1
|
Wang NX, Chen ZY, Zhou WQ, Zhang W. Influence of humic acid and fluvic acid on the altered toxicities of arsenite and arsenate toward two freshwater algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106218. [PMID: 35704967 DOI: 10.1016/j.aquatox.2022.106218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Arsenic pollution in freshwater poses a serious threat to aquatic organisms. However, dissolved organic matter (DOM) in water can modulate arsenic environmental toxicity by either suppressing or promoting its bioaccumulation. In this study, we investigated the toxicity, bioaccumulation, and biotransformation of inorganic arsenic (arsenite AsIII and arsenate AsV) combined with two types of DOM, i.e., humic acid (HA) and fulvic acid (FA), in the algae Chlamydomonas reinhardtii and Ochromonas danica. C. reinhardtii has a cell wall and cannot bioaccumulate arsenic complexation, whereas O. danica has no cell wall. Without DOM, AsV was more toxic than AsIII for C. reinhardtii, and AsV was less toxic than AsIII for O. danica. HA and FA addition reduced AsV and AsIII toxicities; the larger molecular weight (Mw) of HA contributed to the reduction in toxicity to an even greater extent, and reduced arsenic accumulation while promoting the biotransformation ability of C. reinhardtii, which has a cell wall. However, HA and FA addition increased AsV and AsIII toxicities and arsenic accumulation while relatively enhancing the biotransformation ability of O. danica, which has no cell wall. Coupling toxicity, bioaccumulation, and biotransformation, DOM (HA and FA) contributed to the altered toxicity of freshwater algae to AsV and AsIII through reduced/increased arsenic accumulation and enhanced biotransformation. Overall, our study considered the combined toxicity of inorganic arsenic and DOM in phytoplankton, helping estimate the potential environmental risk of arsenic in aqueous environments.
Collapse
Affiliation(s)
- Ning-Xin Wang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zheng-Yu Chen
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Wen-Qiang Zhou
- Academy of Environmental Planning & Design, Co., Ltd., Nanjing University, Nanjing 210093, China
| | - Wei Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chakdar H, Thapa S, Srivastava A, Shukla P. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127609. [PMID: 34772552 DOI: 10.1016/j.jhazmat.2021.127609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) pose a global ecological threat due to their toxic effects on aquatic and terrestrial life. Effective remediation of HMs from the environment can help to restore soil's fertility and ecological vigor, one of the key Sustainable Development Goals (SDG) set by the United Nations. The cyanobacteria have emerged as a potential option for bioremediation of HMs due to their unique adaptations and robust metabolic machineries. Generally, cyanobacteria deploy multifarious mechanisms such as biosorption, bioaccumulation, activation of metal transporters, biotransformation and induction of detoxifying enzymes to sequester and minimize the toxic effects of heavy metals. Therefore, understanding the physiological responses and regulation of adaptation mechanisms at molecular level is necessary to unravel the candidate genes and proteins which can be manipulated to improve the bioremediation efficiency of cyanobacteria. Chaperons, cellular metabolites (extracellular polymers, biosurfactants), transcriptional regulators, metal transporters, phytochelatins and metallothioneins are some of the potential targets for strain engineering. In the present review, we have discussed the potential of cyanobacteria for HM bioremediation and provided a deeper insight into their genomic and proteomic regulation of various tolerance mechanisms. These approaches might pave new possibilities of implementing genetic engineering strategies for improving bioremediation efficiency with a future perspective.
Collapse
Affiliation(s)
- Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Shobit Thapa
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, ID 47907-2048, United States
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
3
|
Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, Hina K, Rinklebe J. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124027. [PMID: 33265048 DOI: 10.1016/j.jhazmat.2020.124027] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
The contamination of aquatic systems with arsenic (As) is considered to be an internationally-important health and environmental issue, affecting over 115 countries globally. Arsenic contamination of aquatic ecosystems is a global threat as it can enter the food chain from As-rich water and cause harmful impacts on the humans and other living organisms. Although different factors (e.g., pH, redox potential, iron/manganese oxides, and microbes) control As biogeochemical cycling and speciation in water systems, the significance of algal species in biotransformation of As is poorly understood. The overarching attribute of this review is to briefly elaborate various As sources and its distribution in water bodies and factors affecting As biogeochemical behavior in aqueous ecosystems. This review elucidates the intriguing role of algae in biotransformation/volatilization of As in water bodies under environmentally-relevant conditions. Also, we critically delineate As sorption, uptake, oxidation and reduction pathways of As by algae and their possible role in bioremediation of As-contaminated water (e.g., drinking water, wastewater). The current review provides the updated and useful framework for government and water treatment agencies to implement algae in As remediation programs globally.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture Peshawar, Pakistan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Kingdom of Saudi Arabia; Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Safdar Bashir
- University of Agriculture Faisalabad, Sub-campus Depalpur, Okara 56130, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Kiran Hina
- Department of Environmental Sciences, University of Gujrat, Gujrat, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
4
|
Papry RI, Omori Y, Fujisawa S, Al Mamun MA, Miah S, Mashio AS, Maki T, Hasegawa H. Arsenic biotransformation potential of marine phytoplankton under a salinity gradient. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Zhang J, Zhou F, Liu Y, Huang F, Zhang C. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135368. [PMID: 31831249 DOI: 10.1016/j.scitotenv.2019.135368] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 05/27/2023]
Abstract
Inorganic arsenic (iAs) in its dominant dissolved phase in the environment is known to pose major threats to ecological and human health. While the biological effects in many arsenic-bearing freshwaters have been extensively studied, the behavior and bioaccumulation of dissolved iAS in the presence of extracellular polymeric substances (EPS) still remains to be a critical knowledge gap. In this study, the uptakes and kinetic characteristics of iAs were studied using Chlorella pyrenoidosa (a typical freshwater green algae) by addressing the different effects of EPS on arsenite (AsШ) and arsenate (AsV). The arsenic uptake capacity increased as the exposure concentration increased from 0 to 300 µmol L-1, and the uptake rate constants (Ku) in the Bio-dynamic model were greater for AsV than AsШ (0.63-11.57 L g-1 h-1 vs. 0.44-5.43 L g-1 h-1). The toxic effects as mitigated by EPS were observed through the morphological changes of algal cells by TEM and SEM. When compared with the EPS-free algal cells (EPS-F), EPS-covered cells (EPS-C) had a higher arsenic adsorption capacity through EPS-enhanced surface adsorption and reduced intracellular uptake. The overall decrease (35% and 23.3% for AsШ and AsV, respectively) in the maximum uptake capacity in intact algae cells favors cell's tolerance to the toxic effects of iAs. These observed discrepancies between AsШ and AsV and between EPS-C and EPS-F were further elucidated through morphological images (TEM and SEM) and molecular/atomic spectroscopic data that combine three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Altogether, the spectroscopic evidence revealed the interactions of iAs with C-O-C, C-O-H and -NH2 functional groups in EPS' tyrosine- and tryptophan-like proteins as the binding sites. Overall, this study for the first time provides comprehensive evidence on the iAs-EPS interactions. Such insights will benefit our understanding of the biogeochemical processes of iAs and the strategic development of bioremediation techniques involving microalgae in the natural and engineered systems.
Collapse
Affiliation(s)
- Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China; National Demonstration Center for Experimental Environment and Resources Education (Zhejiang University), Hangzhou 310058, China.
| | - Fang Zhou
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Yaoxuan Liu
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Fei Huang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Chunlong Zhang
- Department of Environmental Science, University of Houston-Clear Lake, Houston, TX 77058, United States
| |
Collapse
|
6
|
Hussain MM, Bibi I, Shahid M, Shaheen SM, Shakoor MB, Bashir S, Younas F, Rinklebe J, Niazi NK. Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Chen L, Zhang L. Arsenic speciation in Asiatic algae: Case studies in Asiatic continent. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|