusulfinam uptake, translocation, degradation, and subcellular distribution in rice (Oryza sativa L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106018. [PMID: 39277354 DOI: 10.1016/j.pestbp.2024.106018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 09/17/2024]
Abstract
The biological behavior of flusulfinam, a potential commercial chiral herbicide for rice, has not been well explored. Herein, the uptake of chiral flusulfinam by rice and its transport, degradation, and subcellular distribution in rice (Oryza sativa L.) were investigated. The enantiomeric fraction (EF) in roots was 0.54 during 0 d to 7 d in hydroponic laboratory conditions. The bioconcentration factor of flusulfinam enantiomers was 2.1, suggesting an absence of observed enantioselectivity in the absorption process. Notably, the EF in the shoots decreased to 0.35 on the 7th day. The translocation factors of R- and S-flusulfinam were 0.12 and 0.27, respectively, indicating a preferential transfer of the S-flusulfinam from the root to the shoot. Flusulfinam was identified in the root after spraying. The translocation factors of R- and S-flusulfinam were consistently similar, signifying the capacity for downward movement without enantioselectivity. Interestingly, the degradation half-lives of R- and S-flusulfinam in the total plant were 5.50 and 5.06 d (p < 0.05), respectively, supporting the preferential degradation of S-flusulfinam throughout the total plant. Flusulfinam primarily entered the roots via the apoplastic pathway and was subsequently transported within the plant through aquaporins and ion channels. The subcellular distribution experiment revealed the predominant accumulation of flusulfinam enantiomers in soluble components (84%) with no enantioselectivity in these processes. There was upregulation lipid transfer protein-2 and carboxylesterases15 genes, which could explain the preferential transport and degradation of S-flusulfinam. This study is important in assessing the environmental risk associated with flusulfinam and ensuring food safety.
Collapse
Affiliation(s)
- Shiling Liu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaoli Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Heng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Siying Qin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Liying Liang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Ying Liao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
5
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
6
|
Wang Z, Li Y, Tan Y, Li R, Zhou L, He Z, Barcelo D, Shi H, Wang M. Enantioselective uptake, translocation, and biotransformation of pydiflumetofen in wheat (Triticum aestivum L.): Insights from chiral profiling and molecular simulation. ENVIRONMENT INTERNATIONAL 2023; 179:108139. [PMID: 37595535 DOI: 10.1016/j.envint.2023.108139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Pydiflumetofen (PYD), a highly effective and broad-spectrum fungicide, is commonly employed for the control of fungal diseases. In this study, the uptake, translocation, and biotransformation of PYD by wheat (Triticum aestivum L.) were firstly investigated at a chiral level. The findings revealed that the residue concentration of R-PYD in wheat was higher than that of S-PYD, because of its higher uptake rate (k1 = 0.0421 h-1) and lower elimination rate (k2 = 0.0459 h-1). Additionally, R-PYD exhibited higher root bioconcentration factors and translocation factors compared with S-enantiomer, indicating R-PYD was more easily accumulating in roots and translocating to shoots. Furthermore, a total of 9 metabolites, including hydroxylated, demethylated, demethoxylated, dechlorinated, hydrolyzed, and glycosylated-conjugated products, were detected qualitatively in wheat roots or shoots. Symplastic pathway-mediated uptake, which predominantly relied on aquaporins and anion channels, was confirmed by root adsorption and inhibition experiments, without displaying any enantioselective effect. Molecular simulations demonstrated that R-PYD exhibited stronger binding affinity with TaLTP 1.1 with a lower grid score (-6.79 kcal/mol), whereas weaker interaction with the metabolic enzyme (CYP71C6v1) compared to the S-enantiomer. These findings highlight the significance of plant biomacromolecules in the enantioselective bioaccumulation and biotransformation processes. Importantly, a combination of experimental and theoretical evidence provide a comprehensive understanding of the fate of chiral pesticides in plants from an enantioselective perspective.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Serbent MP, Gonçalves Timm T, Vieira Helm C, Benathar Ballod Tavares L. Growth, laccase activity and role in 2,4-D degradation of Lentinus crinitus (L.) Fr. in a liquid medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Lana M, Simón O, Velasco P, Rodríguez VM, Caballero P, Poveda J. First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bioinsecticide against cotton leafworm (Spodoptera littoralis). Microbiol Res 2023; 270:127334. [PMID: 36804128 DOI: 10.1016/j.micres.2023.127334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Cotton leaf worm (Spodoptera littoralis) is a pest that produces important losses in horticultural and ornamental crops in greenhouse, being classified as quarantine pest A2 by EPPO. One of the strategies proposed to control agricultural pests in a health and environmentally friendly way is biological control with entomopathogenic fungi. The genus of filamentous fungi Trichoderma includes different species with direct (infection, antibiosis, anti-feeding, etc.) and indirect (systemic activation of plant defenses) insecticidal capacity, however, the species T. hamatum has never been described previously as entomopathogenic. In this work, the entomopathogenic capacity of T. hamatum on S. littoralis L3 larvae was analyzed by applying spores and fungal filtrates (topically and orally). Infection by spores was compared with the commercial entomopathogenic fungus Beauveria bassiana, obtaining similar results with respect to the production of larval mortality. Oral application of spores reported high mortality and fungal colonization of larvae, however, T. hamatum did not show chitinase activity when grown in the presence of S. littoralis tissues. Therefore, infection of S. littoralis larvae by T. hamatum is through natural openings such as mouth, anus or spiracles. With respect to the application of filtrates, only those obtained from the liquid culture of T. hamatum in contact with S. littoralis tissues reported a significant reduction in larval growth. Metabolomic analysis of the filtrates determined that the filtrate with insecticidal capacity presented the siderophore rhizoferrin in large quantities, which could be responsible for this activity. However, the production of this siderophore had never been previously described in Trichoderma and its insecticidal capacity was unknown. In conclusion, T. hamatum presents entomopathogenic capacity against S. littoralis larvae through the application of spores and filtrates, and both ways could be the basis for the development of efficient bioinsecticides against the pest.
Collapse
Affiliation(s)
- Maite Lana
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - Oihane Simón
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Mision Biologica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain
| | - Víctor M Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Mision Biologica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Recognised Research Group AGROBIOTECH, Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004 Palencia, Spain.
| |
Collapse
|
9
|
Guo CF, Qiu JH, Hu YW, Xu PP, Deng YQ, Tian L, Wei YY, Sang W, Liu YT, Qiu BL. Silencing of V-ATPase-E gene causes midgut apoptosis of Diaphorina citri and affects its acquisition of Huanglongbing pathogen. INSECT SCIENCE 2022. [PMID: 36346663 DOI: 10.1111/1744-7917.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, is among the most important pests of citrus. It is the main vector of the Huanglongbing (HLB) pathogen Candidatus Liberibacter asiaticus (CLas), which causes severe losses in citrus crops. Control of D. citri is therefore of paramount importance to reduce the spread of HLB. In this regard, using RNA interference (RNAi) to silence target genes is a useful strategy to control psyllids. In this study, using RNAi, we examined the biological functions of the V-ATPase subunit E (V-ATP-E) gene of D. citri, including its effect on acquisition of CLas. The amino acid sequence of V-ATP-E from D. citri had high homology with proteins from other insects. V-ATP-E was expressed at all D. citri life stages analyzed, and the expression level in mature adults was higher than that of teneral adults. Silencing of V-ATP-E resulted in a significant increase in mortality, reduced body weight, and induced cell apoptosis of the D. citri midgut. The reduced expression of V-ATP-E was indicated to inhibit CLas passing through the midgut and into the hemolymph, leading to a majority of CLas being confined to the midgut. In addition, double-stranded RNA of D. citri V-ATP-E was safe to non-target parasitic wasps. These results suggest that V-ATP-E is an effective RNAi target that can be used in D. citri control to block CLas infection.
Collapse
Affiliation(s)
- Chang-Fei Guo
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jun-Hong Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yu-Wei Hu
- Key Laboratory of South China Modern Biological Seed Industry, MARA, National S&T Innovation Center for Modern Agricultural Industry, Guangzhou, China
| | - Pei-Ping Xu
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ying-Qi Deng
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ling Tian
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yi-Yun Wei
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wen Sang
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu-Tao Liu
- Key Laboratory of South China Modern Biological Seed Industry, MARA, National S&T Innovation Center for Modern Agricultural Industry, Guangzhou, China
| | - Bao-Li Qiu
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
10
|
Touzdjian Pinheiro Kohlrausch Távora F, de Assis dos Santos Diniz F, de Moraes Rêgo-Machado C, Chagas Freitas N, Barbosa Monteiro Arraes F, Chumbinho de Andrade E, Furtado LL, Osiro KO, Lima de Sousa N, Cardoso TB, Márcia Mertz Henning L, Abrão de Oliveira Molinari P, Feingold SE, Hunter WB, Fátima Grossi de Sá M, Kobayashi AK, Lima Nepomuceno A, Santiago TR, Correa Molinari HB. CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Front Bioeng Biotechnol 2022; 10:913728. [PMID: 35837551 PMCID: PMC9274005 DOI: 10.3389/fbioe.2022.913728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen Ofuji Osiro
- Department of Phytopathology, University of Brasília, Brasília, Brazil
- Embrapa Agroenergy, Brasília, Brazil
| | | | | | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | | | | | | | | | | |
Collapse
|
11
|
Bano K, Kaushal S, Singh PP. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Microbial biocontrol agents against chilli plant pathogens over synthetic pesticides: a review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00053-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Li S, Yang B, Tan GY, Ouyang LM, Qiu S, Wang W, Xiang W, Zhang L. Polyketide pesticides from actinomycetes. Curr Opin Biotechnol 2021; 69:299-307. [PMID: 34102376 DOI: 10.1016/j.copbio.2021.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
Natural product derived pesticides have increased in popularity worldwide because of their high efficacy, eco-friendly nature and favorable safety profile. The development of polyketide pesticides from actinomycetes reflects this increase in popularity in the past decades. These pesticides, which include avermectins, spinosyns, polynactins, tetramycin and their analogues, have been successfully applied in crop protection. Moreover, the advance of biotechnology has led to continuous improvement in the discovery and production processes. In this review, we summarize these polyketide pesticides, their activities and provide insight into their development. We also discuss engineering strategies and the current status of industrial production for these pesticides. Given that actinomycetes are known to produce a wide range of bioactive secondary metabolites, the description of pesticide development and high yield strain improvement presented herein will facilitate further development of these valuable polyketide pesticides from actinomycetes.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bowen Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shiwen Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Abu-Tahon MA, Isaac GS, Mogazy AM. Protective role of fat hen (Chenopodium album L.) extract and gamma irradiation treatments against fusarium root rot disease in sunflower plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:497-507. [PMID: 33320971 DOI: 10.1111/plb.13229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
One of the most drastic diseases causing economic losses in sunflower crops is fusarium root rot caused by Fusarium solani. Plant extracts and ionizing radiation provide alternative environmentally safe control agents that have a significant role in controlling and overcoming this fungal plant pathogen. In the present study, the effect of different concentrations of aqueous Chenopodium album extract (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 and 6.0%) and gamma radiation at a dose of 6 Gy were examined for their efficacy in inducing resistance of sunflower plants against fusarium root rot caused by F. solani MG-3 by evaluation of some physiological and biochemical parameters of infected and healthy plants under greenhouse conditions. The pre-treatment of sunflower seeds with 6% C. album extract and 6 Gy gamma radiation reduced fusarium incidence from 47.49% to 28.25%. Also, nucleic acid content, ascorbic acid, α-tocopherol, anthocyanin, total flavonoids, proline, glycine betaine and lipid components significantly increased in irradiated infected plants treated with C. album extract, while H2 O2 content and lipid peroxidation markedly decreased as compared with healthy control plants. Moreover, treatment with gamma radiation reduced the amount of unsaturated fatty acids through accumulation of saturated fatty acids compared with non-irradiated plants; treatment with C. album extract also enhanced the content of unsaturated fatty acids, with a noticeable decrease in saturated fatty acid content. Hence, C. album extract and gamma radiation can be used to enhance biological control of fusarium root rot of sunflower plants.
Collapse
Affiliation(s)
- M A Abu-Tahon
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - G S Isaac
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - A M Mogazy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
da Silva AK, Diniz LF, Tenorio JC, Nazário CED, Ribeiro C, Carvalho Jr PS. Driving a sustainable application of s-triazine ametryn and atrazine herbicides through multicomponent crystals with improved solubility. CrystEngComm 2021. [DOI: 10.1039/d1ce00356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Engineered multicomponent crystals of Atrazine and ametryn herbicides have shown enhanced solubility and can be an alternative for the production of safe and eco-friendly agrochemical products.
Collapse
Affiliation(s)
| | - Luan F. Diniz
- Laboratório de Controle de Qualidade
- Departamento de Produtos Farmacêuticos
- Faculdade de Farmácia
- Universidade Federal de Minas Gerais
- Belo Horizonte
| | - Juan C. Tenorio
- Instituto de Química
- Universidade Estadual de Campinas
- Campinas
- Brazil
| | - Carlos E. D. Nazário
- Instituto de Química
- Universidade Federal do Mato Grosso do Sul
- Campo Grande
- Brazil
| | - Caue Ribeiro
- National Nanotechnology Laboratory for Agribusiness (LNNA)
- EMBRAPA Instrumentação
- São Carlos
- Brazil
| | | |
Collapse
|
16
|
Debela SA, Wu J, Chen X, Zhang Y. Stock status, urban public perception, and health risk assessment of obsolete pesticide in Northern Ethiopia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25837-25847. [PMID: 31250392 DOI: 10.1007/s11356-019-05694-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Pesticides are widely used chemicals in the agricultural sector to control pests, diseases, and other plant pathogens. This study aimed to assess the storage conditions of pesticides, the community perception, and health risk of pesticide exposure. The study was conducted in three different zonal cities in Ethiopia, East Africa, namely Mekelle, Aksum, and Alamata. Community perception was studied in a community living near a pesticide stockpile with a cross-sectional study of 384 randomly selected households. In addition, questionnaires were administered, a field investigation was conducted, and focused group discussions with responsible bodies were held to assess storage condition. Accidental ingestion and inhalation were considered to determine average daily exposure (ADE) and incremental lifetime cancer risk (ILCR). This study reveals that all obsolete and banned hazardous pesticides were stored in one area. The storage sites were only secured with simple locks and exposed to rain, sunlight, and temperature variation. The majority of the residents perceived that pesticides pose risk to human health (46.6%), to the environment (28.4%), and to animals (25%). The association between residence proximity of respondents to the store and side effect of obsolete pesticides is statistically significant (p = 0.008). Children aged 2 years and below have higher ADE when exposed to the same concentration of contaminant via inhalation. The probability of a person developing cancer was very low with a risk value of 2.54E-08 and 1.65E-07 as a result of exposure to air containing heptachlor and dichlorodiphenyltrichloroethane (DDT), respectively.
Collapse
Affiliation(s)
- Sisay Abebe Debela
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, China
- Ethiopian Environment and Forest Research Institute, Addis Ababa, Ethiopia
| | - Jian Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, China
| | - Xinyao Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, China
| | - Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, China.
| |
Collapse
|
17
|
Phylogeography of Organophosphate Resistant ace Alleles in Spanish Olive Fruit Fly Populations: A Mediterranean Perspective in the Global Change Context. INSECTS 2020; 11:insects11060396. [PMID: 32604835 PMCID: PMC7349299 DOI: 10.3390/insects11060396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023]
Abstract
The olive fruit fly (olf) Bactrocera oleae is the most damaging olive pest. The intensive use of organophosphates (OPs) to control it, led to an increase in resistance in field populations. This study assesses the presence and distribution of three mutations at the ace gene related to target site insensitivity to OPs in Spain. Samples from other Mediterranean countries were included as external references. Resistance-conferring alleles (from exons IV and VII of the ace gene) reached almost an 80% frequency in olf Spanish populations. In total, 62% of them were homozygous (RR/RR), this being more common in eastern mainland Spain. High frequencies of RR/RR individuals were also found in North Mediterranean samples. Conversely, in Tunisia, only sensitive alleles were detected. Finally, the exon X mutation ∆Q3 had an extremely low frequency in all samples. The high frequency of genotype RR/RR in Spain indicates high fitness in an agroecosystem treated with pesticides, in contrast to ∆Q3. At exon IV all flies carried the same haplotype for the allele conferring resistance. The sequence analysis at this exon suggests a unique origin and fast expansion of the resistant allele. These results provide evidence that OPs appropriate use is needed and prompt the search for alternative methods for olf pest control.
Collapse
|
18
|
Farkhondeh T, Mehrpour O, Buhrmann C, Pourbagher-Shahri AM, Shakibaei M, Samarghandian S. Organophosphorus Compounds and MAPK Signaling Pathways. Int J Mol Sci 2020; 21:4258. [PMID: 32549389 PMCID: PMC7352539 DOI: 10.3390/ijms21124258] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The molecular signaling pathways that lead to cell survival/death after exposure to organophosphate compounds (OPCs) are not yet fully understood. Mitogen-activated protein kinases (MAPKs) including the extracellular signal-regulated protein kinase (ERK), the c-Jun NH2-terminal kinase (JNK), and the p38-MAPK play the leading roles in the transmission of extracellular signals into the cell nucleus, leading to cell differentiation, cell growth, and apoptosis. Moreover, exposure to OPCs induces ERK, JNK, and p38-MAPK activation, which leads to oxidative stress and apoptosis in various tissues. However, the activation of MAPK signaling pathways may differ depending on the type of OPCs and the type of cell exposed. Finally, different cell responses can be induced by different types of MAPK signaling pathways after exposure to OPCs.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand 9717853577, Iran; (T.F.); (O.M.); (A.M.P.-S.)
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand 9717853577, Iran; (T.F.); (O.M.); (A.M.P.-S.)
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO 80204, USA
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand 9717853577, Iran; (T.F.); (O.M.); (A.M.P.-S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|
19
|
Abstract
The application of RNAi promotes the development of novel approaches toward plant protection in a sustainable way. Genetically modified crops expressing dsRNA have been developed as commercial products with great potential in insect pest management. Alternatively, some nontransformative approaches, including foliar spray, irrigation and trunk injection, are favorable in actual utilization. In this review, we summarize the recent progress and successful cases of RNAi-based pest management strategy, explore essential implications and possibilities to improve RNAi efficiency by delivery of dsRNA through transformative and nontransformative approaches, and highlight the remaining challenges and important issues related to the application of this technology.
Collapse
|
20
|
Al Raish SM, Saeed EE, Sham A, Alblooshi K, El-Tarabily KA, AbuQamar SF. Molecular Characterization and Disease Control of Stem Canker on Royal Poinciana ( Delonix regia) Caused by Neoscytalidium dimidiatum in the United Arab Emirates. Int J Mol Sci 2020; 21:E1033. [PMID: 32033175 PMCID: PMC7036867 DOI: 10.3390/ijms21031033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 01/04/2023] Open
Abstract
In the United Arab Emirates (UAE), royal poinciana (Delonix regia) trees suffer from stem canker disease. Symptoms of stem canker can be characterized by branch and leaf dryness, bark lesions, discoloration of xylem tissues, longitudinal wood necrosis and extensive gumming. General dieback signs were also observed leading to complete defoliation of leaves and ultimately death of trees in advanced stages. The fungus, Neoscytalidium dimidiatum DSM 109897, was consistently recovered from diseased royal poinciana tissues; this was confirmed by the molecular, structural and morphological studies. Phylogenetic analyses of the translation elongation factor 1-a (TEF1-α) of N. dimidiatum from the UAE with reference specimens of Botryosphaeriaceae family validated the identity of the pathogen. To manage the disease, the chemical fungicides, Protifert®, Cidely® Top and Amistrar® Top, significantly inhibited mycelial growth and reduced conidial numbers of N. dimidiatum in laboratory and greenhouse experiments. The described "apple bioassay" is an innovative approach that can be useful when performing fungicide treatment studies. Under field conditions, Cidely® Top proved to be the most effective fungicide against N. dimidiatum among all tested treatments. Our data suggest that the causal agent of stem canker disease on royal poinciana in the UAE is N. dimidiatum.
Collapse
Affiliation(s)
- Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain 15551, UAE;
| | - Arjun Sham
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Khulood Alblooshi
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain 15551, UAE;
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| |
Collapse
|
21
|
Zhang X, Huang Q, Zhao ZZ, Xu X, Li S, Yin H, Li L, Zhang J, Wang R. An Eco- and User-Friendly Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7783-7792. [PMID: 31267752 DOI: 10.1021/acs.jafc.9b00764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The increasing use of pesticides in agriculture and gardening has caused severe deterioration to both the ecosystem and the health of users (human beings), so there is an urgent need for eco- and user-friendly pesticides. Among a variety of herbicides, paraquat (PQ), frequently used as an effective herbicidal agent worldwide, is well-known for its serious toxicity that has killed, and harmed, thousands of people and countless wildlife such as fish. Herein, we present a facile supramolecular formulation of PQ@cucurbit[7]uril (PQ@CB[7]), prepared by simply mixing PQ with equivalent (molar) CB[7] in water. With addition of CB[7], PQ's cellular uptake was dramatically inhibited. The reactive oxygen species (ROS) generation and the associated apoptosis otherwise induced by PQ in cellular models were both reduced, resulting in increased cellular viability. In a wildtype zebrafish model that is a typical fragile wildlife species in the ecosystem, the supramolecular formulation exhibited significantly reduced hepatotoxicity and increased survival rate, in comparison with those of the fish exposed to free PQ. In a mouse model that is clinically relevant to human being, the administration of PQ@CB[7] significantly alleviated major organ injuries and unusual hematological parameters that were otherwise induced by free PQ, resulting in a significantly increased survival rate. Meanwhile, this formulation maintained effective herbicidal activity that was equivalent to that of free PQ. Taken together, this facile supramolecular PQ formulation is providing not only an extremely rare example of an eco- and user-friendly herbicide that has been desired for decades but also a practical solution for green agriculture.
Collapse
Affiliation(s)
- Xiangjun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau 999078 , China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau 999078 , China
| | - Zhe-Ze Zhao
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, New Territories , Hong Kong China
| | - Xiaoqiu Xu
- Department of Pharmaceutics, College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau 999078 , China
| | - Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau 999078 , China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau 999078 , China
| |
Collapse
|
22
|
Monitoring of the Pesticide Droplet Deposition with a Novel Capacitance Sensor. SENSORS 2019; 19:s19030537. [PMID: 30696019 PMCID: PMC6387286 DOI: 10.3390/s19030537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Rapid detection of spraying deposit can contribute to the precision application of plant protection products. In this study, a novel capacitor sensor system was implemented for measuring the spray deposit immediately after herbicide application. Herbicides with different formulations and nozzles in different mode types were included to test the impact on the capacitance of this system. The results showed that there was a linear relationship between the deposit mass and the digital voltage signals of the capacitance on the sensor surface with spray droplets. The linear models were similar for water and the spray mixtures with non-ionized herbicides usually in formulations of emulsifiable concentrates and suspension concentrates. However, the ionized herbicides in formulation of aqueous solutions presented a unique linear model. With this novel sensor, it is possible to monitor the deposit mass in real-time shortly after the pesticide application. This will contribute to the precision application of plant protection chemicals in the fields.
Collapse
|
23
|
Gutierrez-Arellano C, Mulligan M. A review of regulation ecosystem services and disservices from faunal populations and potential impacts of agriculturalisation on their provision, globally. NATURE CONSERVATION 2018. [DOI: 10.3897/natureconservation.30.26989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Land use and cover change (LUCC) is the main cause of natural ecosystem degradation and biodiversity loss and can cause a decrease in ecosystem service provision. Animal populations are providers of some key regulation services: pollination, pest and disease control and seed dispersal, the so-called faunal ecosystem services (FES). Here we aim to give an overview on the current and future status of regulation FES in response to change from original habitat to agricultural land globally. FES are much more tightly linked to wildlife populations and biodiversity than are most ecosystem services, whose determinants are largely climatic and related to vegetation structure. Degradation of ecosystems by land use change thus has much more potential to affect FES. In this scoping review, we summarise the main findings showing the importance of animal populations as FES providers and as a source of ecosystem disservices; underlying causes of agriculturalisation impacts on FES and the potential condition of FES under future LUCC in relation to the expected demand for FES globally. Overall, studies support a positive relationship between FES provision and animal species richness and abundance. Agriculturalisation has negative effects on FES providers due to landscape homogenisation, habitat fragmentation and loss, microclimatic changes and development of population imbalance, causing species and population losses of key fauna, reducing services whilst enhancing disservices. Since evidence suggests an increase in FES demand worldwide is required to support increased farming, it is imperative to improve the understanding of agriculturalisation on FES supply and distribution. Spatial conservation prioritisation must factor in faunal ecosystem functions as the most biodiversity-relevant of all ecosystem services and that which most closely links sites of service provision of conservation value with nearby sites of service use to provide ecosystem services of agricultural and economic value.
Collapse
|