1
|
Cheng W, Yi L, Xu T, Xie Y, Zhu J, Guan X, Li Q, Huang Y, Zhao Y, Zhao S. The stems and leaves of Panax notoginseng reduce the abundance of antibiotic resistance genes by regulating intestinal microbiota in Duzang pigs. Anim Biotechnol 2025; 36:2471785. [PMID: 40094563 DOI: 10.1080/10495398.2025.2471785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
In order to study the distribution characteristics of intestinal microbiota and antibiotic resistance genes (ARGs) in Duzang pigs after adding stems and leaves of Panax notoginseng to the feed, the characteristics of intestinal microbiota were explored by metagenomic sequencing, and 14 ARGs and 2 integrase genes were detected by qPCR. The results showed that the addition of stems and leaves of P. notoginseng increased the relative abundance of Firmicutes, Lactobacillus and Pediococcus in the cecum of Duzang pigs. A total of 10 ARGs and 2 integrase genes were detected in the cecal contents of pigs. The addition of stems and leaves of P. notoginseng reduced the relative abundance of total ARGs, ermB, tetO and tetW in the cecum of Duzang pigs. The results of network analysis showed that multiple genera were potential hosts of ARGs. The addition of stems and leaves of P. notoginseng may reduce the relative abundance of ARGs by reducing the relative abundance of genera such as Corynebacterium and Flavonifractor, thereby reducing the risk of ARGs spread. This study provides a theoretical basis for the rational use of stems and leaves of P. notoginseng to control ARGs.
Collapse
Affiliation(s)
- Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taojie Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xuancheng Guan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yanguang Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Zhang K, Zhou X, Zhang X, Huang N, Zhao Z, Zhang X, zhou Y, Li J, Yu F, Liu Y, Qin P, Wu X, He P. Characterization of transferable antibiotic resistance plasmids in airborne particulate matter from ICU environments. iScience 2025; 28:112254. [PMID: 40330890 PMCID: PMC12052693 DOI: 10.1016/j.isci.2025.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Intensive care units (ICUs) are critical environments for the emergence of antibiotic-resistant bacteria, with numerous studies focusing on resistant pathogens in these settings. However, transferable antibiotic resistance plasmids (TARPs)-regardless of their origin from pathogenic or non-pathogenic bacteria-are key drivers of resistance gene dissemination and the emergence of resistant strains. This study investigated TARPs in ICU air. Air samples were directly used to isolate resistant plasmids using Escherichia coli CV601 as the recipient. Plasmid types, antibiotic resistance genes (ARGs), and virulence factors were identified through sequencing, and resistance phenotypes were validated. A total of 30 distinct plasmid types were detected, with IncX3 being the most prevalent. Among 245 ARGs identified, bla NDM-53, bla SHV-12, and BRP(MBL) were dominant. Phylogenetic analysis indicated that these TARPs originated from bacteria commonly colonizing human mucosa. ICU airborne TARPs may significantly contribute to the spread of ARGs and antibiotic resistance transmission.
Collapse
Affiliation(s)
- Kexing Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
- Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision institute), Guangzhou, Guangdong 510440, P.R. China
| | - Xumei Zhou
- Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision institute), Guangzhou, Guangdong 510440, P.R. China
| | - Xu Zhang
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Na Huang
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Zhengyang Zhao
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Xinqiang Zhang
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Yong zhou
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Juntao Li
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Fangyi Yu
- Department of Healthcare-associated Infection Management, Guangzhou Red Cross Hospital, Guangzhou, Guangdong 510220, P.R. China
| | - Yuan Liu
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Pengzhe Qin
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Xinwei Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
| | - Peng He
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
- Guizhou Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guiyang, Guizhou 550031, P.R. China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, P.R. China
| |
Collapse
|
3
|
Luo Q, Zhuang W, Sui M. Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption. ENVIRONMENTAL RESEARCH 2025; 270:120932. [PMID: 39864723 DOI: 10.1016/j.envres.2025.120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) have become increasing concerning issues, threatening human health. Persulfate-based advanced oxidation processes (PS-AOPs), due to their remarkable potential in combating antibiotic resistance, have garnered significant attention in the field of disinfection in recent years. In this review, we systematically evaluated the efficacy and underlying mechanism of PS integration with various activation methods for the elimination of ARB/ARGs. These approaches encompass physical methods, catalyst activation, and hybrid techniques with photocatalysis, ozonation, and electrochemistry. Additionally, we employed Chick's model and electrical energy per log order (EE/O) to assess the performance and energy efficiency, respectively. This review aims at providing a guide for future investigation on PS-AOPs for antibiotic resistance control.
Collapse
Affiliation(s)
- Qianqian Luo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Wei Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
4
|
Malas J, Khoury SC, Tanzillo M, Fischer GA, Bogner JE, Meyer-Dombard DR. Impact of antibiotics, iron oxide, and sodium sulfate on microbial community composition in laboratory-built municipal solid waste microcosms. PLoS One 2025; 20:e0318351. [PMID: 39874355 PMCID: PMC11774356 DOI: 10.1371/journal.pone.0318351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics. The addition of Fe(OH)3 altered the overall community composition and increased Shannon diversity and Chao1 richness. The addition of a mixture of seven antibiotics (1000 ng/L each) altered the community composition without affecting diversity metrics. Sulfate addition had little effect on microbial community composition or diversity. These results suggest that the microbial community composition in fresh MSW may be significantly impacted by influxes of iron waste and a single application of antibiotics.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sarah C. Khoury
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael Tanzillo
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gracie A. Fischer
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jean E. Bogner
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
5
|
Li Y, Liu X, Wang J, Li S. High-generation tetracyclines shifted microbial community composition and induced the emergence of antibiotic resistant bacteria in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135757. [PMID: 39259998 DOI: 10.1016/j.jhazmat.2024.135757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Tetracyclines (TCs) have been widely detected in agricultural soil due to their widespread use in animal husbandry. The impact of low-generation TCs, i.e., the first- and second- generations, on soil ecosystem has attracted widespread attention. However, the dynamic response of soil microbial community to high-generation TCs, i.e., the third- and fourth- generations, remains largely unknown. Herein, we characterized the variations in the composition, diversity and succession of microbial community and the proliferation of antibiotic resistance genes (ARGs) under the stress of four generations of TCs in brown soil and red soil. The results demonstrated that the exposure of low- and high- generation TCs consistently decreased the alpha diversity and stimulated the succession rate of microbial community in soil. High-generation TCs strongly shifted microbial community composition by reducing community resilience. The complexity of microbial networks and cross-module associations were strengthened to cope with the stress of high-generation TCs in soil. The abundance of ARGs was exacerbated by 1.75 times in response to the fourth-generation TCs compared to control in brown soil. The potential bacterial hosts of ARGs were more diverse in brown soil exposed to high-generation TCs, but the dominant hosts were not changed. These results highlight the potential ecological risk of the newly developed antibiotics, which is helpful for a comprehensive risk assessment of emerging contaminants.
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Yantai Institute of China Agricultural University, Yantai 264670, China.
| |
Collapse
|
6
|
Wang Z, Huang Y, Yu M, Zhuang W, Sui M. Pre-exposure to peracetic acid followed by UV treatment for deactivating vancomycin-resistant Enterococcus faecalis through intracellular attack. ENVIRONMENTAL RESEARCH 2024; 262:119780. [PMID: 39142460 DOI: 10.1016/j.envres.2024.119780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a global health threat to aquatic environments and its propagation is a hot topic. Therefore, deactivating antibiotic-resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) from water is crucial for controlling AMR transmission. Peracetic acid (PAA), which is known for its potent oxidizing properties and limited by-product formation, is emerging as a favorable disinfectant for water treatment. In this study, we aimed to assess the efficacy of pre-exposure to PAA followed by UV treatment (PAA-UV/PAA) compared with the simultaneous application of UV and PAA (UV/PAA). The focus was on deactivating vancomycin-resistant Enterococcus faecalis (VREfs), a typical ARB in water. Pre-exposure to PAA significantly enhanced the efficacy of subsequent UV/PAA treatment. At a UV fluence of 7.2 mJ cm-2, the PAA-UV/PAA method achieved a 6.21 log reduction in VREfs, surpassing the 1.29 log reduction observed with UV/PAA. Moreover, compared to UV/PAA, PAA-UV/PAA showed increased efficacy with longer pre-exposure times and higher PAA concentrations, maintaining superior performance across a broad pH range and in the presence of humic acid. Flow cytometry analysis indicated minimal cellular membrane damage using both methods. However, the assessments of superoxide dismutase (SOD) activity and adenosine triphosphate content revealed that PAA-UV/PAA induced greater oxidative stress under similar UV irradiation conditions, leading to slower bacterial regrowth. Specifically, SOD activity in PAA-UV/PAA surged to 3.06 times its baseline, exceeding the 1.73-fold increase under UV/PAA conditions. Additionally, pre-exposure to PAA amplified ARGs degradation and reduced resistance gene leakage, effectively mitigating the spread of AMR. Pre-exposure to 200 μM PAA for 10 and 20 min enhanced vanB gene removal efficiency by 0.14 log and 1.29 log, respectively. Our study provides a feasible approach for optimizing UV/PAA disinfection for efficient removal of ARB and ARGs.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yingyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wei Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
7
|
Wang S, Fang L, Sun X, Lu W. Occurrence and distribution of antibiotic resistance genes in urban rivers with black-odor water of Harbin, China. ENVIRONMENTAL RESEARCH 2024; 259:119497. [PMID: 38944102 DOI: 10.1016/j.envres.2024.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and β-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lanjin Fang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Weimin Lu
- Heilongjiang Province Light Industrial Science Research Institute, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
8
|
Mu X, Shi S, Hu X, Gan X, Han Q, Yu Q, Qu J, Li H. Gut microbiome and antibiotic resistance genes in plateau model animal (Ochotona curzoniae) exhibit a relative stability under cold stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135472. [PMID: 39137548 DOI: 10.1016/j.jhazmat.2024.135472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antibiotic resistance genes (ARGs) carried by gut pathogens may pose a threat to the host and ecological environment. However, few studies focus on the effects of cold stress on intestinal bacteria and ARGs in plateau animals. Here, we used 16S rRNA gene sequencing and gene chip technique to explore the difference of gut microbes and ARGs in plateau pika under 4 °C and 25 °C. The results showed that tetracycline and aminoglycoside resistance genes were the dominant ARGs in pika intestine. Seven kinds of high-risk ARGs (aadA-01, aadA-02, ermB, floR, mphA-01, mphA-02, tetM-02) existed in pika's intestine, and cold had no significant effect on the composition and structure of pika's intestinal ARGs. The dominant phyla in pika intestine were Bacteroidetes and Firmicutes. Cold influenced 0.47 % of pika intestinal bacteria in OTU level, while most other bacteria had no significant change. The diversity and community assembly of intestinal bacteria in pika remained relatively stable under cold conditions, while low temperature decreased gut microbial network complexity. In addition, low temperature led to the enrichment of glycine biosynthesis and metabolism-related pathways. Moreover, the correlation analysis showed that eight opportunistic pathogens (such as Clostridium, Staphylococcus, Streptococcus, etc.) detected in pika intestine might be potential hosts of ARGs.
Collapse
Affiliation(s)
- Xianxian Mu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shunqin Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueying Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Kaw HY, Yu J, Ma X, Yang Q, Zhu L, Wang W. The significance of environmentally bioavailable antimicrobials in driving antimicrobial resistance in soils. ENVIRONMENT INTERNATIONAL 2024; 190:108830. [PMID: 38943926 DOI: 10.1016/j.envint.2024.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Antimicrobial resistance (AMR) stands as an escalating public health crisis fueled by antimicrobial residues in the environment, particularly in soil, which acts as a reservoir for antimicrobial resistance genes (ARGs). Merely quantifying the total extractable concentration of antimicrobials, instead of bioavailable fractions, may substantially underestimate their minimal selection concentration for propagating ARGs. To shed light on the role of bioavailability in ARG abundance within soil, a systematic bioavailability assessment method was established for accurately quantifying the partitioning of multi-class antimicrobials in representative Chinese soils. Microcosm studies unveiled that antimicrobials persisting in the bioavailable fraction could potentially prolong their selection pressure duration to trigger AMR. Notably, the co-occurrence of pesticide or steroid hormone influenced the development trends of ARG subtypes, with fluoroquinolone resistance genes (RGs) being particularly susceptible. Partial least squares path model (PLS-PM) analysis uncovered potentially distinct induction mechanisms of antimicrobials: observable results suggested that extractable residual concentration may exert a direct selection pressure on the development of ARGs, while bioavailable concentration could potentially play a stepwise role in affecting the abundance of mobile genetic elements and initiating ARG dissemination. Such unprecedented scrutinization of the interplay between bioavailable antimicrobials in soils and ARG abundance provides valuable insights into strategizing regulatory policy or guidelines for soil remediation.
Collapse
Affiliation(s)
- Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Jing Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Xuejing Ma
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Qi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
10
|
Gillieatt BF, Coleman NV. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol Rev 2024; 48:fuae017. [PMID: 38897736 PMCID: PMC11253441 DOI: 10.1093/femsre/fuae017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The co-selective pressure of heavy metals is a contributor to the dissemination and persistence of antibiotic resistance genes in environmental reservoirs. The overlapping range of antibiotic and metal contamination and similarities in their resistance mechanisms point to an intertwined evolutionary history. Metal resistance genes are known to be genetically linked to antibiotic resistance genes, with plasmids, transposons, and integrons involved in the assembly and horizontal transfer of the resistance elements. Models of co-selection between metals and antibiotics have been proposed, however, the molecular aspects of these phenomena are in many cases not defined or quantified and the importance of specific metals, environments, bacterial taxa, mobile genetic elements, and other abiotic or biotic conditions are not clear. Co-resistance is often suggested as a dominant mechanism, but interpretations are beset with correlational bias. Proof of principle examples of cross-resistance and co-regulation has been described but more in-depth characterizations are needed, using methodologies that confirm the functional expression of resistance genes and that connect genes with specific bacterial hosts. Here, we comprehensively evaluate the recent evidence for different models of co-selection from pure culture and metagenomic studies in environmental contexts and we highlight outstanding questions.
Collapse
Affiliation(s)
- Brodie F Gillieatt
- School of Life and Environmental Sciences, The University of Sydney, F22 - LEES Building, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, 6 Wally’s Walk, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
11
|
Chen W, Zhang Y, Mi J. Assessing Antibiotic-Resistant Genes in University Dormitory Washing Machines. Microorganisms 2024; 12:1112. [PMID: 38930496 PMCID: PMC11205806 DOI: 10.3390/microorganisms12061112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
University dormitories represent densely populated environments, and washing machines are potential sites for the spread of bacteria and microbes. However, the extent of antibiotic resistance gene (ARG) variation in washing machines within university dormitories and their potential health risks are largely unknown. To disclose the occurrence of ARGs and antibiotic-resistant bacteria from university dormitories, we collected samples from washing machines in 10 dormitories and used metagenomic sequencing technology to determine microbial and ARG abundance. Our results showed abundant microbial diversity, with Proteobacteria being the dominant microorganism that harbors many ARGs. The majority of the existing ARGs were associated with antibiotic target alteration and efflux, conferring multidrug resistance. We identified tnpA and IS91 as the most abundant mobile genetic elements (MGEs) in washing machines and found that Micavibrio aeruginosavorus, Aquincola tertiaricarbonis, and Mycolicibacterium iranicum had high levels of ARGs. Our study highlights the potential transmission of pathogens from washing machines to humans and the surrounding environment. Pollution in washing machines poses a severe threat to public health and demands attention. Therefore, it is crucial to explore effective methods for reducing the reproduction of multidrug resistance.
Collapse
Affiliation(s)
- Wenbo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China;
- Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China;
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
12
|
Liu F, Zhu C, Wang Y, Zhang Y. Nitrogen and Chlorine Co-doped Carbon Dots as a Highly Selective and Sensitive Fluorescent Probe for Sensing of PH, Tetracycline Detection and Cell Imaging. J Fluoresc 2024; 34:1183-1192. [PMID: 37498365 DOI: 10.1007/s10895-023-03360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Carbon dots have been widely focused on the field of sensing and detection due to their excellent optical property. Herein, novel orange fluorescent nitrogen and chlorine co-doped carbon dots (N,Cl-CDs) are obtained by one-pot hydrothermal method using o-phenylenediamine and neutral red. Based on the inner filter effect, the prepared N,Cl-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for sensitive determination of tetracycline. The proposed sensor was utilized to realize the determination of tetracycline in Rirver water samples/milk samples (λex = 390 nm, λem = 606 nm) with satisfactory recoveries and relative standard deviations. The linear range of are 0.05 to 45 μM and 45 to135 μM, and detection limit is 3.9 nM (3σ/m). Meanwhile, the luminescent intensity of N,Cl-CDs was reduced gradually when pH changed continuously from 12 to 2, showing a pH-responsive fluorescence property with two linear ranges of pH 3-7 and pH 7-10. In addition, due to the characteristics of low toxicity and excellent biocompatibility, the N, Cl-CDs were also used in the imaging of oocystis cells, which is hopeful to realize the detection of tetracycline in living cells.
Collapse
Affiliation(s)
- Fang Liu
- Department of Modern Chemical Engineering, Shanxi Engineering Vocational College, Taiyuan, 030009, Shanxi, China
| | - Changjian Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
13
|
Wang Y, Zhang S, Yang L, Yang K, Liu Y, Zhu H, Lai B, Li L, Hua L. Spatiotemporal distribution, interactions and toxic effect of microorganisms and ARGs/MGEs from the bioreaction tank in hospital sewage treatment facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171481. [PMID: 38458442 DOI: 10.1016/j.scitotenv.2024.171481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Antibiotic resistance genes (ARGs) can be emitted from wastewater to ambient air and impose unignorable inhalable hazards, which could be exacerbated in antibiotic-concentrated hospital sewage. However, whether the ARG-carrying pathogens are more likely to infect cells remains largely unknown. Here, this study investigated and analyzed the spatiotemporal distribution, interaction, and toxicity of airborne microorganisms and their hosting ARGs in a hospital sewage treatment facility. The average concentration of ARGs/MGEs in sewage of bioreaction tank (BRT-W) was 2.27 × 104 gene copies/L. In the air of bioreaction tank (BRT-A), the average concentration of ARGs/MGEs was 15.86 gene copies/m3. In the four seasons, the ARGs concentration of sewage gradually decreased over time; The concentration of ARGs in the air first decreased and then increased. In spring, the concentration of ARGs/MGEs (qacedelta1-01) in BRT-W was highest (1.05 × 105 gene copies/L); The concentration of ARGs/MGEs (strB) in BRT-A in winter was higher than other seasons (26.18 gene copies/m3). Different from the past, this study also paid attention to the pathogenic potential of ARGs/MGEs in the air. The results of cell experiments showed that the cytotoxicity of drug-resistant Escherichia coli could reach Grade V. This suggested that the longer the drug-resistant E. coli were exposed to cells, the greater the cytotoxicity. Moreover, the cytotoxicity of bacteria increased with the increase in exposure time. In spring, the toxic effect of ARGs/MGEs in sewage of BRT-W was highest. Traceability analysis proved that BRT-W was an essential source of microorganisms and ARGs/MGEs in BRT-A. Furthermore, the combined risk of people exposed to the air of BRT in spring was higher than that in other seasons.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Lancaster Environment Center, Lancaster University, United Kingdom.
| | - Song Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Liying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Kai Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Haoran Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Bisheng Lai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Linlin Hua
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, PR China.
| |
Collapse
|
14
|
Zhang L, Chen H, Gao S, Song Y, Zhao Y, Tang W, Cui J. Antibiotic resistance genes and mobile genetic elements in different rivers: The link with antibiotics, microbial communities, and human activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170788. [PMID: 38342453 DOI: 10.1016/j.scitotenv.2024.170788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Rivers as a critical sink for antibiotic resistance genes (ARGs), and the distribution and spread of ARGs are related to environmental factors, human activities, and biotic factors (e.g. mobile genetic elements (MGEs)). However, the potential link among ARGs, microbial community, and MGEs in rivers under different antibiotic concentration and human activities remains unclear. In this study, 2 urban rivers (URs), 1 rural-urban river (RUR), and 2 rural rivers (RRs) were investigated to identify the spatial-temporal variation and driving force of ARGs. The total concentration of quinolones (QNs) was 160.1-2151 ng·g-1 in URs, 23.34-1188 ng·g-1 in RUR, and 16.39-85.98 ng·g-1 in RRs. Total population (TP), gross domestic production (GDP), sewage, industrial enterprise (IE), and IEGDP appeared significantly spatial difference in URs, RUR, and RRs. In terms of ARGs, 145-161 subtypes were detected in URs, 59-61 subtypes in RURs, and 46-79 subtypes in RRs. For MGEs, 55-60 MGEs subtypes were detected in URs, 29-30 subtypes in RUR, and 29-35 subtypes in RRs. Significantly positive correlation between MGEs and ARGs were found in these rivers. More ARGs subtypes were related to MGEs in URs than those in RUR and RRs. Overall, MGEs and QNs showed significantly direct positive impact on the abundance of ARGs in all rivers, while microbial community was significantly positive impact on the ARGs abundance in URs and RUR. The ARGs abundance in URs/RUR were directly positive influenced by microbial community/MGEs/socioeconomic elements (SEs)/QNs, while those in RRs were directly positive influenced by QNs/MGEs and indirectly positive impacted by SEs. Most QNs resistance risk showed significantly positive correlation with the abundance of ARGs types. Therefore, not only need to consider the concentration of antibiotics, but also should pay more attention to SEs and MGEs in antibiotics risk management and control.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China.
| | - Haoda Chen
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Sai Gao
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yuanmeng Song
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yu Zhao
- State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzhong Tang
- State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| |
Collapse
|
15
|
Li X, Lu Z, Wu B, Xie H, Liu G. Antibiotics and antibiotic resistance genes removal in biological aerated filter. BIORESOURCE TECHNOLOGY 2024; 395:130392. [PMID: 38301943 DOI: 10.1016/j.biortech.2024.130392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Two laboratory-level biological aerated filters (BAF) were constructed to explore their treatment capacity for simulated antibiotic wastewater at high (1 - 16 mg/L) and low (0 - 0.5 mg/L) concentrations. Results showed that BAF was capable of removing both sulfonamides and tetracyclines with an efficiency of over 90 % at 16 mg/L. The main mechanism for removing antibiotics was found to be biodegradation followed by adsorption. Paenarthrobacter was identified as the key genus in sulfonamides degradation, while Hydrogenophaga played a crucial role in tetracyclines degradation. Antibiotics resistant genes such as intI1, sul1, sul2, tetA, tetW and tetX were frequently detected in the effluent, with interception rates ranging from 105 - 106 copies/mL. The dominated microorganisms obtained in the study could potentially be utilized to enhance the capacity of biological processes for treating antibiotics contaminated wastewater. These findings contribute to a better understanding of BAF treating wastewater containing antibiotics and resistant genes.
Collapse
Affiliation(s)
- Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ziyi Lu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Baoli Wu
- North China Municipal Engineering Design & Research Institute Co.,Ltd., Tianjin 300381, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
16
|
Wanyan R, Pan M, Mai Z, Xiong X, Wang S, Han Q, Yu Q, Wang G, Wu S, Li H. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167068. [PMID: 37714353 DOI: 10.1016/j.scitotenv.2023.167068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging environmental contaminants, have become challenges of public health security. However, the distribution and drivers of ARGs, especially high-risk ARGs, in large-scale aquaculture sediments remain unknown. Here, we collected sediment samples from 40 crayfish ponds in seven main crayfish culture provinces in China and then investigated the distribution and risk of ARGs based on high-throughput sequencing and quantitative PCR techniques. Our results suggested that aquaculture sediment was potential reservoir of ARGs and the abundance of aadA-02 was the highest. High-risk ARG (floR) was also prevalent in the sediment and was the most abundant in Jiangsu Province, where opportunistic pathogens were also enriched. The abundance of floR was positively correlated with different environmental factors, such as total phosphorus in water and total carbon in sediment. In addition, Mycobacterium sp., opportunistic pathogenic bacteria, might be potential host for floR. Furthermore, the potential propagation pathway of ARGs was from sediment to crayfish gut, and Bacteroidetes and Proteobacteria might be the main bacterial groups responsible for the proliferation of ARGs. Generally, our results illustrate that pond sediment may be an ARG reservoir of aquatic animals. Meanwhile, our study helps develop valuable strategies for accessing risks and managing ARGs.
Collapse
Affiliation(s)
- Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
17
|
Chu K, Liu Y, Hua Z, Lu Y, Ye F. Spatio-temporal distribution and dynamics of antibiotic resistance genes in a water-diversion lake, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119232. [PMID: 37832298 DOI: 10.1016/j.jenvman.2023.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
The distribution and dynamics of antibiotic resistance genes (ARGs) in water-diversion lakes are poorly understood. In this study, two comparative in situ investigations of ARG profiles targeting water diversion (DP) and non-diversion periods (NDP) were conducted in Luoma Lake, a vital transfer node for the eastern route of the South-to-North Water Diversion Project in China. The results demonstrated significant spatiotemporal variations in ARG contamination and notable differences in the co-occurrence patterns of ARGs and bacterial communities between DP and NDP. Correlations among ARGs with the 16 S rRNA, and mobile genetic elements indicate that horizontal gene transfer (HGT) and vertical gene transfer (VGT) in NDP, but only HGT in DP, were the primary mechanisms of ARG proliferation and spread, implying that water diversion could be an essential control of the transfer pattern of ARGs in a lake environment. The null model analysis indicated that stochastic processes, with predominant driver of ecological drift in the lake mainly drove the assembly of ARGs. Partial least squares structural equation modeling was developed to analyze the causal effects of the factors in shaping ARG dynamics and identify the major driving forces in the DP and NDP.
Collapse
Affiliation(s)
- Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China.
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Liyang, 213300, PR China
| | - Fuzhu Ye
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
18
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
19
|
Yu T, Rajasekar A, Zhang S. A decennial study of the trend of antibiotic studies in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121338-121353. [PMID: 37996597 DOI: 10.1007/s11356-023-30796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Antibiotics are one of the greatest inventions in human history and are used worldwide on an enormous scale. Besides its extensive usage in medical and veterinary arenas to treat and prevent the infection, its application is very prominent in other fields, including agriculture, aquaculture, and horticulture. In recent decades, the increased consumption of antibiotics in China saw a vast increase in its production and disposal in various environments. However, in this post-antibiotic era, the abuse and misuse of these valuable compounds could lead to the unreversible consequence of drug resistance. In China, antibiotics are given a broad discussion in various fields to reveal their impact on both human/animals health and the environment. To our knowledge, we are the first paper to look back at the development trend of antibiotic-related studies in China with qualitative and quantitative bibliometric analysis from the past decades. Our study identified and analyzed 5559 papers from its inception (1991) to December 6, 2021, from the Web of Science Core Collection database. However, with few authors and institutions focusing on long-term studies, we found the quality of contributions was uneven. Studies mainly focused on areas such as food science, clinical research, and environmental studies, including molecular biology, genetics and environmental, ecotoxicology, and nutrition, which indicate possible primary future trends. Our study reports on including potentially new keywords, studies' milestones, and their contribution to antibiotic research. We offer potential topics that may be important in upcoming years that could help guide future research.
Collapse
Affiliation(s)
- Tong Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC‑AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
20
|
Sun P, Niu K, Du H, Li R, Chen J, Lu X. Ultrasensitive rapid detection of antibiotic resistance genes by electrochemical ratiometric genosensor based on 2D monolayer Ti 3C 2@AuNPs. Biosens Bioelectron 2023; 240:115643. [PMID: 37651949 DOI: 10.1016/j.bios.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
As an important emerging pollutant, antibiotic resistance genes (ARGs) monitoring is crucial to protect the ecological environment and public health, but its rapid and accurate detection is still a major challenge. In this study, a new single-labeled dual-signal output ratiometric electrochemical genosensor (E-DNA) was developed for the rapid and highly sensitive detection of ARGs using a synergistic signal amplification strategy of T3C2@Au nanoparticles (T3C2@AuNPs) and isothermal strand displacement polymerase reaction (ISDPR). Specially, two-dimensional monolayer T3C2 nanosheets loaded with uniformly gold nanoparticles were prepared and used as the sensing platform of the E-DNA sensor. Benefiting from excellent conductivity and large specific surface area of Ti3C2@AuNPs, the probe immobilization capacity of the E-DNA sensor is doubled, and electrochemical response signals of the E-DNA sensor were significantly improved. The proposed single-labeled dual-signal output ratiometric sensing strategy exhibits three to six times higher sensitivity for the sul2 gene than the single-signal sensing strategy, which significantly reduces cost meanwhile retaining the advantages of high sensitivity and reliability offered by conventional dual-labeled ratiometric sensors. Coupled with ISDPR amplification technology, the E-DNA sensor has a wider linear range from 10 fM to 10 nM and a limit of detection as low as 2.04 fM (S/N=3). More importantly, the E-DNA sensor demonstrates excellent specificity, good stability and reproducibility for target ARGs detection in real water samples. The proposed new sensing strategy provides a highly sensitive and versatile tool for the rapid and accurate quantitative analysis of various ARGs in environmental water samples.
Collapse
Affiliation(s)
- Pengcheng Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Dalian Minzu University, College of Mechanical and Electronic Engineering, Dalian, 116600, PR China
| | - Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Haiying Du
- Dalian Minzu University, College of Mechanical and Electronic Engineering, Dalian, 116600, PR China.
| | - Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.
| |
Collapse
|
21
|
Rodríguez-Rodríguez CE, Ramírez-Morales D, Masis-Mora M, Montiel-Mora JR, Soto-Garita C, Araya-Valverde E, Cambronero-Heinrichs JC, Sànchez-Melsió A, Briceño-Guevara S, Mendez-Rivera M, Balcázar JL. Occurrence and risk assessment of pharmaceuticals in hospital wastewater in Costa Rica. CHEMOSPHERE 2023; 339:139746. [PMID: 37549747 DOI: 10.1016/j.chemosphere.2023.139746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
This work aims to determine the occurrence, hazard and prioritization of pharmaceuticals from hospital wastewater in Costa Rica through the monitoring of 70 compounds and assessing their environmental risk through a hazard quotient approach (HQ). Moreover, the quantification of selected antibiotic resistance genes (ARGs) was conducted for the first time in this matrix in this geographical location. Thirty-four pharmaceuticals were detected, being caffeine, 1,7-dimethylxanthine, acetaminophen, ibuprofen, naproxen, ciprofloxacin and ketoprofen the most frequent (>50% of the samples). Eighteen pharmaceuticals exhibited high hazard (HQ ≥ 1), while five more showed medium hazard (1 > HQ ≥ 0.1). Prioritization, which also included frequency parameters, revealed caffeine, lovastatin, diphenhydramine, acetaminophen, ibuprofen, ciprofloxacin, and sildenafil as the compounds of major concern. Similarly, cumulative hazard per sample (ΣHQ) estimated high hazard towards aquatic organisms in every sample. All selected ARGs, except mcr-1 (polymyxin resistance), were detected. Among genes conferring resistance to beta-lactams, blaCTX-M and blaKPC were the most abundant, related to resistance to cephalosporins and carbapenems. Ecotoxicological evaluation showed mostly low toxicity towards Daphnia magna and Vibrio fischeri, contrary to the marked effect observed towards Lactuca sativa. These findings provide relevant and novel information on the risk posed by hospital wastewater and their pharmaceutical content in the Latin American environmental context.
Collapse
Affiliation(s)
- Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masis-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Claudio Soto-Garita
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Emanuel Araya-Valverde
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain
| | - Susana Briceño-Guevara
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Michael Mendez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - José L Balcázar
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain
| |
Collapse
|
22
|
Li C, Cui Z, Wei D, Zhang Q, Yang J, Wang W, Luo X, Chang Y. Trends and Patterns of Antibiotic Prescriptions in Primary Care Institutions in Southwest China, 2017-2022. Infect Drug Resist 2023; 16:5833-5854. [PMID: 37692470 PMCID: PMC10492579 DOI: 10.2147/idr.s425787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose To explore the prescription patterns and usage trends of antibiotics within primary care institutions located in underdeveloped regions of China from 2017 to 2022. Methods A retrospective analysis of antibiotic prescriptions was conducted from 25 primary care institutions in Guizhou Province during the period of 2017-2022. Antibiotic prescriptions were categorized into appropriate and inappropriate use. Appropriate use is further categorized into preferred medication, and antibiotics can be used or substituted. Inappropriate use is further categorized into unnecessary use, incorrect spectrum of antibiotics and combined use of antibiotics. Factors associated with inappropriate use were investigated using generalized estimation equations. Holt-Winters and SARIMA models were employed to predict the number of inappropriate antibiotic prescriptions as the alternative model. Results A total of 941,924 prescriptions were included, revealing a decreasing trend in both the number and inappropriate rates of antibiotic prescriptions from 2017 to 2022. Diseases of the respiratory system (70.66%) was the most frequent target of antibiotic use, with acute upper respiratory infections of multiple and unspecified sites representing 52.04% of these cases. The most commonly used antibiotics were penicillins (64.44%). Among all prescriptions, inappropriate antibiotic prescriptions reached 66.19%. Physicians aged over 35, holding the title of associate chief physician and possessing more than 11 years of experience were more likely to prescribe antibiotics inappropriately. The phenomenon of inappropriate antibiotic use was commoner among children aged five or younger. By comparing model parameters, it was determined that the SARIMA model outperforms the Holt-Winters model in predicting the number of inappropriate antibiotic prescriptions among primary care institutions. Conclusion The number and inappropriate rates of antibiotic prescriptions in southwest China exhibited a downward trend from 2017 to 2022, but inappropriate prescription remains a serious problem in primary care institutions. Therefore, future efforts should focus on strengthening physician education, training, and clinical practice. Additionally, physicians' awareness of common misconceptions about inappropriate antibiotic use must be improved, and the prescribing behavior of physicians who fulfill patients' expectations by prescribing antibiotics needs to be modified.
Collapse
Affiliation(s)
- Changlan Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Zhezhe Cui
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi Province, People’s Republic of China
| | - Du Wei
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
- Center of Medicine Economics and Management Research, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Quan Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Junli Yang
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Wenju Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Xiaobo Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Yue Chang
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
- Center of Medicine Economics and Management Research, Guizhou Medical University, Guiyang, Guizhou Province, People’s Republic of China
| |
Collapse
|
23
|
Wu J, Guo S, Li K, Li Z, Xu P, Jones DL, Wang J, Zou J. Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties. CHEMOSPHERE 2023; 336:139272. [PMID: 37343633 DOI: 10.1016/j.chemosphere.2023.139272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Conventional and bio-organic fertilizers play an important role in maintaining soil health and promoting crop growth. However, the effect of organic fertilizers on the prevalence of antibiotic resistance genes (ARGs) in the vegetable cropping system has been largely overlooked. In this study, we investigated the impacts of soil properties and biotic factors on ARG profiles by analyzing ARG and bacterial communities in vegetable copping soils with a long-term history of manure and bio-organic fertilizer application. The ARG abundance in the soil was significantly increased by 116% with manure application compared to synthetic NPK fertilizer application. This finding was corroborated by our meta-analysis that the longer the duration of manure application, the greater the response of increased soil ARG abundance. However, bio-organic fertilizers containing Trichoderma spp. Significantly reduced ARG contamination by 31% compared to manure application. About half of the ARG variation was explained by changes in bacterial abundance and structure, followed by soil properties. The mitigation of ARG by Trichoderma spp. Is achieved by altering the structure of the bacterial community and weakening the close association between bacteria and ARG prevalence. Taken together, these findings shed light on the contribution of bio-organic fertilizers in mitigating ARG contamination in agricultural soils, which can help manage the ecological risk posed by ARG inputs associated with manure application.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shumin Guo
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kejie Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhutao Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pinshang Xu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, 6105, Australia
| | - Jinyang Wang
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Jianwen Zou
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
24
|
Zheng Q, Zhang Y, Wang Y, Yu G. Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. CHEMOSPHERE 2023; 319:138039. [PMID: 36738938 DOI: 10.1016/j.chemosphere.2023.138039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H2O2) from cathodic oxygen (O2) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H2O2-promoted ozone (O3) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O3 exposures were obtained during the EP process than ozonation alone. This opposite change of O3 and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O3 exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment.
Collapse
Affiliation(s)
- Quan Zheng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yinqiao Zhang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Custodio M, Peñaloza R, Ordinola-Zapata A, Peralta-Ortiz T, Sánches-Suárez H, Vieyra-Peña E, De la Cruz H, Alvarado-Ibáñez J. Diversity of enterobacterales in sediments of lagoons with fish farming activity and analysis of antibiotic resistance. Toxicol Rep 2023; 10:235-244. [PMID: 36845256 PMCID: PMC9950807 DOI: 10.1016/j.toxrep.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The use of antibiotics in fish production can induce bacterial populations to develop resistance to multiple antibiotics and transfer antibiotic resistance genes to other bacteria, including clinically relevant bacteria. This study evaluated the diversity of Enterobacterales in sediment from lagoons with fish farming activity and analyzed antibiotic resistance in the central region of Peru. Sediment samples were collected from four fish-active ponds and transported to the laboratory for analysis. Bacterial diversity was analyzed using DNA sequencing and antibiotic resistance was tested using the disk diffusion method. The results showed variability of bacterial diversity in the ponds with fish farming activity. Simpson's index indicated that the Habascocha lagoon is the most diverse in bacterial species of the order Enterobacterales (0.8), but the least dominant. The Shannon-Wiener index revealed that it is the most diverse (2.93) and the Margalef index revealed that species richness in this lagoon is high (5.72). Similarity percentage analysis (SIMPER) allowed the identification of the main Enterobacterales with the highest percentage contribution in the frequencies of individuals. In general, the Enterobacterales species isolated showed multi-resistance to the antibiotics used and Escherichia coli was the most resistant.
Collapse
Affiliation(s)
- María Custodio
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Richard Peñaloza
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | | | | | | | | | - Heidi De la Cruz
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Juan Alvarado-Ibáñez
- Universidad Nacional Intercultural “Fabiola Salazar Leguía” de Bagua, Bagua, Peru
| |
Collapse
|
26
|
Enhancing Visible-Light Photodegradation of TC-HCl by Doping Phosphorus into Self-Sensitized Carbon Nitride Microspheres. Processes (Basel) 2023. [DOI: 10.3390/pr11020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SSCN is a new type of self-sensitive photocatalyst. It consists of oxygenated carbon nitride-containing microspheres inside and polymerized triazine dye (TBO) formed on its surface by in situ polymerization. The presence of TBO endows SSCN with a wide range of optical responses. However, the TBO would self-degrade under light, making SSCN extremely unstable in photocatalytic reactions and limiting the practical application of SSCN. The introduction of phosphorus into the structure of SSCN significantly improved the electron–hole separation efficiency and reduced the self-degradation of surface TBO. Phosphorus-doped self-sensitive carbon nitride microspheres (P-SSCN) are easily synthesized by a one-pot solvothermal method—the phosphorus source was added to the precursor solution of SSCN. This resulting material was used for the photodegradation of tetracycline hydrochloride (TC-HCl) for the first time, giving improved visible light sensitivity and high stability in the photocatalytic process. This provides a new method for modifying self-sensitive carbon nitride carbon.
Collapse
|
27
|
Lachka M, Soltisova K, Nosalova L, Timkova I, Pevna V, Willner J, Janakova I, Luptakova A, Sedlakova-Kadukova J. Metal-containing landfills as a source of antibiotic tolerance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:262. [PMID: 36600113 DOI: 10.1007/s10661-022-10873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
To unveil the potential effect of metal presence to antibiotic tolerance proliferation, four sites of surface landfills containing tailings from metal processing in Slovakia (Hnúšťa, Hodruša, Košice) and Poland (Tarnowskie Góry) were investigated. Tolerance and multitolerance to selected metals (Cu, Ni, Pb, Fe, Zn, Cd) and antibiotics (ampicillin, tetracycline, chloramphenicol, and kanamycin) and interrelationships between them were evaluated. A low bacterial diversity (Shannon-Wiener index from 0.83 to 2.263) was detected in all sampling sites. Gram-positive bacteria, mostly belonging to the phylum Actinobacteria, dominated in three of the four sampling sites. The recorded percentages of tolerant bacterial isolates varied considerably for antibiotics and metals from 0 to 57% and 0.8 to 47%, respectively, among the sampling sites. Tolerances to chloramphenicol (45-57%) and kanamycin (32-45%) were found in three sites. Multitolerance to several metals and antibiotics in the range of 24 to 48% was recorded for three sites. A significant positive correlation (p < 0.05) for the co-occurrence of tolerance to each studied metal and at least one of the antibiotics was observed. Exposure time to the metal (landfill duration) was an important factor for the development of metal- as well as antibiotic-tolerant isolates. The results show that metal-contaminated sites represent a significant threat for human health not only for their toxic effects but also for their pressure to antibiotic tolerance spread in the environment.
Collapse
Affiliation(s)
- M Lachka
- Faculty of Natural Science, University of Ss. Cyril and Methodius in Trnava, Nam. J. Herdu 2, 917 01, Trnava, Slovakia
| | - K Soltisova
- Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54, Košice, Slovakia
| | - L Nosalova
- Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54, Košice, Slovakia
| | - I Timkova
- Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54, Košice, Slovakia
| | - V Pevna
- Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54, Košice, Slovakia
| | - J Willner
- Faculty of Materials Engineering, Silesian University of Technology, Ul. Akademicka 2A, 44 100, Gliwice, Poland
| | - I Janakova
- Faculty of Mining and Geology, VSB Technical University of Ostrava, 17. Listopadu 15, 708 00, Poruba, Ostrava, Czech Republic
| | - A Luptakova
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - J Sedlakova-Kadukova
- Faculty of Natural Science, University of Ss. Cyril and Methodius in Trnava, Nam. J. Herdu 2, 917 01, Trnava, Slovakia.
| |
Collapse
|
28
|
Zhang T, Wang X, Qu Y, Zhang X, Zhang Q, Yang D, Wang Q, Dong Z, Zhao J. Intestinal microbiota perturbations in the gastropod Trochus niloticus concurrently exposed to ocean acidification and environmentally relevant concentrations of sulfamethoxazole. CHEMOSPHERE 2023; 311:137115. [PMID: 36356817 DOI: 10.1016/j.chemosphere.2022.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification (OA) and antibiotic pollution pose severe threats to the fitness of keystone species in marine ecosystems. However, the combined effects of OA and antibiotic pollution on the intestinal microbiota of marine organisms are still not well known. In this study, we exposed the herbivorous gastropod Trochus niloticus, a keystone species to maintains the stability of coral reef ecosystems, to acidic seawater (pH 7.6) and/or sulfamethoxazole (SMX, 100 ng/L, 1000 ng/L) for 28 days and determined their impacts on (1) the accumulation of SMX in the intestine of T. niloticus; (2) the characteristics of the intestinal microbiota in T. niloticus; (3) the relative abundances of sulfonamide resistance genes (i.e., sul1 and sul2) and intI1 in the intestinal microbiota of T. niloticus. Our results show that OA exposure leads to dramatic microbiota dysbiosis in the intestine of T. niloticus, including changes in bacterial community diversity and structure, decreased abundances of dominant species, existences of characteristic taxa, and altered functional predictions. In addition, SMX exposure at environmentally relevant concentrations had little effect on the intestinal microbiota of T. niloticus, whether in isolation or in combination with OA. However, after exposure to the higher SMX concentration (1000 ng/L), the accumulation of SMX in the intestine of T. niloticus could induce an increase in the copies of sul2 in the intestinal microbiota. These results suggest that the intestinal health of T. niloticus might be affected by OA and SMX, which might lead to fitness loss of the keystone species in coral reef ecosystems.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi Qu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China.
| |
Collapse
|
29
|
Ma W, Wang L, Xu X, Huo M, Zhou K, Mi K, Tian X, Cheng G, Huang L. Fate and exposure risk of florfenicol, thiamphenicol and antibiotic resistance genes during composting of swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156243. [PMID: 35643147 DOI: 10.1016/j.scitotenv.2022.156243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Livestock manure is an important source of antibiotic resistance genes (ARGs) spreading to the environment, posing a potential threat to human health. Here, we investigated the dissipation of florfenicol (FF) and thiamphenicol (TAP), and their effects on the bacterial community, mobile genetic elements (MGEs), and ARGs during composting. The results indicated that FF and TAP dissipated rapidly in compost, with half-life values of 5.1 and 1.6 d, respectively. However, FF could not be completely removed during composting. The FF and TAP residues in manure could reduce the elimination of ARGs and MGEs during composting, and had a negative effect on the physicochemical factors of the compost. Significant correlations were found between floR and intI1, indicating that floR in manure may more easily diffuse to the soil environment. Meanwhile, the presence of FF in manure could increase the abundance of floR. Network analysis showed that Proteobacteria and Firmicutes were the dominant bacterial communities and important potential pathogen hosts carrying ARGs. The predicted environmental concentration of FF in the soil was over 100 μg kg-1, which indicates that FF poses a potential risk to the natural environment, and we verified this result through field experiments. The results showed that FF dissipated in the soil after it migrated from manure to soil. In contrast, TAP in manure posed lower environmental risk. This study highlights that changed in composting conditions may control the rate of removal of ARGs. Further studies are needed to investigate the best environmental conditions to achieve a faster degradation of FF and a more comprehensive elimination of ARGs during composting.
Collapse
Affiliation(s)
- Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lei Wang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
30
|
Yang F, Wang Y, Liu Q, Xu B, Chen H, Li Y, Wang K, Liang G, Zhang R, Jiao X, Zhang Y. High Prevalence and Varied Distribution of Antibiotic-Resistant Bacteria in the Rhizosphere and Rhizoplane of Citrus medica. Microorganisms 2022; 10:microorganisms10091708. [PMID: 36144310 PMCID: PMC9501533 DOI: 10.3390/microorganisms10091708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The plant-associated bacteria, including that in the rhizosphere and rhizoplane, play important roles in human exposure to antibiotic-resistant bacteria (ARB). The rhizosphere and rhizoplane represent two distinct environments with different selective pressures for bacterial colonization. However, whether the difference in characteristics between the rhizosphere and rhizoplane can affect the abundance and antibiotic resistance profiles of ARB colonizing, the two environments remain largely unknown. In this study, we obtained 174 bacterial isolates from the rhizosphere (113 isolates) and rhizoplane (61 isolates) of Citrus medica trees grown in a park, where humans could easily and frequently contact the trees. A very high proportion of isolates exhibited resistance to several clinically important antibiotics, including β-lactam class antibiotics and polymyxin, with several known antibiotic-resistant opportunistic pathogens, such as Micrococcus luteus, being identified. The prevalence of ARB in the rhizoplane was higher than that in the rhizosphere. While the prevalence of polymyxin-resistant isolates was higher in the rhizoplane, the prevalence of amphenicol-resistant isolates was significantly higher in the rhizosphere. In summary, our findings suggest that the rhizosphere and rhizoplane are important media for the spread of ARB, and the different characteristics between the two environments can affect the distribution of ARB.
Collapse
Affiliation(s)
- Fang Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Qianwen Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Bo Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yaomen Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Kun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Guixin Liang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Ruiqi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Xin’an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.J.); (Y.Z.); Tel.: +86-5145-87971136 (X.J.); +86-5145-87971136 (Y.Z.)
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.J.); (Y.Z.); Tel.: +86-5145-87971136 (X.J.); +86-5145-87971136 (Y.Z.)
| |
Collapse
|
31
|
Qi Z, Le Z, Han F, Qi Y, Liu R. β-lactamase genes transmission influenced by tetracycline, sulfonamide and β-lactams antibiotics contamination in the on-site farm soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113753. [PMID: 35687999 DOI: 10.1016/j.ecoenv.2022.113753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs), which have been identified as emerging environmental pollutants that pose a considerable risk to human health is widespread. The formation and transmission of ARGs are mainly associated with the antibiotic stress in an environment. And the abundance of ARGs also influenced by other categories antibiotics. The geographic information system was used to visualize the relative abundance of 28 types of ARGs and concentration of 18 types of antibiotics. The concentration of tetracycline antibiotics (TCs) and sulfonamide antibiotics (SAs) decreased gradually with increasing soil depth, while that of β-lactams (β-Ls) showed an increasing trend. The results revealed that TCs accounted for the largest proportion of all antibiotics. Furthermore, the abundance of β-lactam ARGs (β-RGs) increased with TCs and β-Ls increased. The abundance of tetracycline ARGs (TRGs) remained relatively stable with increasing concentrations of all antibiotics, while that of sulfonamide ARGs (SRGs) showed a decreasing trend. Although the abundance of β-RGs significantly increased with increasing levels of TCs and β-Ls. However, β-RGs were not significantly correlated with β-Ls, but with TCs. This study provided visual and comprehensive insights into the correlation between the distribution of typical antibiotics and ARGs and analyzed the synergy or antagonism between different antibiotics and ARGs. It is significant for soil remediation to reduce the likelihood of ARGs entering into and spreading in the human food chain via milk and beef consumption.
Collapse
Affiliation(s)
- Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, 138 Tongda Street, Daoli District, Harbin 150076, China.
| | - Zhiwei Le
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, 138 Tongda Street, Daoli District, Harbin 150076, China
| | - Furui Han
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, 138 Tongda Street, Daoli District, Harbin 150076, China
| | - Yue Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, 138 Tongda Street, Daoli District, Harbin 150076, China
| | - Rijia Liu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, 138 Tongda Street, Daoli District, Harbin 150076, China.
| |
Collapse
|
32
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Effect of Separate and Combined Toxicity of Bisphenol A and Zinc on the Soil Microbiome. Int J Mol Sci 2022; 23:5937. [PMID: 35682625 PMCID: PMC9180857 DOI: 10.3390/ijms23115937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The research objective was established by taking into account common sources of soil contamination with bisphenol A (B) and zinc (Zn2+), as well as the scarcity of data on the effect of metabolic pathways involved in the degradation of organic compounds on the complexation of zinc in soil. Therefore, the aim of this study was to determine the spectrum of soil homeostasis disorders arising under the pressure of both the separate and combined toxicity of bisphenol A and Zn2+. With a broad pool of indicators, such as indices of the effect of xenobiotics (IFX), humic acid (IFH), plants (IFP), colony development (CD), ecophysiological diversity (EP), the Shannon-Weaver and the Simpson indices, as well as the index of soil biological fertility (BA21), the extent of disturbances was verified on the basis of enzymatic activity, microbiological activity, and structural diversity of the soil microbiome. A holistic character of the study was achieved, having determined the indicators of tolerance (IT) of Sorghum Moench (S) and Panicum virgatum (P), the ratio of the mass of their aerial parts to roots (PR), and the SPAD leaf greenness index. Bisphenol A not only failed to perform a complexing role towards Zn2+, but in combination with this heavy metal, had a particularly negative effect on the soil microbiome and enzymatic activity. The NGS analysis distinguished certain unique genera of bacteria in all objects, representing the phyla Actinobacteriota and Proteobacteria, as well as fungi classified as members of the phyla Ascomycota and Basidiomycota. Sorghum Moench (S) proved to be more sensitive to the xenobiotics than Panicum virgatum (P).
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (M.Z.); (A.B.); (J.K.)
| | | | | |
Collapse
|
33
|
Qin X, Zhai L, Khoshnevisan B, Pan J, Liu H. Restriction of biosolids returning to land: Fate of antibiotic resistance genes in soils after long-term biosolids application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119029. [PMID: 35217140 DOI: 10.1016/j.envpol.2022.119029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Although the utilization of biosolids in agricultural lands is widely considered as an effective way to improve resource reuse, the presence of antibiotic resistance genes (ARGs) severely restricts biosolids returning to fields. A 12-year long-term experiment with different biosolids application rates (from 0 to 36 t ha-1 yr-1) was conducted to study the effect of biosolids application on shaping ARGs in soil. Biosolids application significantly increased ARGs abundance in the soil, except for MBS treatment (9 t ha-1 yr-1 biosolids application). The abundance of ARGs in soil did not increase linearly with the dose of biosolids applied, but they were significantly (P < 0.05) positively correlated. A total of 173 subtypes were detected, among them mobile genetic elements (MGEs), aminoglycoside, and multidrug resistance genes were the most dominant types. Except for MBS treatment, most of the ARGs detected were enriched in amended soils after long-term continuous biosolids application. Specifically, tetPA, sul1, mefA, and IS6100 were highly enriched in all amended soils. In addition, biosolids application increased soil nutrients and heavy metals, and changed the soil microbial community, all of which affected ARGs formation. But MGEs may be a greater factor for shaping ARGs profiles than soil properties. Overall, controlling the rate of biosolid application is the key to reducing the accumulation and horizontal transfer of ARGs in soils.
Collapse
Affiliation(s)
- Xuechao Qin
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Limei Zhai
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark
| | - Junting Pan
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hongbin Liu
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| |
Collapse
|
34
|
Liu L, Meng G, Laghari AA, Chen H, Wang C, Xue Y. Reducing the risk of exposure of airborne antibiotic resistant bacteria and antibiotic resistance genes by dynamic continuous flow photocatalytic reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128311. [PMID: 35074752 DOI: 10.1016/j.jhazmat.2022.128311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, based on the dynamic photocatalytic reactor constructed by the new photocatalyst TiO2/MXene, the purification process of different biological particles in aerosol was systematically studied. Multidrug resistant bacteria were easier to inactivate than common bacteria of the same kind, whether under UV conditions or photocatalysis. Photocatalyst was loaded on porous polyurethane sponge filler so that the combined effect of adsorption and advanced oxidation significantly improved the antibiotic resistant bacteria (ARB) disinfection effect. The inactivation efficiency of two ARBs under UV254 increased by 1.2 lg and 2.1 lg. In addition, it was found that the microorganisms treated by UV had slight self-repair phenomenon in a short time, while the microbial activity decreased continuously after photocatalysis. With the addition of photocatalyst, the particle size distribution of airborne Escherichia coli decreased and the micro morphology of cells was more seriously damaged. Antibiotic resistance genes (ARGs) carried by ARB can be dissociated into the environment after cell destruction, but it can be removed at a high level (sul2 can achieve 2.11 lg) in the continuous reactor at the same time. While avoiding secondary pollution, it also provides a powerful solution for airborne ARGs control.
Collapse
Affiliation(s)
- Liming Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| | - Ge Meng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| | - Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| | - Hong Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China.
| | - Yimei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300350, PR China
| |
Collapse
|
35
|
Xu J, Huang J, Yu Y, Zhou D, Wang Y, Xue S, Shang E, Sun J, Ding X, Shi L, Duan L, Tang L, Zhou Q, Li X. The Impact of a Multifaceted Pharmacist-Led Antimicrobial Stewardship Program on Antibiotic Use: Evidence From a Quasi-Experimental Study in the Department of Vascular and Interventional Radiology in a Chinese Tertiary Hospital. Front Pharmacol 2022; 13:832078. [PMID: 35295325 PMCID: PMC8919369 DOI: 10.3389/fphar.2022.832078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of the study was to assess the impact of multifaceted clinical pharmacist-led antimicrobial stewardship (AMS) program on the rational use of antibiotics for patients who receive vascular and interventional radiology therapies. Methods: A quasi-experimental retrospective intervention design with a comparison group was applied to the practice of antibiotic use in the department of vascular and interventional radiology in a Chinese tertiary hospital. We used difference-in-differences (DID) analysis to compare outcomes before and after the AMS intervention between the intervention group and control group, to determine whether intervention would lead to changes in irrationality of antibiotic prescribing, antibiotic utilization, cost of antibiotics, and length of hospital stay. Results: The DID results showed that the intervention group was associated with a reduction in the average consumption of antibiotics (p = 0.017) and cost of antibiotics (p = 0.006) and cost per defined daily dose (DDD) (p = 0.000). There were no significant differences in the mean change of total costs and length of stay between the two groups (p > 0.05). The average inappropriate score of perioperative antimicrobial prophylaxis in the intervention group declined by 0.23, while it decreased by 0.02 in the control group [0.21 (95% CI, -0.271 to -0.143); p = 0.000]. The average inappropriate score of non-surgical antimicrobial prophylaxis in the intervention group declined by 0.14, while it increased by 0.02 in the control group [0.16 (95% CI, -0.288 to -0.035); p = 0.010]. The average inappropriate score of the therapeutic use of antibiotics in the intervention group declined by 0.07, while it decreased by 0.01 in the control group [0.06 (95% CI, -0.115 to -0.022); p = 0.003]. Conclusions: This study provides evidence that implementation of AMS interventions was associated with a marked reduction of antibiotic use, cost of antibiotics, and irrationality of antibiotic prescribing in China.
Collapse
Affiliation(s)
- Jinhui Xu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jian Huang
- Department of Vascular and Interventional Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - YanXia Yu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Dayong Zhou
- Department of Vascular and Interventional Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Wang
- Department of Education and Training, The First Affiliated Hospital of SooChow University, SuZhou, China
| | - Sudong Xue
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Erning Shang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiantong Sun
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lu Shi
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lufen Duan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lian Tang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhou
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xin Li
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. Antibiotics and antibiotic resistance genes in landfills: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150647. [PMID: 34597560 DOI: 10.1016/j.scitotenv.2021.150647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 101407, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yuwei An
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yu Lei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Liyan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; School of resources and environmental engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
37
|
Ding D, Zhu J, Gao Y, Yang F, Ma Y, Cheng X, Li J, Dong P, Yang H, Chen S. Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150685. [PMID: 34600986 DOI: 10.1016/j.scitotenv.2021.150685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health.
Collapse
Affiliation(s)
- Dong Ding
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingyuan Zhu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou 450001, Henan, China; Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Fan Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Ma
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jinlei Li
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Peng Dong
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
38
|
Effects of Chinese medicine herbal residues on antibiotic resistance genes and the bacterial community in chicken manure composting. J Antibiot (Tokyo) 2022; 75:164-171. [DOI: 10.1038/s41429-022-00505-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 01/18/2023]
|
39
|
Tan Z, Abdoulahi MH, Yang X, Zhu Y, Gong B, Li Y. Carbon source type can affect tetracycline removal by Pseudomonas sp. TC952 through regulation of extracellular polymeric substances composition and production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149907. [PMID: 34517307 DOI: 10.1016/j.scitotenv.2021.149907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The objective of this work is to elucidate the mechanism of tetracycline (TC) removal by Pseudomonas sp. TC952. The TC removal characteristics of strain TC952 under various environmental conditions were studied. Results showed that the bio-removal efficiency was significantly affected by initial TC and peptone concentration, pH values, divalent metal ion (Zn2+) and carbon source, and the strain TC952 efficiently removed approximately 72.8% of TC within 6 days with 10 g/L peptone. The best conditions for strain TC952 to remove TC are as follows: initial TC concentration is 50 mg/L, solution initial pH is 7, Zn2+ concentration is 0.1 μg/L, carbon source is peptone. And through intra- and extracellular fractions assay and extracellular polymeric substances (EPS) component analysis, TC removal by strain TC952 was mainly attributed to the adsorption by bacterial EPS and bacterial cell. Furthermore, different carbon source affected the EPS production content and component of strain TC952, so EPS produced under peptone and serine conditions could bio-adsorb TC and formed a buffer area outside the cells, thus reducing or preventing TC from entering the bacteria cells. All the results obtained showed that secretion of EPS and adsorption of TC by EPS and bacterial cell wall may be a common way for bacteria to reduce TC in the environment, which brought novel insights for better management of TC contamination by functional bacteria and for understanding the natural removal process of antibiotics by microorganisms in the environment.
Collapse
Affiliation(s)
- Zewen Tan
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Maman Hassan Abdoulahi
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiuyue Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yanmei Zhu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Beini Gong
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
40
|
Hu Y, Jiang L, Sun X, Wu J, Ma L, Zhou Y, Lin K, Luo Y, Cui C. Risk assessment of antibiotic resistance genes in the drinking water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149650. [PMID: 34426368 DOI: 10.1016/j.scitotenv.2021.149650] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 05/17/2023]
Abstract
Antibiotic resistance genes (ARGs) are extensively detected in various environmental media, whose risk assessment in the drinking water systems has not been comprehensive. This study established a new risk assessment of ARGs in the drinking water systems, considering the chlorine-resistance ability, transferability, and ARGs harboring potential of pathogens. The risk of ARGs in a typical drinking water reservoir was also evaluated based on the detection of ARGs and antibiotic-resistant bacteria (ARB). Fourteen ARGs were detected with a relative concentration range of 10-4-10-3 (ARGs/16S rRNA gene). Five isolated ARB were identified as human opportunistic pathogens, one of which (Pseudomonas aeruginosa HLS-6, CCTCC AB 2017269) is resistant to hundreds of milligrams per liter levels of antibiotics and low-level chlorine. This result indicated that ARB tolerant to high-levels of antibiotics could be isolated from environments containing trace levels of antibiotics. Moreover, complete genome sequencing confirmed the inclusion of ARGs (sul1, aadA2) on the class I integron in HLS-6, indicating that the risk of ARGs in this drinking water reservoir could be classified as resistance risk ranking in drinking water system 1 (R3DW 1). The risk assessment of ARGs in this study provides a clear understanding of ARG risk in drinking water systems. The results reveal that the ARGs and ARB contamination of drinking water reservoirs pose significant challenges for drinking water treatment efficiency and affect drinking water safety.
Collapse
Affiliation(s)
- Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lei Jiang
- National Engineering Research Center of Urban Water Resources, Shanghai 200082, China
| | - Xiaoyan Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
41
|
Ezugworie FN, Igbokwe VC, Onwosi CO. Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147191. [PMID: 33905939 DOI: 10.1016/j.scitotenv.2021.147191] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 05/28/2023]
Abstract
Antibiotic residues together with non-antibiotic drugs and heavy metals act as a selective pressure for the spread of antibiotic-resistant microorganisms (ARMs), antibiotic-resistant genes (ARGs), and mobile genetic elements (MGEs) during composting of livestock manure. ARMs, ARGs and MGEs have become emerging contaminants since they are regularly implicated in the majority of compost produced from livestock manure. The prevalence of these contaminants in agricultural soil receiving compost has drawn huge attention globally due to the risks they pose to the total environment. Although a large body of literature exists on the application of composting methods in minimizing the relative abundance of these contaminants, there is a paucity of information on the robustness, limitations and opportunities and threats of various composting protocols currently deployed. To address this knowledge gap, the current review compiled literature on the origin and mechanisms of the proliferation of ARMs, ARGs, and MGEs during composting of livestock manure. The effectiveness of current composting protocols in the reduction or removal of emerging contaminants was evaluated. Furthermore, the potential environmental impacts and human health risks of these contaminants following land application of compost were also presented. Finally, we propose some strategic approaches for the reduction of ARGs and MGEs during composting of livestock manure.
Collapse
Affiliation(s)
- Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Victor C Igbokwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
42
|
Yang Y, Chen N, Sun L, Zhang Y, Wu Y, Wang Y, Liao X, Mi J. Short-term cold stress can reduce the abundance of antibiotic resistance genes in the cecum and feces in a pig model. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125868. [PMID: 34492815 DOI: 10.1016/j.jhazmat.2021.125868] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive studies on the effects of cold stress on antibiotic resistance genes (ARGs) in the intestines and feces remain scarce. In this study, pigs were selected as the animal model and divided into a normal temperature group and a 48-h short-term cold stress group. The ARG profiles in fecal, cecal content and cecal mucosa samples were analyzed. The results showed that the normalized abundance of ARGs in the cecal mucosa samples in the cold stress group was significantly higher than that in the normal temperature group, while the normalized ARG abundances in the fecal and cecal content samples were significantly lower than those in the normal temperature group (P < 0.05). The bacterial community composition (especially Firmicutes) was the major driver impacting the ARG profile and accounted for 32.2% of the variation in the ARG profile, followed by metabolites (especially creatinine and oxypurinol) and mobile genetic elements (MGEs) (especially plasmids and insertion elements). And it was found that creatinine and oxypurinol can reduce the abundance of ARGs and Firmicutes in the in vitro experiment. The results indicate that short-term cold stress can reduce the abundance of ARGs in the cecum and feces of pigs, providing reference data for environmental safety.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ningxue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
43
|
Jiang X, Liu L, Chen J, Fan X, Xie S, Huang J, Yu G. Antibiotic resistance genes and mobile genetic elements in a rural river in Southeast China: Occurrence, seasonal variation and association with the antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146131. [PMID: 33721645 DOI: 10.1016/j.scitotenv.2021.146131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 05/12/2023]
Abstract
Human activities in rural areas, such as livestock farming, aquaculture, and rural domestic sewage discharge, may result in antibiotic resistance genes (ARGs) pollution in rural rivers. A systematic monitoring in different seasons was conducted in a typical agriculture-polluted river with Real-Time Quantitative PCR. A total of 11 ARGs and 2 related mobile genetic elements (MGEs) were detected at all sites with relative abundances of 6.9 × 10-10-0.2 copies/16S rRNA copies. Among them, sul1, sul2 and int1 were the dominant target genes in water samples. tetW, ermB, and floR were more abundant in November (the dry season), while other ARGs, MGEs and 16s rRNA were at a higher absolute abundance in warm seasons. There was less spatial variation of ARGs in the dry season than in the other two seasons. Furthermore, the relative abundance of ARGs was higher at sampling sites adjoining pollution sources. In addition, cluster analysis implied that ARGs in upstream sediments may be released into surface water and migrate downstream in the direction of river flow. There was no significant correlation between ARGs and their corresponding antibiotics. However, the total concentration of tetracycline was significantly correlated with the non-paired ARGs, including sul3, floR, and ermB. At the same time, heavy metals (Zn, Pb, Cd, Cr6+, As) and other environmental parameters (permanganate index, pH, DO) may apply selective pressure on the spread of ARGs, according to redundancy and Pearson's correlation analysis.
Collapse
Affiliation(s)
- Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Liquan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xueqi Fan
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Chen C, Xu Y, Li X, Zhang W. Effect of a Multispecies Probiotic Mixture on the Growth and Incidence of Diarrhea, Immune Function, and Fecal Microbiota of Pre-weaning Dairy Calves. Front Microbiol 2021; 12:681014. [PMID: 34335503 PMCID: PMC8318002 DOI: 10.3389/fmicb.2021.681014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The effects of different doses of a multispecies probiotic (MSP) mixture on growth performance, the incidence of diarrhea rate and immune function, and fecal microbial diversity and structure were evaluated in pre-weaning Holstein dairy calves at WK2, WK4, WK6, and WK8. Forty Chinese Holstein female newborn calves were randomly assigned to four treatments with 10 calves in each group, C (control group), T1 (0.5 g MSP/calf/day, T2 (1 g MSP/calf/day), and T3 (2 g MSP/calf/day) groups. The experimental period was 56 days. Feed intake and health scoring were recorded every day until the end of the experiment. Fecal contents and blood samples were sampled at WK2, WK4, WK6, and WK8. Growth performance, incidence of diarrhea, and total serum concentrations (IgA, IgG, and IgM) were analyzed. Bacterial 16S rRNA and fungal ITS genes were high-throughput sequenced for fecal microbiota. The relationships among the populations of the principal fecal microbiota at WK2 and the growth performance or serum immunoglobulin concentrations were analyzed using Pearson's rank correlation coefficients. The MSP supplementation reduced the incidence of diarrhea in the first 4 weeks of life, and serum IgA, IgG, and IgM concentrations increased between WK2 and WK8 in the T3 group. There was an increase in growth performance and reduction in the incidence of diarrhea until WK4 after birth in T3 group, compared with the control, T1, and T2 groups. The results of fecal microbiota analysis showed that Firmicutes and Bacteroides were the predominant phyla, with Blautia, Ruminococcaceae_UCG-005, norank_f__Muribaculaceae, Bacteroides, Subdoligranulum, and Bifidobacterium being the dominant genera in calf feces. Aspergillus, Thermomyces, and Saccharomyces were the predominant fungal phyla. Compared with the control, in T1 and T2 groups, the MSP supplementation reduced the relative abundance of Bacteroidetes and increased the relative abundance of Bifidobacterium, Lactobacillus, Collinsella, and Saccharomyces at WK2 in group T3. Thus, the fecal microbial composition and diversity was significantly affected by the MSP mixture during the first 2 weeks of the calves' life. MSP mixtures reduced the incidence of diarrhea in pre-weaning calves (during the first 4 weeks of life). There was a significant improvement in growth performance, reduction in calf diarrhea, balance in the fecal microbiota, and an overall improvement in serum immunity, compared with the control group. We, therefore, recommend adding 2 g/day of multispecies probiotic mixture supplementation in diets of dairy calves during their first 4 weeks of life before weaning.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wenjun Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
45
|
Differences in Gut Microbiome Composition and Antibiotic Resistance Gene Distribution between Chinese and Pakistani University Students from a Common Peer Group. Microorganisms 2021; 9:microorganisms9061152. [PMID: 34072124 PMCID: PMC8229524 DOI: 10.3390/microorganisms9061152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Gut microbiomes play important functional roles in human health and are also affected by many factors. However, few studies concentrate on gut microbiomes under exercise intervention. Additionally, antibiotic resistance genes (ARGs) carried by gut microbiomes may constantly pose a threat to human health. Here, ARGs and microbiomes of Chinese and Pakistanis participants were investigated using 16S rRNA gene sequencing and high-throughput quantitative PCR techniques. The exercise had no impact on gut microbiomes in the 12 individuals investigated during the observation period, while the different distribution of gut microbiomes was found in distinct nationalities. Overall, the dominant microbial phyla in the participants’ gut were Bacteroidota, Firmicutes and Proteobacteria. Some genera such as Prevotella and Dialister were more abundant in Pakistani participants and some other genera such as Bacteroides and Faecalibacterium were more abundant in Chinese participants. The microbial diversity in Chinese was higher than that in Pakistanis. Furthermore, microbial community structures were also different between Chinese and Pakistanis. For ARGs, the distribution of all detected ARGs is not distinct at each time point. Among these ARGs, floR was distributed differently in Chinese and Pakistani participants, and some ARGs such as tetQ and sul2 are positively correlated with several dominant microbiomes, particularly Bacteroidota and Firmicutes bacteria that did not fluctuate over time.
Collapse
|
46
|
Buta M, Hubeny J, Zieliński W, Harnisz M, Korzeniewska E. Sewage sludge in agriculture - the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops - a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112070. [PMID: 33652361 DOI: 10.1016/j.ecoenv.2021.112070] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 05/17/2023]
Abstract
In line with sustainable development principles and in order to combat climate change, which contributes to progressive soil depletion, various solutions are being sought to use treated sewage sludge as a soil amendment to improve soil quality and enrich arable soils with adequate amounts of biogenic compounds. This review article focuses on the effects of the agricultural use of biosolids on the environment. The article reviews the existing knowledge on selected emerging contaminants in treated sewage sludge and describes the impact of these pollutants on the environment and living organisms based on 183 publications selected from over 16,000 papers on related topics published over the last ten years. This study deals not only with chemical contaminants but also genetic determinants of resistance to these compounds. Current research has questioned the agricultural use of biosolids due to the presence of mutual interactions between antibiotics, heavy metals, the genetic determinants of resistance (antibiotic resistance genes - ARGs and heavy metal resistance genes - HMRGs) and non-steroidal anti-inflammatory drugs as well as the risks associated with their transfer to the environment. This study emphasizes the need for more extensive legal regulations that account for other pollutants of environmental concern (PEC), particularly in countries where sewage sludge is applied in agriculture most extensively. Future research should focus on more effective methods of eliminating PEC from sewage sludge, especially from the sludge that is used to fertilize agricultural land, because even small amounts of these micropollutants can have serious implications for the health and life of humans and animals.
Collapse
Affiliation(s)
- Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| |
Collapse
|
47
|
Xu F, Du W, Carter LJ, Xu M, Wang G, Qiu L, Zhu J, Zhu C, Yin Y, Ji R, Banwart SA, Guo H. Elevated CO 2 concentration modifies the effects of organic fertilizer substitution on rice yield and soil ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141898. [PMID: 32916483 DOI: 10.1016/j.scitotenv.2020.141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance and rising CO2 levels are considered among the most significant challenges we will face in terms of global development over the following decades. However, the impact of elevated CO2 on soil antibiotic resistance has rarely been investigated. We used a free-air CO2 enrichment system to investigate the potential risks posed by applying mineral and organic fertilizers to paddy soil at current CO2 concentration (370 ppm) and future elevated CO2 (eCO2, 570 ppm predicted for 2100). Organic fertilizer substitution (substituting the mineral fertilizer by 50% N) alone increased the plant uptake and soil residue of sulfamethazine, and enriched sulfonamide resistance genes (sul1, sul2), tetracycline resistance genes (tetG, tetM) and class 1 integron (intl1). But it decreased the rice grain yield (by 7.6%). Comparatively, eCO2 decreased the sul2, tetG and intl1 gene abundances by organic fertilizer substitution, and meanwhile increased grain yield (by 8.4%). Proteobacteria and Nitrospirae were potential hosts of antibiotic resistance genes (ARGs). Horizontal gene transfer via intl1 may play an important role in ARGs spread under eCO2. Results indicated that future elevated CO2 concentration could modify the effects of organic fertilizer substitution on rice yield and soil ARGs, with unknown implications for future medicine and human health.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Meiling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Linlin Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Steven A Banwart
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; Global Food and Environment Institute, University of Leeds, Leeds LS2 9JT, UK
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
48
|
Zhong C, Zhou Y, Zhao J, Fu J, Jiang T, Liu B, Chen F, Cao G. High throughput sequencing reveals the abundance and diversity of antibiotic-resistant bacteria in aquaculture wastewaters, Shandong, China. 3 Biotech 2021; 11:104. [PMID: 33552832 PMCID: PMC7847479 DOI: 10.1007/s13205-021-02656-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
An innovative investigation was undertaken into the abundance and diversity of high antibiotic-resistant bacteria in aquaculture waters in Shandong Province, China, through cumulation incubation, PCR amplification of 16S rDNA, and high-throughput sequencing. The results showed that Vibrio, Bacillus, Vagococcus, Acinetobacter, Shewanella, Psychrobacter, Lactococcus, Enterococcus, Marinimonus and Myroids were abundant in the aquaculture waters, whereas other phylum including Actinobacteria, Deinococcus-Thermus, Omnitrophica and Nitrospirae had relatively lower abundance. Our studies revealed the presence of different bacteria in different locations in the aquaculture waters, most of which were resistant to multiple antibiotics. That is, the same microbial species from the same aquaculture wastewater can resist different antibiotics. Altogether, a considerable portion of the microbial community were found to be multi-drug resistant. It is essential that the spread of the antibiotic-resistant bacteria is controlled so that the distribution of antibiotic resistance genes to other environments is avoided. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02656-4.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Yingping Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jia Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jiafang Fu
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Bing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Feiyong Chen
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
49
|
Yang Y, Chen Y, Cai Y, Xing S, Mi J, Liao X. The relationship between culturable doxycycline-resistant bacterial communities and antibiotic resistance gene hosts in pig farm wastewater treatment plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111164. [PMID: 32858327 DOI: 10.1016/j.ecoenv.2020.111164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Pig farm wastewater treatment plants (WWTPs) are an important repository for resistant bacterial communities (RBCs) and antibiotic resistance genes (ARGs). However, the relationship between RBCs and ARG hosts has not been well characterized. In this study, water samples from influent and effluent from five pig farm WWTPs were collected. Gradient concentrations of doxycycline (DOX) were used to screen the culturable RBCs. The abundance of 21 subtypes of ARGs and the bacterial community were investigated. This study detected a large number of culturable DOX-RBCs and ARGs in the influent and effluent of pig farm WWTPs. The abundances of ARGs and RBCs in all effluent samples was significantly lower than that in the influent samples (P < 0.05), which indicated that the WWTPs can effectively remove most ARGs and RBCs in pig farm wastewater. The main potential culturable RBCs in pig farm wastewater were the dominant bacteria Proteobacteria, Actinobacteria, Pseudomonas, and Rheinheimera. However, most of the ARGs were mainly present in Bacteroidetes, Actinobacteria, Corynebacteriaceae, Macellibacteroides, Acinetobacter, and Enterobacteriaceae, which are considered potential ARG hosts. The results presented here showed that there were obvious differences between the species of culturable DOX-RBCs and ARG hosts in the pig farm WWTPs, which may be due to various environmental factors. This highlights the urgent need for further research on the relationship between RBCs and ARG hosts.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Yingxi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Yingfeng Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Sicheng Xing
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
50
|
Yang Y, Wu R, Hu J, Xing S, Huang C, Mi J, Liao X. Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes. ENVIRONMENT INTERNATIONAL 2020; 143:105897. [PMID: 32615347 DOI: 10.1016/j.envint.2020.105897] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The anoxic-oxic (A/O) wastewater treatment process that is widely used in pig farms in China is an important repository for antibiotic resistance genes (ARGs). However, the distribution of ARGs and their hosts in the A/O process has not been well characterized. In this study, the wastewaters in the anoxic and oxic tanks for A/O processes were collected from 38 pig farms. The concentrations of 20 subtypes of ARGs, 5 denitrification-related genes, 2 integrons, and bacterial community composition were investigated. Bacterial genome binning was performed using metagenome sequencing. In this study, 20 subtypes of ARGs and integrons were detected in all sampling sites. A total of 16 of the 20 subtypes of ARGs were detected with the highest abundance in anoxic tanks, and sul1 was detected with a maximum average abundance of 19.21 ± 0.24 log10 (copies/mL). Cooccurrence patterns were observed for some genes in the pig farm A/O process, such as sul1 and intl1, sul1 and tetG, and tetO and tetW. There was a significant cooccurrence pattern between the dominant denitrifying bacteria and some ARGs (blaTEM, ermB, tetC, tetH and tetQ), so the dominant denitrifying bacteria were considered to be potential ARG hosts. In addition, 170 highly abundant bacterial genome bins were assembled and further confirmed that the denitrifying bacteria Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter were the important ARG hosts in the pig farm A/O process, providing a useful reference for the surveillance and risk management of ARGs in pig farm wastewater.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ruiting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Sicheng Xing
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chunbo Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou 510642, China.
| |
Collapse
|