1
|
Ferdowsi M, Khabiri B, Buelna G, Jones JP, Heitz M. Prolonged operation of a methane biofilter from acclimation to the failure stage. ENVIRONMENTAL TECHNOLOGY 2024; 45:2589-2598. [PMID: 36789628 DOI: 10.1080/09593330.2023.2179421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Global warming needs immediate attention to reduce major greenhouse gas emissions such as methane (CH4). Bio-oxidation of dilute CH4 emissions in packed-bed bioreactors such as biofilters has been carried out over recent years at laboratory and large scales. However, a big challenge is to keep CH4 biofilters running for a long period. In this study, a packed-bed lab-scale bioreactor with a specialized inorganic-based filter bed was successfully operated over four years for CH4 elimination. The inoculation of the bioreactor was the active leachate of another CH4 biofilter which resulted in a fast acclimation and removal efficiency (RE) reached 80% after seven weeks of operation for CH4 inlet concentrations ranging from 700 to 800 ppmv and an empty bed residence time (EBRT) of 6 min. During four years of operation, the bioreactor often recorded REs higher than 65% for inlet concentrations in the range of 1900-2200 ppmv and an EBRT of 6 min. The rate and interval of the nutrient supply played an important role in maintaining the bioreactor's high performance over the long operation. Forced shutdowns were unavoidable during the 4-year operation and the bioreactor fully tolerated them with a partial recovery within one week and a progressive recovery over time. In the end, the bioreactor's filter bed started to deteriorate due to a long shutdown of twelve weeks and the extended operation of four years when the RE dropped to below 8% with no sign of returning to its earlier performance.
Collapse
Affiliation(s)
- Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Bahman Khabiri
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Huang D, Chen Y, Bai X, Zhang R, Chen Q, Wang N, Xu Q. Methane removal efficiencies of biochar-mediated landfill soil cover with reduced depth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120487. [PMID: 38422848 DOI: 10.1016/j.jenvman.2024.120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Biochar amendment for landfill soil cover has the potential to enhance methane removal efficiency while minimizing the soil depth. However, there is a lack of information on the response of biochar-mediated soil cover to the changes in configuration and operational parameters during the methane transport and transformation processes. This study constructed three biochar-amended landfill soil covers, with reduced soil depths from 75 cm (C2) to 55 cm (C3) and 45 cm (C4), and the control group (C1) with 75 cm and no biochar. Two operation phases were conducted under two soil moisture contents and three inlet methane fluxes in each phase. The methane removal efficiency increased for all columns along with the increase in methane flux. However, increasing moisture content from 10% to 20% negatively influenced the methane removal efficiency due to mass transfer limitation when at a low inlet methane flux, especially for C1; while this adverse effect could be alleviated by a high flux. Except for the condition with low moisture content and flux combination, C3 showed comparable methane removal efficiency to C2, both dominating over C1. As for C4 with only 45 cm, a high moisture content combined with a high methane flux enabled its methane removal efficiency to be competitive with other soil depths. In addition to the geotechnical reasons for gas transport processes, the evolution in methanotroph community structure (mainly type I methanotrophs) induced by biochar amendment and variations in soil properties supplemented the biological reasons for the varying methane removal efficiencies.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China; School of Ecology, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 0020518107, China
| | - Yuke Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Rujie Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Ferdowsi M, Khabiri B, Buelna G, Jones JP, Heitz M. Air biofilters for a mixture of organic gaseous pollutants: an approach for industrial applications. Crit Rev Biotechnol 2023; 43:1019-1034. [PMID: 36001040 DOI: 10.1080/07388551.2022.2100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Hazardous airborne pollutants are frequently emitted to the atmosphere in the form of a gaseous mixture. Air biofilters as the primary biotechnological choice for waste gas treatment (low inlet concentration and high gas flow rate) should run properly when the feed contains multiple pollutants. Simultaneous removal of pollutants in biofilters has been extensively studied over the last 10 years. In this review, the results and findings of the mentioned studies including different groups of pollutants, such as methane (CH4) and volatile organic compounds (VOCs) are discussed. As the number of pollutants in a mixture increases, their elimination might become more complicated due to interactions between the pollutants. Parallel batch studies might be helpful to better understand these interaction effects in the absence of mass transfer limitations. Setting optimum operating conditions for removal of mixtures in biofilters is challenging because of opposing properties of pollutants. In biofilters, concerns, such as inlet gas composition variation and stability while dealing with abrupt inlet load and concentration changes, must be managed especially at industrial scales. Biofilters designed with multi-layer beds, allow tracking the fate of each pollutant as well as analyzing the diversity of microbial culture across the filter bed. Certain strategies are recommended to improve the performance of biofilters treating mixtures. For example, addition of (bio)surfactants as well as a second liquid phase in biotrickling filters might be considered for the elimination of multiple pollutants especially when hydrophobic pollutants are involved.
Collapse
Affiliation(s)
- Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bahman Khabiri
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Jawad J, Khalil MJ, Sengar AK, Zaidi SJ. Experimental analysis and modeling of the methane degradation in a three stage biofilter using composted sawdust as packing media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112214. [PMID: 33639422 DOI: 10.1016/j.jenvman.2021.112214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Methane gas is a very effective greenhouse gas and the second-largest contributor to global warming. Biofiltration is an effective technology that uses microorganisms to degrade the pollutant by oxidizing it. In this work, the performance of a biofilter with supporting filter media, consisting of composted sawdust, is evaluated at three different sampling ports. Furthermore, a transient model is developed to predict methane concentration at various heights and times. The developed model is validated with the experimental data and shows good agreement with the experimental data. The highest removal efficiency and elimination capacity was found to be 72% and 0.108 g m-3 h-1 respectively. The effect of parameters such as specific surface area, the reaction rate constant, biofilm thickness and airflow rate were studied on the outlet methane concentration. Under similar conditions, the simulations showed that the removal efficiency of 95% might be achieved for the height of 2 m.
Collapse
Affiliation(s)
- Jasir Jawad
- Centre for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohd Junaid Khalil
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh, 202002, India.
| | - Anoop Kumar Sengar
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh, 202002, India
| | - Syed Javaid Zaidi
- Centre for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
5
|
Assessment of the Composition of Forest Waste in Terms of Its Further Use. MATERIALS 2021; 14:ma14040973. [PMID: 33670829 PMCID: PMC7922906 DOI: 10.3390/ma14040973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023]
Abstract
This paper presents the results of the analysis of the chemical composition and content of heavy metal contamination in forest logging residues, in order to assess the possibility for their further utilisation. The samples were divided into 9 groups, which included coniferous tree cones, wood, and other multi-species logging residues. The elementary composition, ash content, and calorific value were determined as energy use indicators for the samples. Additionally, the content of heavy and alkali metals, which may affect combustion processes and pollutant emissions, was tested. The high content of heavy metals may also disqualify these residues for other uses. The research shows that the test residues are suitable for energy use due to their high calorific value and low content of heavy metals. However, an increased ash content in some samples and the presence of alkali metals, causing high-temperature corrosion of boilers, may disqualify them as a potential fuel in the combustion process. The forest residues may be used in other thermal processes such as pyrolysis or gasification. A low content of heavy metals and a high content of organic matter permit the use of these residues for the production of adsorbents or composite materials.
Collapse
|