1
|
Mohamed E, Ren J, Tao L, Mala A. Assessment the impact of palygorskite modified by chlorides on speciation and environmental risk of heavy metals in soil contaminated. Sci Rep 2025; 15:12505. [PMID: 40216799 PMCID: PMC11992066 DOI: 10.1038/s41598-024-75359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 04/14/2025] Open
Abstract
This study aims to evaluate the effectiveness of palygorskite (PAL) modified with various chlorides (PMNaCl), (PMCaCl2), (PMMgCl2), (PMFeCl3) and (PMAlCl3) in stabilizing Cu and Ni in contaminated soils. Characterization methods involving Scanning Electron Microscopy (SEM), X-ray deflection (XRD and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterize the effects of palygorskite on the chemical functional groups of chloride stick and the construction of stabilizers. The Diethylene Triamine Pentaacetic Acid ("DTPA extraction") and Toxicity Characteristic Leaching Procedure (TCLP) were conducted to assess the bioavailability and mobility of Cu and Ni in soil with PAL-modified chlorides. The germinated index (GI) was employed to examine and analyze the microstructure and physico-chemical properties of the contaminated soil. The residue speciation concentration enhanced substantially, illustrating that the heavy metal speciation had stabilized after being with PAL-modified chloride. After the amendment of the PAL-modified chlorides the soil pH was enhanced by 1.33 units, whereas Electrical Conductivity (EC) increased significantly (P < 0.05) from 2.61 to 4.95 µS cm-1, Cation Exchange Capacity (CEC) increased significantly (P < 0.05) from 11.50 to 13.00 cmol/kg, while the available potassium (K) was significantly (P < 0.05) increased from 51.67 to 69.30, and the available phosphate (P) was significantly (P < 0.05) increased from 0.38 to 0.63. The most significant Sequential Extraction Procedure (BCR) in residual fraction for Cu and Ni in soil treated by PMFC and PMMC were significantly (P < 0.05) increased by 37.37% and 39.33%, respectively. Our findings indicate that PAL-modified chlorides significantly stabilize heavy metals in soil, making them promising candidates for soil remediation.
Collapse
Affiliation(s)
- Elnour Mohamed
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Jun Ren
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China.
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China.
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou, 730070, P.R. China.
| | - Ling Tao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou, 730070, P.R. China
| | - Azizza Mala
- Center for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
2
|
Fan M, Liang H. Soil health assessment of dressing and smelting slag field based on heavy metal pollution-buffer-fertility three aspects. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136602. [PMID: 39579706 DOI: 10.1016/j.jhazmat.2024.136602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The soil health of heavy metals in dressing and smelting slag field varies soil physicochemical properties. This study proposed a new soil health index based on heavy metal pollution-buffer-fertility for dressing and smelting slag field. Consequently, spatial distribution of soil physicochemical properties and heavy metals were varied, and correlated to each other. Soil buffer function and fertility played a much more important role in soil health in the dressing and smelting slag field located in Gejiu city, which can result in that soil health indexes were higher than those in Huili county, although the soil heavy metal pollution in the former was severer than that in the latter. Maximum values of soil health indexes for dressing and smelting slag field in Gejiu city were 3.84, 0.61, and 1.75 corresponding to additive, multiplicative, and maximum value composite methods, which were higher than those in Huili county with 2.25, 0.61, and 0.17. The former's high value is concentrated in southeastern regions and low value in some western areas, the latter's high value occurred in southeastern districts and low value in northwestern places. So this study unveils a novel perspective on the soil health consequences associated with soil heavy metal pollution-buffer-fertility three aspects.
Collapse
Affiliation(s)
- Min Fan
- School of Environment and Resource, Southwest University of Science and Technology, Number 59, Middle of Qinglong Road, Fucheng District, Mianyang, Sichuan 621-010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China.
| | - Huili Liang
- School of Environment and Resource, Southwest University of Science and Technology, Number 59, Middle of Qinglong Road, Fucheng District, Mianyang, Sichuan 621-010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| |
Collapse
|
3
|
Zhou W, Li Z, Liu Y, Shen C, Tang H, Huang Y. Soil type data provide new methods and insights for heavy metal pollution assessment and driving factors analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135868. [PMID: 39341194 DOI: 10.1016/j.jhazmat.2024.135868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Assessing heavy metal pollution and understanding the driving factors are crucial for monitoring and managing soil pollution. This study developed two modified assessment methods (NIPIt and NECI) based on soil type-specific background values and pollution indices, and combined them with the receptor model to evaluate pollution status. Additionally, a structural equation model was used to analyze the driving factors of soil heavy metal pollution. Results showed that the average NIPIt and NECI were 1.48 and 0.92, respectively, indicating a low pollution risk level. In some areas, Cd and Hg were the primary heavy metals contributing to pollution risk, with their highest average concentrations exceeding soil type-specific background values by 2.06 and 2.04 times, respectively. Additionally, in black soils, meadow soils, and chernozems, heavy metals primarily originated from natural sources, accounting for 48.92 %, 45.98 %, and 45.58 %, respectively. In aeolian soils, agricultural sources were predominant, contributing 43.38 %. Soil pH and organic matter were key soil properties affecting NECI and NIPIt, with direct effects of 0.36 and -0.19, respectively. This study aims to provide new methods and insights for the comprehensive assessment and driving factors analysis of soil heavy metal pollution, with the goal of enhancing pollution monitoring and reducing risk.
Collapse
Affiliation(s)
- Wentao Zhou
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaizhi Tang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Min F, Wang X, Li L, Xin Z, Li X, Zhang T, Sun X, You H. Effects of silicate stabilizers on cadmium reduction and the quality of rice grains in acidic paddy soil. Sci Rep 2024; 14:20551. [PMID: 39232064 PMCID: PMC11374993 DOI: 10.1038/s41598-024-71741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Silicate has been proven to be highly-effective at immobilizing soil heavy metals, but the effects of silicate stabilizers on rice grain cadmium (Cd) reduction and rice quality under field conditions are not clear. In this study, a field experiment was conducted over three consecutive years was conducted to examine the Cd reduction in rice grains and to reveal the potential effects of silicate stabilizers on rice grain nutrients, by setting different amounts of bentonite (B), silica‒calcium fertilizer (SC) and zeolite powder (ZP). The results revealed that the application of the B, SC and ZP significantly decreased the soil CaCl2‒Cd concentration (> 39%) and significantly reduced the grain Cd concentration in both early rice (> 70%) and late rice (> 18%) under field conditions; the silicate stabilizers reduced the soil available iron (Fe) but did not limit rice grain Fe nutrition. Additionally, the three silicates promoted rice yield and improved the rice grain Ca and Mg contents; and the application of B increased the amylose concentration of the late rice grains. In conclusion, high amounts of silicate stabilizers did not adversely influence the soil conventional nutrient indices, rice minerals or rice taste, but changes in rice selenium content need attention. Overall, in comparison with lime, silicate stabilizers can improve not only the safety of rice but also the nutritional and taste qualities of rice and are more eco-friendly for long-term use in soil.
Collapse
Affiliation(s)
- Fangfang Min
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang, 330029, China
| | - Xiyang Wang
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Liang Li
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Zaijun Xin
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaohui Li
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Tao Zhang
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Hailin You
- Jiangxi Engineering and Technology Research Center of Eco-Remediation of Heavy Metal Pollution, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| |
Collapse
|
5
|
Sanaei D, Sarmadi M, Dehghani MH, Sharifan H, Ribeiro PG, Guilherme LRG, Rahimi S. Towards engineering mitigation of leaching of Cd and Pb in co-contaminated soils using metal oxide-based aerogel composites and biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2110-2124. [PMID: 37916297 DOI: 10.1039/d3em00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Applications of metal-based nanomaterials for the remediation of heavy metal (HM) contaminated environments are of great importance. The ability of metal oxide-based carbon aerogel composite to immobilize HMs in multi-metal contaminated soils has not yet been investigated, particularly under acidic conditions. Herein, we investigate the performance of metal oxides (Sr0.7 Mn0.3 Co0.5 Fe0.5O3-δ)-based carbon aerogel composite (MO-CAg) compared with coconut coil fiber biochar (CCFB) and carbon aerogel (CAg) for Cd and Pb immobilization in contaminated soil. The MO-CAg, applied at 2% (w/w), significantly decreased Pb leaching by 67-75% and Cd by 60-65%, CAg decreased Cd by 54% and Pb by 46%, while biochar decreased Cd by 40-44% and Pb by 43%. The addition of MO-CAg altered Cd and Pb geochemical fractions by increasing their residual fraction, i.e., stabilized both metals compared to the control. This presents a comprehensive elaboration on the probable reaction interactions between the MO-Cag and heavy metals, including a combination of (co)precipitation, and reduction-oxidation as the predominant mechanisms of metal stabilization with MO-CAg. Moreover, MO-CAg increased Pb and Cd stabilization in soils by strengthening the bonding between metal oxides and Cd/Pb. By imbedding MO into the CAg, in MO-CAg, the immobilization of Cd(II) and Pb(II) occurred through inner-sphere complexation, while with CCFB and CAg metals, immobilization occurred through outer-sphere complexation. MO-CAg is a promising and highly efficient material that could be recommended for the remediation of Cd- and Pb-contaminated soils in subsequent studies.
Collapse
Affiliation(s)
- Daryoush Sanaei
- Faculty of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad H Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Science, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | - Paula G Ribeiro
- Instituto Tecnológico Vale, Boaventura da Silva 955, Belém, PA 66055090, Brazil
| | - Luiz R G Guilherme
- School of Agricultural Science, Federal University of Lavras, Lavras, MG, Brazil
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
6
|
Sun Q, Yang H, Feng X, Liang Y, Gao P, Song Y. Synchronous stabilization of Pb, Zn, Cd, and As in lead smelting slag by industrial solid waste. CHEMOSPHERE 2023; 339:139755. [PMID: 37567265 DOI: 10.1016/j.chemosphere.2023.139755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In order to prevent heavy metal (HM) pollution from lead smelting slag (LSS) to the surrounding environment, this work investigated the feasibility, influencing factors, and mechanisms of using industrial solid waste such as fly ash (FA), oil sludge pyrolysis residue (PR), and steel slag (SS) as remediation amendments. The results demonstrated that the stabilization process was influenced by the material dosage, water content, and LSS particle size. Compared to single materials, the combination amendment PR2FA1 (with a mass ratio of PR to FA as 2:1) exhibited the best stabilization effect, simultaneously reducing the leaching concentrations of As, Zn, Cd, and Pb in LSS to 0.032, 0.034, 0.002, and 0.014 mg/L, respectively. The pH value of the leachate remained between 8 and 9, which met the requirements of surface water quality class IV (GB3838-2002). Through morphological analysis, microscopic characterization, and simulated solution adsorption experiments, it was determined that the stabilization process of HMs was controlled by various mechanisms, including electrostatic attraction, physical adsorption, ion exchange, and chemical precipitation. PR2FA1 had more active components, and its fine-porous structure provided more active sites, resulting in good stabilization performance for As, Zn, Cd, and Pb. Furthermore, cost analysis showed that PR2FA1, as an environmentally friendly material, could generate profits of 157.2 ¥/ton. In conclusion, the prepared PR2FA1 not only addressed the HMs pollution from lead smelting slag to the surrounding environment but also achieved the safe and resourceful disposal of hazardous waste-oil sludge. Its excellent performance in stabilizing HMs and cost-effectiveness suggested promising commercial applications.
Collapse
Affiliation(s)
- Qiwei Sun
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huifen Yang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xiaodi Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuhao Liang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pu Gao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingliang Song
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Li G, Liu Y, Huang W, Chen L, Héroux P, Liu Y. Simultaneous remediation of arsenic and organic chemicals contaminated soil and groundwater using chemical oxidation and precipitation/stabilization: a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86478-86483. [PMID: 37432574 DOI: 10.1007/s11356-023-28604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
After the departure of industrial facilities, reuse of the land in developed cities in China is problematic, due to the land contamination issues. The rapid remediation of sites with complex contamination is crucial and urgently needed. Herein, the case of on-site remediation of arsenic (As) in soil, as well as benzo(a)pyrene, total petroleum hydrocarbons, and As in groundwater was reported. For contaminated soil, the oxidant and deactivator (consisting of 20% sodium persulfate, 40% ferrous sulfate (FeSO4), and 40% portland cement) were applied to oxidize and immobilize As. As a result, the total amount and lixivium concentration of As were constrained under 20 mg/kg and 0.01 mg/L, respectively. Meanwhile, for contaminated groundwater, As and organic contaminants were treated by FeSO4/ozone and FeSO4/hydrogen peroxide with mass ratios of 1:5 and 1:8, respectively. The continuous monitoring of contaminants in 22 monitoring wells shown that all contaminants in groundwater were treated to meet the standards. In addition, the risk of secondary pollution and operation cost was effectively reduced by proper disposal and resourceful utilization. The findings indicated that the method of oxidation and precipitation/stabilization is technically, environmentally, and economically feasible for the remediation of contaminated sites with similar complex pollutants.
Collapse
Affiliation(s)
- Guoqing Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
- Shanghai institute of pollution control and ecological security, Shanghai, 200092, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
- Shanghai institute of pollution control and ecological security, Shanghai, 200092, China
| | - Wei Huang
- Shanghai Energy Conservation of Environment Co., Ltd., Taolin Road No. 18, Shanghai, 200135, China
| | - Luhai Chen
- Shanghai Jinxiang Environmental Technology Co., Ltd., Zhongjiang Road No. 388, Shanghai, 200062, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
- Shanghai institute of pollution control and ecological security, Shanghai, 200092, China.
| |
Collapse
|
8
|
Xu J, Li L, Wang H, Gao Z, Wang C, Sun R, Zhang Y, Xu W, Hou X, Xu R. Adsorption Characteristics of Indigenous Chromium-Resistant Aspergillus niger Strain Isolated from Red Soil for Remediation of Toxic Chromium in Red Soil Environments. TOXICS 2022; 11:31. [PMID: 36668757 PMCID: PMC9866775 DOI: 10.3390/toxics11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The microbial treatment of soil has great potential to reduce chromium pollution. Here, an indigenous chromium-resistant Aspergillus niger strain (A1) was isolated and screened from heavily chromium-contaminated red soil in Yunnan Province, China using a traditional isolation method and a selective culture experiment. The molecular identification of A1 was achieved using 18S rRNA sequencing. The tolerance of the strain to toxic chromium was evaluated through pure laboratory culture. The adsorption effect and mechanism of A1 on chromium in red soil were further studied. The study concluded that A1 exhibited strong activity with exposure to 500 mg·L-1 Cr6+. Chromium adsorption by A. niger occurred mainly through intracellular metabolism, surface complexations with EPS, and chemical reduction with -C=C-, -OXuH, NH2, and -C=0. The optimized results showed that A1 had the best Cr6+ removal effect at pH 4, 40 °C, and a 60 h culture time. Compared with the inoculating of exogenous microbial agents, after inoculating A1 into the chromium-contaminated red soil, Cr6+ content was significantly reduced, and the high-toxicity chromium state (water-soluble and exchange states) decreased, whereas the low-toxicity chromium state (precipitation and residue states) increased. The results of red soil ITS also showed that the inoculation of indigenous microorganisms can better colonize the red soil. This study proves the feasibility of the application of indigenous A. niger to address red soil chromium pollution and provides a new idea and theoretical support for red soil remediation.
Collapse
Affiliation(s)
- Jiwei Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Lumeng Li
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Zhanyuan Gao
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Chuanshu Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Rong Sun
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Wumei Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Xiying Hou
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| |
Collapse
|
9
|
Kumar V, Radziemska M. Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3725-3742. [PMID: 34811628 DOI: 10.1007/s10653-021-01157-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The pollution of toxic elements (TEs) in the ecosystem exhibits detrimental effects on the human health. In this paper, we debated remediation approaches for TEs polluted soils via immobilization methods employing numerous amendments with reverence to type of soil and metals, and amendment, immobilization competence, fundamental processes and field applicability. We argued the influence of pH, soil organic matter, textural properties, microbes, speciation and biochar on the bioavailability of TEs. All these properties of soil, microbes and biochar are imperative for effective and safe application of these methods in remediation of TEs contamination in the ecosystem. Further, the application of physiochemical properties, microbes and biochar as amendments has significant synergistic impacts not only on absorption of elements but also on diminution of toxic elements.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
10
|
Guan X, Yuan X, Zhao Y, Wang H, Wang H, Bai J, Li Y. Application of functionalized layered double hydroxides for heavy metal removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155693. [PMID: 35526616 DOI: 10.1016/j.scitotenv.2022.155693] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Layered double hydroxides (LDHs) are ionic laminar composites composed of positively charged brucite-like layers with an interlayered region containing charged compensating anions and solvation molecules. Such functional LDHs materials present a strong potential for heavy metal treatment especially for wastewater and soil, due to the large surface area and layered structure. This paper started with the background of techniques for heavy metals treatment and then discussed the potential environmental toxic effects, feasibility, stability of LDH composites. The preparation strategies of LDHs composites, and their application were summarized, followed by main mechanisms involving chelation, complexation, surface precipitation, ion exchange. This work also presented the potential environmental toxic effects, feasibility, stability of LDHs composites, reuse of waste liquid and the ratio adjustment of M2+ and N3+ for LDHs synthesis. While most efforts focused on improving the absorption capacity of LDHs by composites construction, ignoring the toxicity effects and detailed mechanism investigation. Based on a thorough review of the latest development, the challenges and perspectives would be proposed, offering promising insights on environmental purification via LDHs based materials.
Collapse
Affiliation(s)
- Xian Guan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; School of Civil and Environmental, Hunan University of Science and Engineering, Yongzhou 425199, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hui Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Jing Bai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ying Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
11
|
Zhang H, Jiang L, Wang H, Li Y, Chen J, Li J, Guo H, Yuan X, Xiong T. Evaluating the remediation potential of MgFe 2O 4-montmorillonite and its co-application with biochar on heavy metal-contaminated soils. CHEMOSPHERE 2022; 299:134217. [PMID: 35288182 DOI: 10.1016/j.chemosphere.2022.134217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel and efficient magnesium ferrite-modified montmorillonite (MgFe2O4-MMT) compound was prepared. MgFe2O4-MMT and biochar were mixed at 0:10, 1:9, 3:7, 4:6, and 10:0 w/w combinations and were used for heavy metal immobilization in soil polluted with multiple heavy metals. MgFe2O4-MMT can significantly increase soil alkalinity, and it exhibited the most optimal effect in immobilization of heavy metals in soil. The amounts of Cd, Pb, Cu, and Zn that were extracted by the toxicity characteristic leaching procedure (TCLP) decreased by 58.4%, 50.3%, 42.9%, and 24.7%, respectively. MgFe2O4-MMT can immobilize heavy metals through electrostatic interactions and cation exchange processes. Although, the immobilization of potentially toxic elements by MgFe2O4-MMT and biochar was inferior to that by MgFe2O4-MMT. The combined application of MgFe2O4-MMT and biochar dramatically increased the diversity and richness of the soil bacterial community. The Chao1 index for M3B7 treatment group was 1.7 and 1.2 times higher than that for the control and MgFe2O4-MMT treatment groups, respectively. The combination of biochar and MgFe2O4-MMT might be a cost-effective and ecological remediation approach for mild Pb and Cd contamination.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Yifu Li
- School of Hydraulic Engineering, Changsha University of Science & Technology, 410004, Changsha, PR China
| | - Jie Chen
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Juanyong Li
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Hai Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Ting Xiong
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
- Institute of Digital Intelligence and Smart Society, Hunan University of Technology and Business, Changsha, 410205, PR China
| |
Collapse
|
12
|
Dang VM, Van HT, Vinh ND, Hoa Duong TM, Hanh Nguyen TB, Nguyen TT, Ha Tran TN, Hoang TK, Tran TP, Nguyen LH, Chu MN. Enhancement of exchangeable Cd and Pb immobilization in contaminated soil using Mg/Al LDH-zeolite as an effective adsorbent. RSC Adv 2021; 11:17007-17019. [PMID: 35479705 PMCID: PMC9031545 DOI: 10.1039/d0ra10530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
In the present study, experiments using zeolite and Mg/Al LDH-zeolite for immobilization of Cd and Pb ions in artificial soil were conducted. The conditions which affect Cd and Pb ion immobilization in soil were evaluated, namely soil pH (5-7), the mass ratio of adsorbents (1%, 3% and 5%), incubation time (15 days, 30 days and 45 days) and soil moisture (30%, 50% and 70%). The results indicated that the optimal soil pH, mass ratio of adsorbents, incubation time and soil moisture for immobilization of Cd and Pb ions by the adsorbent were, respectively, 7.0, 3%, 30 days and 70%. The exchangeable Cd ion content in the contaminated soil dropped from 22.17 mg kg-1 (87.65%) to 11.03 mg kg-1 (43.48%) and 6.47 mg kg-1 (26.36%) on incubation with zeolite and Mg/Al LDH-zeolite, respectively, while the exchangeable Pb content fell from 23.28 mg kg-1 (90.02%) to 14.12 mg kg-1 (54.04%) and 9.47 mg kg-1 (35.24%) using zeolite and Mg/Al LDH-zeolite as absorbents in contaminated soil, respectively. Fe-Mn oxide occluded (F2), carbonate bound (F3) and organically complexed (F4) were the main forms for immobilization of the exchangeable Cd and Pb when the zeolite and Mg/Al LDH-zeolite absorbents were separately cultivated into soil. Precipitation, co-precipitation and electrostatic attraction were the main mechanisms of exchangeable Cd and Pb immobilization onto the Mg/Al LDH-zeolite to form carbonate metals (CdCO3 and PbCO3). This was due to the surface functional groups of the adsorbent and the presence of Fe and Al oxyhydroxides, Mn oxides, and Si and O elements in the Mg/Al LDH-zeolite's constituents. The efficiency of Cd and Pb immobilization by the Mg/Al LDH-zeolite was higher than that by zeolite from 1.5 to 1.6 times. The Mg/Al LDH-zeolite showed an enhanced ability of exchangeable Cd and Pb immobilization in contaminated soil.
Collapse
Affiliation(s)
- Van Minh Dang
- Thai Nguyen University Tan Thinh ward Thai Nguyen city Vietnam
| | - Huu Tap Van
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - N D Vinh
- Faculty of Chemistry, TNU - University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Thi Minh Hoa Duong
- Faculty of Environment, TNU - University of Agriculture and Forestry Quyet Thang ward Thai Nguyen city Vietnam
| | - Thi Bich Hanh Nguyen
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Thị Tuyet Nguyen
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Thi Ngoc Ha Tran
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Trung Kien Hoang
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Thị Pha Tran
- Faculty of Environment, TNU - University of Agriculture and Forestry Quyet Thang ward Thai Nguyen city Vietnam
| | - Lan Huong Nguyen
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI) Ho Chi Minh City Vietnam
| | - Manh Nhuong Chu
- Faculty of chemistry, TNU - University of Education No. 20, Luong Ngoc Quyen Road Thai Nguyen City Vietnam
| |
Collapse
|
13
|
Hu B, Shao S, Ni H, Fu Z, Huang M, Chen Q, Shi Z. Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116196. [PMID: 33352485 DOI: 10.1016/j.envpol.2020.116196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/21/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Potentially toxic element (PTE) pollution has been extensively studied at a local and regional scale in China. However, further research needs to be conducted at a national level. To this end, in current study we systematically compiled data of around 170,000 soil samples collected from 1153 papers published between 2008 and 2018. Based on these data we conducted a comprehensive analysis on the pollution status, pollution hotspots, and potential dominant sources of PTEs (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn) in soils in 271 cities of China using geochemical accumulation index, potential ecological risk index, health risk evaluation model, univariate local Moran's I index, and bivariate local Moran's I index. Our results indicated an obvious accumulation of PTEs in the soils of most cities. In addition, the contents of Cd, Hg, Pb, and Ni were higher in China when compared to other several countries under comparison. Pollution hotspots of PTE and hotspots of human health risks may occur due to PTE exposure were mainly distributed in South (S) and Southwest (SW) of China. Cities with PTEs accumulation in soil due to industrial activities were mainly located in East (E) and North (N) China. Cities that had high concentrations of PTE due to agricultural activities were mainly located in central and Northeast (NE) China. Most cities with an accumulation of PTEs in soils primarily due to mining activities were found in West (W) and Northwest (N) China. Cities with PTEs mainly sourced from soil parental material were distributed in Southwest (SW) China. This study provides comprehensive and specific information and valuable implications for developing advanced scientific and efficient strategies to prevent and control PTE pollution the soils in China.
Collapse
Affiliation(s)
- Bifeng Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Unité de Recherche en Science Du Sol, INRAE, Orléans, 45075, France; Sciences de La Terre et de L'Univers, Orléans University, 45067, Orléans, France
| | - Shuai Shao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Ni
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Zhiyi Fu
- School of Earth Science, Zhejiang University, Hangzhou, 310058, China
| | - Mingxiang Huang
- Information Center of Ministry of Ecology and Environment, Beijing, 100035, China
| | - Qiuxiao Chen
- Department of Regional and Urban Planning, College of Civil Engineering and Architectures, Zhejiang University, Hangzhou, 310058, China.
| | - Zhou Shi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
15
|
Xiong T, Yuan X, Wang H, Jiang L, Wu Z, Wang H, Cao X. Integrating the (311) facet of MnO 2 and the fuctional groups of poly(m-phenylenediamine) in core-shell MnO 2@poly(m-phenylenediamine) adsorbent to remove Pb ions from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122154. [PMID: 32004848 DOI: 10.1016/j.jhazmat.2020.122154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Exposed active facets and functional groups are critical for adsorbents obtaining excellent adsorption properties. In the present study, MnO2@PmPD with exposed active facets was successfully prepared. MnO2,which came from KMnO4 by the sacrificial reductant of PmPD, deposited on the surface of PmPD. Meanwhile, we combined experimental study and theoretical calculations to elucidate the distinct adsorption nature of MnO2@PmPD towards Pb. The surface adsorption of MnO2@PmPD toward Pb was achieved by the interaction between Pb and O atoms on the surface of MnO2. The DFT calculations revealed the facet-dependent adsorption of MnO2 toward Pb. The adsorption affinity of facets toward Pb was in the order of (311) > (111) > (400) > (440), and (311) facet was predominantly adsorption site for Pb. The analysis of partial density of state revealed the strong hybridization between the Pb-p state and O-p states of MnO2. Additionally, the pores of MnO2 provide the interstitial channels for the transportation of Pb into PmPD. The Pb entered the internal of MnO2@PmPD was bonded by the amine and newly formed carboxy groups on PmPD. This study not only develops an efficient adsorbent for heavy metals removing, but also throws light on exemplifying the interaction of Pb with MnO2 based materials.
Collapse
Affiliation(s)
- Ting Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Zhibin Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xuyang Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Department of Civil and Environment Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
16
|
Xiong T, Yuan X, Cao X, Wang H, Jiang L, Wu Z, Liu Y. Mechanistic insights into heavy metals affinity in magnetic MnO 2@Fe 3O 4/poly(m-phenylenediamine) core-shell adsorbent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110326. [PMID: 32066004 DOI: 10.1016/j.ecoenv.2020.110326] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Adsorption represents an attractive mean to remediate polluted water. Unfortunately, the surface positive charges, low surface area and complicated separation procedures inhibit the usability of poly (m-phenylenediamine) (PmPD) as an adsorbent for heavy metal removing. To overcome these drawbacks, a magnetic MnO2@Fe3O4/PmPD core-shell adsorbent was designed to remove heavy metals from water. The MnO2 shell, came from the redox reaction between KMnO4 and PmPD, increased the surface area and changed the surface electronegativity. MnO2@Fe3O4/PmPD could be easily separated from water. It showed a significant increase in heavy metals removal efficiency, with maximum capacities of 438.6 mg/g for Pb(II) and 121.5 mg/g for Cd(II), respectively. The affinity between heavy metals and MnO2@Fe3O4/PmPD were mainly due to electrostatic attraction, ion exchanges and coordinated interaction. Density functional theory (DFT) calculations further confirmed that Pb and Cd were bonded with O atoms. The calculated adsorption energy indicated that the (111) MnO2 facet presented stronger adsorption affinity toward Pb(II) than Cd(II). Additionally, FM150 (150 mg) could regenerate 22 L Pb(II) wastewater upon single passage through the filterable column with a flux of 20 mL/min. Thus, the present work demonstrates the promising potential of using MnO2@Fe3O4/PmPD for efficiently removing heavy metals from wastewater.
Collapse
Affiliation(s)
- Ting Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Xuyang Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Zhibin Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yue Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
17
|
Yuan X, Xiong T, Yao S, Liu C, Yin Y, Li H, Li N. A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability. CHEMOSPHERE 2019; 237:124536. [PMID: 31549653 DOI: 10.1016/j.chemosphere.2019.124536] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal-polluted soil is obtaining increasing global concerns. The phytoremediation is a promising technology that needs further research. This study was aiming to perform a field survey to assess the restoration and accumulation potential of five hybrid sweet sorghum species with high biomass. Those sweet sorghums were planted in three sites containing different toxic levels of Zn, Pb and Cd with one local commercial sweet sorghum as contrast sample. Plants and soils were sampled for the analysis of heavy metal concentrations. BCF and TF values showed that hybrid sweet sorghum species have higher accumulation ability than local one. Five species of hybrid sweet sorghum planted in all three sites showed no obvious toxicity symptoms, and moreover, their biomass were 12-24 times higher than that of the local one, indicating their high tolerance to heavy metals. Among them, the 9312 and G38 specimens were considered as the best-performing specimens due to their high ability to accumulate multiple metals in their shoots and roots without being affected by excessive metal contents. A reasonable disposed plan for harvested sweet sorghum after phytoremediation was proposed. The harvest sweet sorghums used for industrial ethanol and densified biofuel production could combine soil remediation with creating economic benefit. Consequently, those five hybrid sweet sorghum species, especially 9312 and G38 with high biomass production, metal accumulation ability and high tolerance against metal toxicity might have great potential in phytoremediation field.
Collapse
Affiliation(s)
- Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Ting Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Sai Yao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Chao Liu
- Suxian District Forestry Bureau, Chenzhou, 423000, PR China
| | - Yaonan Yin
- Suxian District Forestry Bureau, Chenzhou, 423000, PR China
| | - Huancheng Li
- Shenzhen Landmark Biotechnology Co., Ltd, Shenzhen, 518000, PR China
| | - Ningsheng Li
- Shenzhen Landmark Biotechnology Co., Ltd, Shenzhen, 518000, PR China
| |
Collapse
|