1
|
Amino Y, Al-zubaidi A, Ishii Y, Kawasaki S. Photocatalytic Estrogen Degradation by the Composite of Tin Oxide Fine Particles and Graphene-like Carbon Nitride. ACS OMEGA 2024; 9:49064-49070. [PMID: 39713685 PMCID: PMC11656215 DOI: 10.1021/acsomega.4c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 12/24/2024]
Abstract
This study investigates whether 17β-estradiol (E2), a natural estrogen and one of the endocrine-disrupting chemicals responsible for water pollution, can be oxidatively decomposed under simulated solar light using a composite of tin oxide nanoparticles and graphene-like carbon nitride (g-CN) as a photocatalyst. The composite photocatalyst was prepared by heating a mixture of urea and tin acetate. FT-IR measurements revealed that g-CN possesses structural units similar to g-C3N4, a well-studied graphite-like carbon nitride. However, unlike g-C3N4, sharp diffraction lines were not observed in the XRD diffraction pattern of g-CN, indicating lower crystallinity. Elemental analysis showed that g-CN is slightly nitrogen-rich compared to g-C3N4, and UV-vis measurements indicated that the band gap of g-CN is slightly smaller than that of g-C3N4. The presence of tin in the composite of tin oxide and g-CN was clearly confirmed by XPS, although no sharp diffraction peaks were observed in the XRD patterns, suggesting the presence of microcrystals. Furthermore, FE-SEM observations did not reveal large tin oxide crystals, although EDS mapping indicated the presence of tin oxide. It was found that the prepared tin oxide and g-CN composites function effectively as photocatalysts for degrading E2 under simulated solar light. The degradation rate constant was evaluated to be k = 3.34 (0.14) × 10-2 min-1. Peroxide ion radicals were detected in ESR measurements from the irradiated solution, suggesting that peroxide ion radicals are generated through oxygen photoreduction as the counter-reaction of the oxidative decomposition of E2.
Collapse
Affiliation(s)
- Yuzuki Amino
- Department of Life Science
and Applied Chemistry, Nagoya Institute
of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ayar Al-zubaidi
- Department of Life Science
and Applied Chemistry, Nagoya Institute
of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yosuke Ishii
- Department of Life Science
and Applied Chemistry, Nagoya Institute
of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Shinji Kawasaki
- Department of Life Science
and Applied Chemistry, Nagoya Institute
of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Wang P, Wei S, Han Y, Lin S, Zhang L, Li Q, Xu Y, Lian L, Zhou Y, Song M, Zhuang W, Liu Y. Metal-Free C 60-Doped Mesoporous Carbon Nitride Drives Red-Light Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14045-14056. [PMID: 38914517 DOI: 10.1021/acs.langmuir.4c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The pursuit of novel strategies for synthesizing high-performance nanostructures of graphitic carbon nitride (g-C3N4) has garnered increasing scholarly attention in the field of photocatalysis. Herein, we have successfully designed a metal-free photocatalyst by integrating mesoporous carbon nitride (mpg-C3N4) and C60 through a straightforward and innovative method, marking the first instance of such an achievement. Under red light, the C60/mpg-C3N4 composite exhibited a significantly accelerated rhodamine B (RhB) photodecomposition rate, surpassing bulk g-C3N4 by more than 25.8 times and outperforming pure mpg-C3N4 by 7.8 times. The synergistic effect of C60 and the mesoporous structure significantly enhanced the photocatalytic performance of g-C3N4 by adjusting its electronic structure, broadening the light absorption range, increasing the active sites, and reducing the recombination of photogenerated carriers. This work presents a promising avenue for harnessing a metal-free, stable, efficient photocatalyst driven by red light, with potential for enhancing solar energy utilization in environmental remediation.
Collapse
Affiliation(s)
- Peng Wang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shuai Wei
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yanling Han
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Suning Lin
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lijuan Zhang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Qian Li
- School of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yan Xu
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lulu Lian
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yingmei Zhou
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ming Song
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Wenchang Zhuang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | | |
Collapse
|
3
|
Krishnasamy M, Rajendran R, Vignesh S, Arumugam P, Diravidamani B, Shkir M, Algarni H. Facile synthesis of efficient MoS 2-coupled graphitic carbon nitride Z-scheme heterojunction nanocomposites: photocatalytic removal of methylene blue dye under solar light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46513-46525. [PMID: 36943565 DOI: 10.1007/s11356-023-26418-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/08/2023] [Indexed: 05/25/2023]
Abstract
Among different types of semiconductor photocatalysts, MoS2 hybridized with graphitic carbon heterojunction has developed the most promising "celebrity" due to its static chemical properties, suitable band structure, and facile synthesis. Physiochemical and surface characterizations were revealed with structural, electronic, and optical analysis. Diffused reflectance spectroscopy evidenced the energy band gap tailoring from 2.62 eV for pure g-C3N4 and 1.68 eV for MoS2 to 2.12 eV for the hybridized heterojunction nanocomposite. Effective electron/hole pair separation, rise in redox species, and great utilization of solar range because of band gap modifying leading to greater degradation efficacy of g-C3N4/MoS2 heterojunction. The photocatalytic degradation with MoS2/g-C3N4 heterojunction catalyst to remove methylene blue dye was remarkably enriched and much higher than g-C3N4. By carefully examining the stimulus aspects, a probable mechanism is suggested, assuming that the concurring influence of MoS2 and g-C3N4, the lesser crystallite size, and more solubility in aquatic solution furnish the efficient e--h+ pair separation and tremendous photocatalytic degradation activity. This work delivers a novel idea to improve the efficient MoS2/g-C3N4 heterojunction for improved photocatalytic degradation in environmental refinement.
Collapse
Affiliation(s)
- Mahalakshmi Krishnasamy
- Department of Physics, N.K.R. Government Arts College for Women, Namakkal, 637001, Tamil Nadu, India
| | - Ranjith Rajendran
- Department of Physics, K.S.R. College of Engineering, Tiruchengode, Namakkal, 637215, Tamil Nadu, India
| | - Shanmugam Vignesh
- SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - Priyadharsan Arumugam
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| | - Barathi Diravidamani
- Department of Physics, N.K.R. Government Arts College for Women, Namakkal, 637001, Tamil Nadu, India.
| | - Mohd Shkir
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Division of Research and Development, Lovely Professional University, Punjab, 144411, Phagwara, India
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
4
|
Khan AA, Khan A, Khan S, Shah N, Khan A, Nawaz F, Khalid A, Jan A, Al-Harrasi A. Preparation and characterization of sulphur and zinc oxide Co-doped graphitic carbon nitride for photo-assisted removal of Safranin-O dye. RSC Adv 2024; 14:8871-8884. [PMID: 38495991 PMCID: PMC10941262 DOI: 10.1039/d3ra07247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Recently, there has been significant interest in photocatalytic reactions involving graphitic carbon nitride (g-C3N4) due to its sp2-hybridized carbon and nitrogen content and it is an ideal candidate for blending with other materials to enhance performance. Here, we have synthesized and analyzed both doped and undoped g-C3N4 nanoparticles. Specifically, we co-doped sulfur (S) into g-C3N4, integrated it with ZnO particles, and investigated the photocatalytic potential of these nanocomposites to remove Safranin-O dye. The initial step involved the preparation of pure g-C3N4 through calcination of urea. Subsequently, S-g-C3N4 was synthesized by calcining a mixture of urea and thiourea with a 3 : 1 ratio. Finally, the ZnO-S-g-C3N4 composite was synthesized using the liquid exfoliation technique, with distilled water serving as the exfoliating solvent. These samples were characterized by advanced techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), energy dispersive X-ray (EDX) and scanning electron microscopy (SEM), to assess their crystallinity, morphology, optical properties, and phase purity. Subsequently, these nanocomposites were employed in catalytic and photocatalytic processes to remove the Safranin-O dye (SO). The results highlighted the formation of Z-scheme junction responsible for ZnO-S-g-C3N4's significant performance improvement. The comparison of results demonstrated that S-g-C3N4 and ZnO-S-g-C3N4 composites revealed an effective removal of Safranin-O dye in the presence of UV-light as compared to pure g-C3N4, as it was attributed to the phenomenon of improved separation of photogenerated charge carriers as a result of heterojunction formation between S-g-C3N4 and ZnO interfaces. In addition to improving photocatalytic performance, this study presents a facile route for producing ZnO-S-g-C3N4 composite with superior adsorption capabilities and selectivity.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Sumayya Khan
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan 23200 KP Pakistan +92-937-542188 +92-3408467885
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Faheem Nawaz
- Department of Environmental Science, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Quetta Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University PO Box: 114 Jazan 45142 Saudi Arabia
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University Makkah Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| |
Collapse
|
5
|
Chandrapal RR, Bharathi K, Bakiyaraj G, Bharathkumar S, Priyajanani Y, Manivannan S, Archana J, Navaneethan M. Harnessing ZnCr 2O 4/g-C 3N 4 nanosheet heterojunction for enhanced photocatalytic degradation of rhodamine B and ciprofloxacin. CHEMOSPHERE 2024; 350:141094. [PMID: 38171401 DOI: 10.1016/j.chemosphere.2023.141094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Utilizing semiconductors for photocatalytic processes in water bodies as an approach to environmental remediation has gained considerable attention. Theoretical band position calculations revealed a type-II step-scheme charge flow mechanism for ZnCr2O4/g-C3N4 (ZCr/gCN), emphasizing effective heterojunction formation due to synergies between the materials. A composite of agglomerated nanoparticle ZnCr2O4 (Zinc chromium oxide - ZCr)/g-C3N4 (graphitic carbon nitride - gCN) nanosheets was synthesized using the ultrasonication and leveraging the heterojunction to enhance degradation efficiency and active sites participation. The synthesized sample was characterized by XRD, XPS, FTIR, BET, HRSEM, EDX, HRTEM, EIS PL, and UV-visible spectroscopy. XRD analysis confirmed the successful formation of pure ZnCr2O4, g-C3N4 (gCN), and their composite without any secondary phases. Optical investigations demonstrated a red shift (444-470 nm) in UV-visible spectra as ZnCr2O4 content increased. Morphological assessment via HRSEM unveiled agglomerated nanoparticle and nanosheet structures. FTIR analysis indicated the presence of gCN with the tri-s-triazine breathing mode at 807 cm-1, and the identification of octahedral Zn-O (598.11 cm-1) and tetrahedral Cr-O (447.01 cm-1) metal bonds within the spinel structure of ZnCr2O4. A Surface area of 134.162 m2/g was noticed with a microporous structure of pore radius 1.484 nm. Notably, the 15% ZCr/gCN composite achieved a remarkable 93.94 % (Rhodamine B-RhB) and 74.36 % (Ciprofloxacin - CIP) within 100 and 120 min, surpassing the performance of pure gCN. Improved degradation was attributed to higher charge separation (photo-excited electrons and holes), reducing charge recombination, as supported by photoluminescence and photoelectrochemical analyses. The presence of active species like superoxide during degradation was confirmed through a scavenger test. The stability analysis confirms the sample's stable nature (without secondary phase formation) after degradation. This work underscores the potential of ZnCr2O4 based metal-free compounds intended for effective environmental remediation.
Collapse
Affiliation(s)
- R Roshan Chandrapal
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - K Bharathi
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - G Bakiyaraj
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - S Bharathkumar
- Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram, Andhra Pradesh, India
| | - Y Priyajanani
- Carbon Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, India
| | - S Manivannan
- Carbon Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, India
| | - J Archana
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M Navaneethan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; Nanotechnology Research Center, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Kamani H, Hosseinzehi M, Ghayebzadeh M, Azari A, Ashrafi SD, Abdipour H. Degradation of reactive red 198 dye from aqueous solutions by combined technology advanced sonofenton with zero valent iron: Characteristics/ effect of parameters/kinetic studies. Heliyon 2024; 10:e23667. [PMID: 38187256 PMCID: PMC10767373 DOI: 10.1016/j.heliyon.2023.e23667] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Dyes are one of the most common contaminants in industrial effluents, whose continuous release into the environment has become an increasing global concern. In this work, nanoparticles of zero-valent iron (NZVI) were synthesized using the chemical regeneration method ،and were utilized for the first time as a catalyst in the advanced Sono-Nano-Fenton hybrid method for the decomposition of Reactive Red 198 (RR198). The properties of zero-valent iron nanoparticles were analyzed using SEM and XRD. The effect of pH, initial dye concentration, nanoparticle dosage, zero-valent iron and H2O2 concentration on the decomposition efficiency of Red Reactive 198 was investigated. Comparing the efficiency of Reactivate 198 dye degradation in Sonolysis, Sono-NZVI, Sono-H2O2 and Sono-Nano Fenton processes showed that 97 % efficiency was achieved by the Sono-Nano Fenton process in 60 min. The kinetics of the removal process showed that this process follows pseudo-first-order kinetics and the Langmuir-Hinshelwood model. The results indicate that the effectiveness of the ultrasonic process in removing resistant organic pollutants such as dyes increases tremendously with the synergy of the Fenton process.
Collapse
Affiliation(s)
- Hossein Kamani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Hosseinzehi
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Ghayebzadeh
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Azari
- Sirjan School of Medical Sciences, Sirjan, Iran
| | - Seyed Davoud Ashrafi
- Department of Environmental Health Engineering, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Abdipour
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Haghmohammadi M, Sajjadi N, Beni AA, Hakimzadeh SM, Nezarat A, Asl SD. Synthesis of activated carbon/magnetite nanocatalyst for sono-Fenton-like degradation process of 4-chlorophenol in an ultrasonic reactor and optimization using response surface method. JOURNAL OF WATER PROCESS ENGINEERING 2023; 55:104216. [DOI: 10.1016/j.jwpe.2023.104216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
|
8
|
Shoran S, Sharma A, Chaudhary S. Visible light enhanced photocatalytic degradation of organic pollutants with SiO 2/g-C 3N 4 nanocomposite for environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98732-98746. [PMID: 36622589 DOI: 10.1007/s11356-022-24837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The development of eco-friendly photocatalysts is gaining attention as an effective approach for degrading organic pollutants. In the present study, the composite materials are composed of various components with varying structures that combine to enhance their characteristics and widen their applications. This work uses the hydrothermal method for the fabrication of a novel and steady SiO2/g-C3N4 photocatalyst. The amount of SiO2 was fixed, and graphitic carbon nitride (g-C3N4) was varied in the ratio (1:x, where x = 1, 2, 3) and abbreviated as SCN1, SCN2, and SCN3. The optical properties, surface morphology, and structural analysis of the prepared nanocomposites were studied using various techniques such as FTIR, TGA, X-ray diffraction, and ultraviolet-visible spectroscopy. The results show that SCN2 nanocomposites significantly improved the photocatalytic activity, with a degradation efficiency of 70% for auramine O and 84.6% for xylenol orange dye under visible light irradiation, which is a result of their large surface area and efficient electron-hole separation rate.
Collapse
Affiliation(s)
- Sachin Shoran
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India
| | - Anshu Sharma
- Department of Physics Under School of Engineering and Technology, Central University of Haryana, Mahendragarh, 123031, Haryana, India
| | - Sudesh Chaudhary
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India.
| |
Collapse
|
9
|
Dien ND, Thu Ha PT, Vu XH, Trang TT, Thanh Giang TD, Dung NT. Developing efficient CuO nanoplate/ZnO nanoparticle hybrid photocatalysts for methylene blue degradation under visible light. RSC Adv 2023; 13:24505-24518. [PMID: 37593668 PMCID: PMC10427893 DOI: 10.1039/d3ra03791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
CuO/ZnO nanocomposites with different components can overcome the drawbacks of previously used photocatalysts owing to their promotion in charge separation and transportation, light absorption, and the photo-oxidation of dyes. In this study, CuO nanoplates were synthesized by the hydrothermal method, while ZnO nanoparticles were fabricated by the precipitation method. A series of CuO/ZnO nanocomposites with different ZnO-to-CuO weight ratios, namely, 2 : 8, 4 : 6, 5 : 5, 6 : 4, and 8 : 2 were obtained via a mixing process. X-ray diffraction patterns confirmed the presence of hexagonal wurtzite ZnO and monoclinic CuO in the synthesized CuO/ZnO nanocomposites. Scanning electron microscopy showed the dispersion of ZnO nanoparticles on the surface of CuO nanoplates. Ultraviolet-visible absorption spectra exhibited a slight red-shift in the absorption edge of binary oxides relative to pure ZnO or CuO. All samples were employed for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The composite samples exhibited enhanced photocatalytic performance compared with pristine CuO or ZnO. This study aimed to examine the effect of the ZnO-to-CuO weight ratio on their photocatalytic performance. The results indicated that among all the synthesized nanocomposites and pristine oxides, the nanocomposite with ZnO and CuO in a proportion of 4 : 6 shows the highest photodegradation activity for the removal of MB with 93% MB photodegraded within 60 min at an initial MB concentration of 5 ppm. The photocatalytic kinetic data were described well by the pseudo-first-order model with a high correlation coefficient of 0.95. The photocatalytic mechanism of the mixed metal oxide was proposed and discussed in detail. The photodegradation characteristic of CuO/ZnO nanostructures is valuable for methylene blue degradation from aqueous solutions as well as environmental purification in various fields.
Collapse
Affiliation(s)
- Nguyen Dac Dien
- Faculty of Occupational Safety and Health, Vietnam Trade Union University 169 Tay Son Street, Dong Da district Ha Noi city 100000 Vietnam
| | - Pham Thi Thu Ha
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Xuan Hoa Vu
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Trinh Duc Thanh Giang
- Dao Duy Tu High School Chu Van An road, Hoang Van Thu ward Thai Nguyen city 24000 Vietnam
| | - Nguyen Thi Dung
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| |
Collapse
|
10
|
Yadav S, Rani N, Saini K. Coupling ZnO with CuO for efficient organic pollutant removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71984-72008. [PMID: 36414902 DOI: 10.1007/s11356-022-24139-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2023]
Abstract
Fabrication of heterojunction semiconductors for the photodegradation of toxic organic dyes under sunlight exposure has earned significant recognition from researchers nowadays. On that account, we have synthesized and explored a comparative photodegradation study of ZnO/CuO nanocomposite with ZnO and CuO nanoparticles. ZnO and CuO nanoparticles have been synthesized by biosynthesis methods using Ficus benghalensis leaf extract. As-synthesized ZnO and CuO nanoparticles have been further utilized for the synthesis of ZnO/CuO nanocomposite by the mortar pestle crushing/milling method. Both biosynthesis methods and mortar pestle crushing/milling methods are simple, low-cost, and environmentally friendly. Structural, optical, and morphological analysis of all the synthesized nanomaterials have been done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy. PXRD data reveal that synthesized ZnO nanoparticles are in the hexagonal wurtzite phase, CuO nanoparticles in the monoclinic phase, and ZnO/CuO nanocomposite in the hexagonal wurtzite as well as in monoclinic phase. FE-SEM and TEM images of ZnO/CuO nanocomposite reveal the nanorod-shaped morphology along with micro-sized and nano-sized flakes. The BET analysis shows the surface areas 18.128 m2/g for ZnO nanoparticles, 16.653 m2/g for CuO nanoparticles, and 19.580 m2/g for ZnO/CuO nanocomposite, respectively. The energy band gap values of ZnO/CuO nanocomposite are obtained 3.13 eV for ZnO and 2.76 eV for CuO, respectively. The photocatalytic behaviors of all the synthesized nanomaterials are examined against aqueous dye solutions of methylene blue (MB), rhodamine B (RhB), and methyl orange (MO) under sunlight irradiation. The results reveal that the photocatalytic degradation efficiency of ZnO/CuO nanocomposite has been found higher than with ZnO and CuO nanoparticles for all the dyes. Also, all the synthesized nanomaterials indicate higher photocatalytic degradation efficiency for methylene blue dye among all three dyes. The kinetics of photodegradation of all the dye solutions has also been investigated in the presence of ZnO, CuO, and ZnO/CuO photocatalysts separately. The results exhibit that rate constant values for all the dyes are higher with ZnO/CuO nanocomposite than with ZnO and CuO nanoparticles. ZnO/CuO nanocomposite demonstrates degradation efficiency for MB dye 99.13%, for RhB 80.21%, and for MO 67.22% after 180 min of sunlight exposure. ZnO/CuO nanocomposite and ZnO and CuO nanoparticles also show the best reusability and stability up to three cycles for photocatalytic degradation of MB dyes among all the dyes. Therefore, green synthesized ZnO/CuO nanocomposite could be used as an efficient photocatalyst for the degradation of various toxic dyes. The mineralization of different dyes using ZnO/CuO nanocomposite has been examined by FTIR analysis. Furthermore, the mineralization of MB dye has been done by total organic carbon (TOC) measurements.
Collapse
Affiliation(s)
- Sapna Yadav
- Department of Chemistry, Miranda House, University of Delhi, Patel Chest Marg, New Delhi, 110007, India
| | - Nutan Rani
- Department of Chemistry, Miranda House, University of Delhi, Patel Chest Marg, New Delhi, 110007, India
| | - Kalawati Saini
- Department of Chemistry, Miranda House, University of Delhi, Patel Chest Marg, New Delhi, 110007, India.
| |
Collapse
|
11
|
Yang G, Jiang Y, Yin B, Liu G, Ma D, Zhang G, Zhang G, Xin Y, Chen Q. Efficiency and mechanism on photocatalytic degradation of fluoranthene in soil by Z-scheme g-C 3N 4/α-Fe 2O 3 photocatalyst under simulated sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27334-1. [PMID: 37147542 DOI: 10.1007/s11356-023-27334-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil have potential harm on human health. However, remediation of PAH-contaminated soils through photocatalytic technology remains a challenge. Therefore, the photocatalyst g-C3N4/α-Fe2O3 was synthesized and applied to photocatalytic degradation of fluoranthene in soil. The physicochemical properties of g-C3N4/α-Fe2O3 and various degradation parameters, such as catalyst dosage, the ratio of water/soil, and initial pH, were investigated in detail. In soil slurry reaction system (water/soil=10:1, w/w), the optimal degradation efficiency on fluoranthene was 88.7% after simulated sunlight irradiation for 12 h (contaminated soil=2 g, initial fluoranthene concentration=36 mg/kg, catalyst dosage=5%, and pH=6.8), and the photocatalytic degradation followed pseudo-first-order kinetics. The degradation efficiency of g-C3N4/α-Fe2O3 was higher compared with P25. Degradation mechanism analysis showed that •O2- and h+ are the main active species in photocatalytic degradation process of fluoranthene by g-C3N4/α-Fe2O3. Coupling g-C3N4 and α-Fe2O3 enhances the interfacial charge transport capacity via Z-scheme charge transfer route and inhibits the recombination of photogenerated electrons and holes of g-C3N4 and α-Fe2O3, then significantly improves the production of active species and photocatalytic activity. Results showed that photocatalytic treatment of soil by g-C3N4/α-Fe2O3 is an effective strategy for remediation of soils contaminated by PAHs.
Collapse
Affiliation(s)
- Guoliang Yang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yan Jiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Bingjie Yin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guocheng Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Dong Ma
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yanjun Xin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China.
| |
Collapse
|
12
|
Eizi R, Bastami TR, Mahmoudi V, Ayati A, Babaei H. Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
13
|
Chen B, Lu W, Xu P, Yao K. Potassium Poly(heptazine imide) Coupled with Ti 3C 2 MXene-Derived TiO 2 as a Composite Photocatalyst for Efficient Pollutant Degradation. ACS OMEGA 2023; 8:11397-11405. [PMID: 37008085 PMCID: PMC10061626 DOI: 10.1021/acsomega.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The photocatalytic degradation of pollutants is an effective and sustainable way to solve environmental problems, and the key is to develop an efficient, low-cost, and stable photocatalyst. Polymeric potassium poly(heptazine imide) (K-PHI), as a new member of the carbon nitride family, is a promising candidate but is characterized by a high charge recombination rate. To solve this problem, K-PHI was in-situ composited with MXene Ti3C2-derived TiO2 to construct a type-II heterojunction. The morphology and structure of composite K-PHI/TiO2 photocatalysts were characterized via different technologies, including TEM, XRD, FT-IR, XPS, and UV-vis reflectance spectra. Robust heterostructures and tight interactions between the two components of the composite were verified. Furthermore, the K-PHI/TiO2 photocatalyst showed excellent activity for Rhodamine 6G removal under visible light illumination. When the weight percent of K-PHI in the original mixture of K-PHI and Ti3C2 was set to 10%, the prepared K-PHI/TiO2 composite photocatalyst shows the highest photocatalytic degradation efficiency as high as 96.3%. The electron paramagnetic resonance characterization indicated that the·OH radical is the active species accounting for the degradation of Rhodamine 6G.
Collapse
|
14
|
Moushumy ZM, Hassan MJ, Ahsan M, Hasan MM, Uddin MN, Nagao Y, Hasnat MA. Photocatalytic degradation of chlorazol yellow dye under sunlight irradiation using Ce, Bi, and N co-doped TiO 2 photocatalyst in neutral medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35153-35169. [PMID: 36527547 DOI: 10.1007/s11356-022-24220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Chlorazol yellow (CY) is a commonly used anionic, toxic, mutagenic, and potentially carcinogenic azo dye, which is menacing to the environment, aquatic system, food chain, and human health as well. To remove CY dye molecules from an aqueous medium, a series of Ce, Bi, and N co-doped TiO2 photocatalysts were prepared by varying the composition of the dopants. Under sunlight irradiation, the resultant 5 wt% (Ce-Bi-N) co-doped TiO2 composite catalyst was found to show the best catalytic activity. Hence, the required characterization of this catalyst was performed systematically using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques. From the thorough investigation, it is revealed that the CY molecules reached adsorption-desorption equilibrium onto the surface of the catalyst within 30 min following second-order kinetics. Herein, the catalyst attained 97% degradation when exposed to sunlight at neutral (pH ~ 7, [CY] = 5 mg L-1) medium. The developed catalyst can destruct CY molecules with a maximum rate of 23.1 µg CY g-1 min-1 and the photodegradation kinetics follows first-order kinetics below 23.5 mg L-1, a fractional order between 23.5 and 35.0 mg L-1, and a zeroth order above 35.0 mg L-1 of CY concentration. Finding from scavenging effect implies that [Formula: see text] and [Formula: see text] radicals have significant influence on the degradation. A suitable mechanism has been proposed with excellent stability and verified reusability of the proposed photocatalyst.
Collapse
Affiliation(s)
- Zannatul Mumtarin Moushumy
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Jobaer Hassan
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohebul Ahsan
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Mahmudul Hasan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Md Nizam Uddin
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
15
|
Zhang D, Tian W, Chu M, Zhao J, Zou M, Jiang J. B-doped graphitic carbon nitride as a capacitive deionization electrode material for the removal of sulfate from mine wastewater. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Dos Santos PNF, de Holanda RM, de Souza ZSB, de Moraes CM, da Silva MP, Carvalho MN. Synthesis of TiO 2 graphene oxide-based material for textile effluent decontamination: characterization, kinetic, and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30358-30370. [PMID: 36434462 DOI: 10.1007/s11356-022-24179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In this work, a hydrothermal method was proposed to fabricate a nanomaterial composed of titanium dioxide and graphene oxide (10 wt%) (TiO2-GO). The GO was synthesized according to the modified Hummers and Offeman method, followed by exfoliation. Several characterization analyses were performed in order to investigate the structure, functional groups, and elemental composition of the nanomaterial. XRD analysis showed that the presence of GO does not change the crystalline structure of TiO2. FTIR evidenced the characteristic peaks present in both precursor materials (TiO2 and GO) and EDX confirmed the presence of GO on the TiO2-GO material. The nanomaterial was used as a photocatalyst in the TWW treatment, where the color and COD removal and the decrease of the characteristic peaks presented in the UV-Vis spectrum were investigated. The dosages of TiO2-GO and pH were studied to find the optimum operating condition. The results revealed that 0.5 g of photocatalyst with an initial pH of 3 achieve the best results under UV-A radiation. The kinetic test shows a COD removal of 87% after 90 min. The reuse test shows a decrease in COD removal after four cycles attributed to the deposition of some oxidized compounds on the catalyst surface. Finally, the efficiency of the photocatalyst was evaluated under solar radiation and it was shown that despite the good results, the performance of the TiO2-GO was better under UV-A radiation.
Collapse
Affiliation(s)
- Patrícia Nazaré Ferreira Dos Santos
- Technology Rural Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros St, Dois Irmãos, Zip Code: 52171-900, Recife/PE, Brazil.
| | - Romildo Morant de Holanda
- Technology Rural Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros St, Dois Irmãos, Zip Code: 52171-900, Recife/PE, Brazil
| | - Ziani Santana Bandeira de Souza
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), CidadeUniversitária, 1235 Prof. Moraes Rego AvZip Code: 50670-901, Recife/PE, Brazil
- Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), 1100 Notre-Dame St, Montreal, QC, H3C 1K3, Canada
| | - Cristiane Marcelina de Moraes
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), CidadeUniversitária, 1235 Prof. Moraes Rego AvZip Code: 50670-901, Recife/PE, Brazil
| | - Maryne Patrícia da Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), CidadeUniversitária, 1235 Prof. Moraes Rego AvZip Code: 50670-901, Recife/PE, Brazil
| | - Marilda Nascimento Carvalho
- Technology Rural Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros St, Dois Irmãos, Zip Code: 52171-900, Recife/PE, Brazil
| |
Collapse
|
17
|
Mehrabanpour N, Nezamzadeh-Ejhieh A, Ghattavi S. Cefotaxime degradation by the coupled binary CdS-PbS: characterization and the photocatalytic process kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33725-33736. [PMID: 36495433 DOI: 10.1007/s11356-022-24613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Increased water pollution due to discharging industrial/urban/hospital wastewater has been adopted to introduce/develop novel removal techniques/catalyst/adsorbent. The hexagonal (wurtzite) CdS and the cubic PbS nanoparticles (NPs) were synthesized, coupled, and supported onto clinoptilolite NPs (CNP). Then, the sample was characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR), and a scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX) techniques. The average crystallite size for CdS NPs, PbS NPs, CNP, and CdS-PbS/CNP samples was obtained at about 24, 36, 27, and 14 nm using the Scherrer formula value of nanometer, by the W-H formula, 31, 17, 39, and 51, respectively. Only a detectable slope can be observed from the DRS spectra for CdS NPs at 591 nm corresponding to an Eg value of 2.1 eV. PbS NPs have a broad abruption peak that begins from the visible region and extends to the IR region of the light. A boosted photocatalytic activity of the supported binary catalysts towards cefotaxime (CT) was reached. An apparent first kinetic model was reached with a k-value of 0.021 min-1 corresponding to the t1/2 value of 33 min. A decreased COD trend for the photodegraded CT solutions was reached, and the chemical oxygen demand (COD) results in the Hinshelwood model showed a k-value of 0.016 min-1, corresponding to a t1/2 value of 43 min.
Collapse
Affiliation(s)
- Najme Mehrabanpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran.
| | - Shirin Ghattavi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| |
Collapse
|
18
|
Shukla K, Gupta R, Gupta RK, Prakash J. Highly efficient visible light active doped metal oxide photocatalyst and SERS substrate for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34054-34068. [PMID: 36508093 DOI: 10.1007/s11356-022-24639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
The development of efficient nanomaterials with promising optical and surface properties for multifunctional applications has always been a subject of novel research. In this work, the study of highly efficient TiO2 nanorods (NRs) and Ta-doped TiO2 NRs (Ta-TiO2 NRs) synthesized by alkaline hydrothermal treatment followed by soaking treatment has been reported. NRs were investigated for their potential applications as recyclable/reproducible visible light active photocatalysts and surface-enhanced Raman scattering (SERS) substrates in wastewater treatment. NRs were characterized by various microscopic (scanning and transmission electron microscopy), spectroscopic (X-ray diffraction, X-ray photoelectron, UV-visible, photoluminescence, and Raman spectroscopy), and surface (Brunauer-Emmett-Teller) techniques. The NRs exhibited promising optical properties with a band gap of 2.95 eV (TiO2 NRs) and 2.58 eV (Ta-TiO2 NRs) showing excellent photo-degradation activities for methylene blue (MB) dye molecules under natural sunlight. Particularly, Ta-TiO2 NRs showed enhanced response as visible light active photocatalysts in normal sunlight and also as SERS substrate attributed to the additional defects introduced by Ta doping. It could be explained by the combined effect of doping-induced enhanced visible light absorption and charge transfer (CT) properties of Ta-TiO2 NRs. Furthermore, Ta-TiO2 NRs were investigated for their long-term stability, reproducibility of the data, and recyclability in view of their potential applications in water treatment.
Collapse
Affiliation(s)
- Komal Shukla
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Rajeev Gupta
- Department of Physics, School of Engineering Studies, University of Petroleum & Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, India.
| |
Collapse
|
19
|
Zhao H, Chen W, Wu D, Liu X, Hu W, Zhang X. Coupling the effect of Co and Mo on peroxymonosulfate activation for the removal of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48389-48400. [PMID: 36759407 DOI: 10.1007/s11356-023-25755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Although heterogeneous cobalt-based catalysts have been widely studied and used in SO4•- based advanced oxidation processes, the efficiencies were still not high enough due to the limiting step of Co(III)/Co(II) cycle in the system. In this study, a bimetallic oxide composed of Co and Mo was designed and used for enhancing the performance of peroxymonosulfate activation on organic pollutants removal. The CoMoO4 nanorods exhibited superior catalytic activity for methylene blue (MB) degradation than Co3O4, MoO3, and their mechanical mixture, which was attributed to the synergetic effect between Co and Mo. CoMoO4 nanorods were able to efficiently degrade MB under a wide pH range of 3-11 and could maintain high efficiency in 5 cycles with less leakage of metal ions. Moreover, CoMoO4 nanorods displayed broad spectrum applicability to the different water matrix and a variety of pollutants such as phenol and Congo red. The Co(II) was proved to be the main active site of the catalyst, while Mo played an important role in promoting the Co(III)/Co(II) cycle. Surface free radicals are the main active species in the degradation process. This work provides new insights into the design of cobalt-based bimetallic catalyst and the improvement on PMS activation.
Collapse
Affiliation(s)
- Huanxin Zhao
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Wenkai Chen
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dan Wu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xinyue Liu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Wanjie Hu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xuejun Zhang
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| |
Collapse
|
20
|
Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25477-25505. [PMID: 35287196 DOI: 10.1007/s11356-022-19435-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The world faces tremendous challenges and environmental crises due to the rising strength of wastewater. The conventional technologies fail to achieve the quality water that can be reused after treatment means "zero effluent" discharge of the industrial effluent. Therefore, now the key challenge is to develop improved technologies which will have no contribution to secondary pollution and at the same time more efficient for the socio-economic growth of the environment. Sustainable technologies are needed for wastewater treatment, reducing footprint by recycling, reusing, and recovering resources. Advanced oxidation process (AOP) is one of the sustainable emerging technologies for treating refractory organic contaminants present in different industrial wastewaters like textile, paper and pulp, pharmaceuticals, petrochemicals, and refineries. This critical review emerges details of advanced oxidation processes (AOPs), mentioning all possible permutations and combinations of components like ozone, UV, the catalyst used in the process. Non-conventional AOP systems, microwave, ultrasound, and plasma pulse assisted are the future of the oxidation process. This review aims to enlighten the role of AOPs for the mineralization of refractory organic contaminants (ROC) to readily biodegradable organics that cannot be either possible by conventional treatment. The integrated AOPs can improve the biodegradability of recalcitrant organic compounds and reduce the toxicity of wastewater, making them suitable for further biological treatment.
Collapse
Affiliation(s)
- Madhumita Manna
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India
| | - Sujit Sen
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
21
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
22
|
Mehrabanpour N, Nezamzadeh-Ejhieh A, Ghattavi S. The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5089-5102. [PMID: 35978238 DOI: 10.1007/s11356-022-22557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
In recent decades, increased world population and industrial activities explosively polluted our environment, especially the aquatic resources. This requires introducing/developing novel methods to decrease the pollution extent of such resources. Here, the hexagonal (wurtzite) CdS nanoparticles (NPs) were synthesized and supported onto ball-mill prepared clinoptilolite NPs (CNP). Samples were briefly characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX), and diffuse reflectance spectroscopy (DRS) techniques. The average crystallite size for CdS NPs and CdS-CNP samples was estimated to be about 9.0 nm and 12.3 nm (from the Scherrer formula) and about 19.7 and 17.5 nm (from the Williamson-Hall model), respectively. From the DRS spectra, the absorption wavelengths of 595 and 546 nm correspond to band gap energies of 2.08, and 2.27 eV was obtained for CdS NPs and CdS-CNP samples. The samples were then used in the photodegradation of cefotaxime (CT), and the results showed a boosted photocatalytic activity for CdS-CNP rather than CdS NPs. The photodegradation process obeyed the pseudo-first-order kinetic model, and the CdS and CdS-CNP catalysts obtained the k-values of 0.013 min-1 and 0.023 min-1. When the photodegraded CT solutions were used in COD experiments, the k-values changed to 0.011 min-1 and 0.029 min-1, respectively. The zeolite support is an eco-friendly natural zeolite with abundant deposits in Iran that yields a cost-effective method.
Collapse
Affiliation(s)
- Najme Mehrabanpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Shirin Ghattavi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| |
Collapse
|
23
|
Nasiri R, Zarei M, Arsalani N, Pezhhanfar S, Someh AA, Panahian Y. One-pot synthesis of novel 3D graphene/Fe3O4/agro-based waste material (Sesamum indicum) nanocomposite for wastewater treatment and artificial neural network modeling. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Naimi-Joubani M, Ayagh K, Tahergorabi M, Shirzad-Siboni M, Yang JK. Design and modeling of diazinon degradation in hydrous matrix by Ni-doped ZnO nanorods under ultrasonic irradiation: process optimization using RSM (CCD), kinetic study, reaction pathway, mineralization, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3527-3548. [PMID: 35947265 DOI: 10.1007/s11356-022-21861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In first, the Ni-doped ZnO nanorods used as an appeal sonocatalyst was synthesized through co-precipitation method. Afterwards, the crystalline structure, functional groups, surface morphology, and elemental composition were characterized by a set of analysis. Removal of diazinon ((DZ) as a renowned pesticide) was investigated using sonocatalytic performance of US/Ni-doped ZnO system. In this empirical study, response surface methodology (RSM) based central composite design (CCD) was applied for optimization of operational factors. Under the optimum conditions such as initial pH = 5, initial DZ concentration = 15 mg L-1, sonocatalyst dosage = 1 g L-1, and in the presence of organic compounds (oxalic acid, humic acid, and folic acid) = 3 mg L-1, the sonocatalytic degradation of DZ after 15 min was 82.29%. The F-value (6.64) and P-value (< 0.0001) for DZ degradation in the quadratic model imply the proposed model was significant. A-factor (pH) considers as a prominent factor owing to having the highest F-value. In addition, the sonocatalytic data in this study exhibited valid fitting for the first order kinetic model (R2 > 0.98). After six consecutive cycles, the Ni-doped ZnO nanorods could be recyclable for sonocatalytic degradation of DZ. The five main compounds produced during the US/Ni-doped ZnO embracing 2-isopropyl-6-methyl-4-pyrimidinol (IMP), diethyl phosphonate, diazoxon, hydroxyldiazinon, and diazinon methyl ketone are formed in the path of DZ degradation. OFAT style also revealed 99.99% of DZ degradation with 73.26% of mineralization rate in optimum status. The Ni-doped ZnO presented agreeable sonocatalytic facility in the refinement of real water and wastewater matrix. Finally, the results of toxicity evaluation (Daphnia magna) in the sonocatalytic degradation of DZ (by US/Ni-doped ZnO system) showed that the toxicity of the DZ solution lessened under US waves (LC50 and TU 48 h equal to 36.472 and 2.741 volume percent, respectively).
Collapse
Affiliation(s)
- Mohammad Naimi-Joubani
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Kobra Ayagh
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahsa Tahergorabi
- Department of Environmental Health Engineering, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mehdi Shirzad-Siboni
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran.
| | - Jae- Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, Korea
| |
Collapse
|
25
|
Shinde SB, Nille OS, Gore AH, Birajdar NB, Kolekar GB, Anbhule PV. Valorization of Waste Tungsten Filament into mpg-C 3N 4-WO 3 Photocatalyst: A Sustainable e-Waste Management and Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13543-13557. [PMID: 36282958 DOI: 10.1021/acs.langmuir.2c02171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The waste of tungsten filament materials in the environment is one of the reasons for environmental pollution, and it is very dangerous to animals and plants. To date, not much attention has been given to its utility or recyclability. Herein, the present work reported the synthesis of tungsten trioxide nanoparticles (WO3 NPs) by the utilization of cost-free waste tungsten filament by a simple calcination method. A mesoporous graphitic carbon nitride-tungsten trioxide (mpg-C3N4-WO3) composite designed from the WO3 NPs produced from tungsten filament waste and thiourea as a carbon and nitrogen precursor by a one-step calcination method. The synthesized samples were characterized and confirmed by different characterization techniques. The photocatalytic behavior of the synthesized mpg-C3N4-WO3 composite was assessed, with respect to the effect of initial pH, amount of photocatalyst, dye concentration, and reaction time, as well for the degradation of Methylene Blue (MB) dye under sunlight. The best photocatalytic performance (92%) was achieved using mpg-C3N4-WO3 with experimental condition ([photocatalyst] = 100 mg/L, [MB]0 = 10 mg/L, pH 8, and time = 120 min) under sunlight irradiation with excellent photostability than that of isolated mpg-C3N4 and WO3 NPs. The histotoxicological studies also showed that the photodegraded products of MB were found to be nontoxic and did not structurally changes in the gill architecture as well as brain tissues of freshwater fish Labeo rohita.
Collapse
Affiliation(s)
- Sachin B Shinde
- Medicinal Material Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli-394350, Gujarat, India
| | - Nagesh B Birajdar
- Department of Zoology, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Prashant V Anbhule
- Medicinal Material Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India
| |
Collapse
|
26
|
Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Liu SY, Zada A, Yu X, Liu F, Jin G. NiFe 2O 4/g-C 3N 4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance. CHEMOSPHERE 2022; 307:135717. [PMID: 35863405 DOI: 10.1016/j.chemosphere.2022.135717] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 05/26/2023]
Abstract
In this work, NiFe2O4/g-C3N4 heterostructure was prepared and used for the photocatalytic decomposition of tetracycline hydrochloride antibiotic and for inactivation of E. coli bacteria. The fabricated NiFe2O4/g-C3N4 composite displayed enhanced ability for photodegradation of organic pollutants and disinfection activities compared to the bare samples, because of the enhancement of visible light absorbance, heterojunction formation and photo-Fenton process. The optimized sample 10%-NiFe2O4/g-C3N4 has photodegraded 94.5% of tetracycline hydrochloride in 80 min. The active species trapping experiments revels that ·O2-, h+ and •OH are key decomposing species participated in the antibiotic degradation. It is hoped that the present study will provide a better understanding to fabricate efficient photocatalysts for the decomposition of organic pollutants and disinfection of bacteria.
Collapse
Affiliation(s)
- Shu-Yuan Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China.
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Xinyuan Yu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Fanzhe Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Ge Jin
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
28
|
Farjood M, Zanjanchi MA. Enhanced photocatalytic activity of nano-silica/copper plasmon by aminofunctional silane for dye pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77656-77670. [PMID: 35687288 DOI: 10.1007/s11356-022-21145-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of silica gel nanostructures and loading it with copper specie via a hydrothermal process were performed. The sample is treated with an amino-functional reagent 3-aminopropyl triethoxysilane (APTES). The products were characterized by X-ray diffraction (XRD), FT-IR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), TGA/DSC measurements, and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the nanostructures were studied for degradation of methylene blue dye (as a classic dye contaminant) in aqueous solution utilizing visible light source. The results displayed that the sample treated with APTES is much more effective in photocatalytic degradation of methylene blue. This modified catalyst could eliminate methylene blue dye (50 mL, 18 µg mL-1) within 60 min under visible light. The degradation efficiency was increased by shortening the degradation time to 30 min in the alkaline medium. The pseudo-first-order model well describes the kinetics of the reaction.
Collapse
Affiliation(s)
- Mehrdad Farjood
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran.
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran
| |
Collapse
|
29
|
Zheng Y, Wei Y, Fan J, Liu X, Zhu Z, Yang B. The Fe
0
/Fe
3
O
4
/Fe
3
C@hydrophilic Carbon Composite for LED Light‐Assisted, Improved Fenton‐Like Catalytic Activity for Dye Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanping Zheng
- Department of Petrochemical Technology Lanzhou University of Technology Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou Yinchuan 730070 P.R. China
| | - Yunxia Wei
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Jinhu Fan
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Xianyu Liu
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Zhenhong Zhu
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Baoping Yang
- Department of Petrochemical Technology Lanzhou University of Technology Lanzhou 730070 P.R.China
| |
Collapse
|
30
|
Singh P, Mohan B, Madaan V, Ranga R, Kumari P, Kumar S, Bhankar V, Kumar P, Kumar K. Nanomaterials photocatalytic activities for waste water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69294-69326. [PMID: 35978242 DOI: 10.1007/s11356-022-22550-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Water is necessary for the survival of life on Earth. A wide range of pollutants has contaminated water resources in the last few decades. The presence of contaminants incredibly different dyes in waste, potable, and surface water is hazardous to environmental and human health. Different types of dyes are the principal contaminants in water that need sudden attention because of their widespread domestic and industrial use. The toxic effects of these dyes and their ability to resist traditional water treatment procedures have inspired the researcher to develop an eco-friendly method that could effectively and efficiently degrade these toxic contaminants. Here, in this review, we explored the effective and economical methods of metal-based nanomaterials photocatalytic degradation for successfully removing dyes from wastewater. This study provides a tool for protecting the environment and human health. In addition, the insights into the transformation of solar energy for photocatalytic reduction of toxic metal ions and photocatalytic degradation of dyes contaminated wastewater will open a gate for water treatment research. The mechanism of photocatalytic degradation and the parameters that affect the photocatalytic activities of various photocatalysts have also been reported.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen, 361021, China
| | - Vasundhara Madaan
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Rohit Ranga
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Parveen Kumari
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India.
| |
Collapse
|
31
|
Huerta-Aguilar C, Diaz-Puerto ZJ, Tecuapa-Flores ED, Thangarasu P. Crystal Plane Impact of ZnFe 2O 4-Ag Nanoparticles Influencing Photocatalytical and Antibacterial Properties: Experimental and Theoretical Studies. ACS OMEGA 2022; 7:33985-34001. [PMID: 36188324 PMCID: PMC9520734 DOI: 10.1021/acsomega.2c03153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
This paper describes the crystal interphase impact of ZnFe2O4-Ag in the photodegradation of Rhodamine B. Prepared ZnFe2O4 nanoparticles (NPs) were deposited with Ag NPs to offer ZnFe2O4-Ag (0-2.5%). An X-ray diffraction peak corresponding to the Ag NPs was detected if the particle content reached about 2.0%, observing multiple crystalline interphases in HR-TEM. Magnetic saturation (Ms) was increased ∼160% times for ZnFe2O4-Ag (7.25 to 18.71 emu/g) and ZnFe2O4 (9.62 to 25.09 emu/g) if the temperature is lowered from 298 to 5.0 K; while for Fe3O4 (91.09 to 96.19 emu/g), the Ms increment was just about 5.6%. After analyzing the DFT-Density of State, a decrease of bandgap energy for ZnFe2O4-Ag6 from the influence of the size of Ag cluster was seen. Quantum yield (Φ) was 0.60 for ZnFe2O4, 0.25 for ZnFe2O4-Ag (1.0%), 0.70 for ZnFe2O4-Ag (1.5%), 0.66 for ZnFe2O4-Ag (2.0%), and 0.66 for ZnFe2O4-Ag (2.5%), showing that the disposition of Ag NPs (1.5-2.5%) increases the Φ to >0.60. The samples were used to photo-oxidize RhB under visible light assisted by photopowered Langmuir adsorption. The degradation follows first-order kinetics (k = 5.5 × 10-3 min-1), resulting in a greater k = 2.0 × 10-3 min-1 for ZnFe2O4-Ag than for ZnFe2O4 (or Fe3O4, k = 1.1 × 10-3 min-1). DFT-total energy was used to analyze the intermediates formed from the RhB oxidation. Finally, the ZnFe2O4-Ag exhibits good antibacterial behavior because of the presence of Zn and the Ag components.
Collapse
Affiliation(s)
- Carlos
Alberto Huerta-Aguilar
- Instituto
Tecnologico y de Estudios Superiores de Monterrey, Campus Puebla,
School of Engineering and Sciences, Atlixcáyotl 5718, San Andres Cholula, PueblaMéxico, MX 72800
| | - Zarick Juliana Diaz-Puerto
- Universidad
Nacional Autónoma de México, Facultad de Química,
Ciudad Universitaria, México
City, Ciudad de MéxicoMéxico, MX 04510
| | - Eduardo Daniel Tecuapa-Flores
- Universidad
Nacional Autónoma de México, Facultad de Química,
Ciudad Universitaria, México
City, Ciudad de MéxicoMéxico, MX 04510
| | - Pandiyan Thangarasu
- Universidad
Nacional Autónoma de México, Facultad de Química,
Ciudad Universitaria, México
City, Ciudad de MéxicoMéxico, MX 04510
| |
Collapse
|
32
|
Xu L, Liu NP, An HL, Ju WT, Liu B, Wang XF, Wang X. Preparation of Ag 3PO 4/CoWO 4 S-scheme heterojunction and study on sonocatalytic degradation of tetracycline. ULTRASONICS SONOCHEMISTRY 2022; 89:106147. [PMID: 36087545 PMCID: PMC9465027 DOI: 10.1016/j.ultsonch.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 05/12/2023]
Abstract
In this study, 0.6Ag3PO4/CoWO4 composites were synthesized by hydrothermal method. The prepared materials were systematically characterized by techniques of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption, and UV-vis diffuse reflectance spectrum (DRS). Furthermore, the sonocatalytic degradation performance of 0.6Ag3PO4/CoWO4 composites towards tetracycline (TC) was investigated under ultrasonic radiation. The results showed that, combined with potassium persulfate (K2S2O8), the 0.6Ag3PO4/CoWO4 composites achieved a high sonocatalytic degradation efficiency of 97.89 % within 10 min, which was much better than bare Ag3PO4 or CoWO4. By measuring the electrochemical properties, it was proposed that the degradation mechanism of 0.6Ag3PO4/CoWO4 is the formation of S-scheme heterojunction, which increases the separation efficiency of electron-hole pairs (e--h+) and generates more electrons and holes, thereby enhancing the degradation activity. The scavenger experiments confirmed that hole (h+) was the primary active substance in degrading TC, and free radicals (OH) and superoxide anion radical (O2-) were auxiliary active substances. The results indicated that 0.6Ag3PO4/CoWO4 nanocomposites could be used as an efficient and reliable sonocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ni-Ping Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Hui-Li An
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao-Fang Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
33
|
Afzal MZ, Zu P, Zhang CM, Guan J, Song C, Sun XF, Wang SG. Sonocatalytic degradation of ciprofloxacin using hydrogel beads of TiO 2 incorporated biochar and chitosan. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128879. [PMID: 35427970 DOI: 10.1016/j.jhazmat.2022.128879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 05/12/2023]
Abstract
Pharmaceuticals are necessary to be removed from environment. Herein TiO2 incorporated biochar made from pyrolysis of agricultural wastes was encapsulated into chitosan to obtain a novel hydrogel beads. This hydrogel beads executed a dual role as both adsorbent and sonocatalyst, which proved to be suitable for the removal of antibiotic ciprofloxacin (CIP) from water. The results showed that adsorption of CIP followed pseudo first order kinetics model and Langmuir adsorption isotherm model, having maximum adsorption at pH 9. Whereas the degradation was more efficient at pH 6 due to greater standard potential for •OH/H2O in acidic media. The degradation was maximum at 150 W of ultrasonic power, then decreased in presence of dissimilar electrolytes and even reduced to 0 in presence of Na3PO4. Different quenchers such as benzoquinone (BQ), Triethanolamine (TEA) and isopropyl alcohol (IPA) reduced degradation efficiency (DE) and mineralization efficiency (ME). The DE was decreased from 85.23% to 81.50% (BQ), 74.27% (TEA), and 61.77% (IPA) within 25 min. The prepared sonocatalyst was capable of regeneration with DE, remaining sufficiently high (62%) even after four regeneration steps. These results indicate that titanium-biochar/chitosan hydrogel beads (TBCB) are durable and effective for long-term CIP removal.
Collapse
Affiliation(s)
- Muhammad Zaheer Afzal
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Sciences, University of Jhang, Jhang, Pakistan
| | - Peng Zu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Chun-Miao Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jing Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Sciences, University of Jhang, Jhang, Pakistan
| | - Xue-Fei Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
34
|
Pourshirband N, Nezamzadeh-Ejhieh A. The boosted activity of AgI/BiOI nanocatalyst: a RSM study towards Eriochrome Black T photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45276-45291. [PMID: 35143003 DOI: 10.1007/s11356-022-19040-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, critical environmental pollution needs some novel, simple, effective, and cost-effective catalysts with high efficiency in the visible region of the light. Thus, the AgI/BiOI coupled nanocatalyst sample (CS) was prepared and briefly characterized. The pHpzc values of 6.2, 5.4, and 4.5 were estimated for AgI, BiOI, and AgI/BiOI samples. Based on the PXRD results, average crystallite sizes of 35.2, 34.7, and 34.1 nm were obtained for AgI, BiOI, and AgI/BiOI samples from the Scherrer formula and 38.3, 25.6, and 25.6 nm by the Williamson-Hall formula. SEM image confirmed a sheet-like BiOI morphology covered by AgI nanoparticles. The simultaneous interactions of the influencing variables on the boosted photocatalytic activity of CS sample towards Eriochrome Black T (EBT) were evaluated by response surface methodology (RSM) (under 100-W tungsten lamp irradiation with 230 mW/m2.nm irradiance). The goodness of the model was confirmed by the significance of the model (F value of 65.68 > F0.05, 14, 13 = 2.55) and a non-significant LOF (F value of 0.97 < F0.05, 10, 3 = 8.79) at a 95% confidence interval obtained in ANOVA analysis of the results. The center point runs have the following conditions: catalyst dose: 0.68 g/L; pH: 7.5; CEBT: 7.25 mg/L; and irradiation time: 53.5 min, while the optimal run included the following conditions: catalyst dose: 1.0 g/L; pH: 4; CEBT: 10 mg/L; and irradiation time: 80 min. About 95% of EBT molecules were degraded in the optimal conditions.
Collapse
Affiliation(s)
- Nafiseh Pourshirband
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
35
|
Nadeem N, Yaseen M, Rehan ZA, Zahid M, Shakoor RA, Jilani A, Iqbal J, Rasul S, Shahid I. Coal fly ash supported CoFe 2O 4 nanocomposites: Synergetic Fenton-like and photocatalytic degradation of methylene blue. ENVIRONMENTAL RESEARCH 2022; 206:112280. [PMID: 34756916 DOI: 10.1016/j.envres.2021.112280] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Rapid industrialization is causing a serious threat for the environment. Therefore, this research was aimed in developing ceramic cobalt ferrite (CoFe2O4) nanocomposite photocatalyst coated with coal fly ash (CFA-CoFe2O4) using facile hydrothermal synthesis route and their applications against methylene blue. The pristine cobalt ferrite photocatalyst was also prepared, characterized, and applied for efficiency comparison. Prepared photocatalyst were characterized by X-ray diffraction (XRD), fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Optical response of catalysts was check using photoluminescence spectroscopy (PL). pH drift method was used for the surface charge characteristics of the material under acidic and basic conditions of solution pH. The photocatalytic degradation potential of all the materials were determined under ultra-violet irradiations. The influencing reaction parameters like pH, catalyst dose, oxidant dose, dye concentration, and irradiation time, were sequentially optimized to obtain best suited conditions. The 99% degradation of 10 ppm methylene blue was achieved within 60 min of reaction time under pH = 5 and 7, catalyst dose = 10 and 12 mg/100 mL, oxidant = 12 mM and 5 mM for cobalt ferrite and CFA-CoFe2O4 photocatalysts, respectively. Afterwards, the radical scavenging experiments were conducted to find out the effective radical scavengers (˙OH, h+, and e-) in photocatalytic degradation process. The kinetic study of the process was done by applying 1st order, 2nd order, and BMG models. Statistical assessment of interaction effect among experimental variables was achieved using response surface methodology (RSM).
Collapse
Affiliation(s)
- Nimra Nadeem
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Yaseen
- Department of Physics, University of Agriculture Faisalabad, Pakistan
| | - Zulfiqar Ahmad Rehan
- Department of Polymer Engineering, National Textile University Faisalabad, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan.
| | - Rana Abdul Shakoor
- Center for Advanced Materials (CAM), Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asim Jilani
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Rasul
- Department of Mechanical and Construction Engineering, Northumbria University, UK
| | - Imran Shahid
- Environmental Science Centre, Qatar University, Doha, P.O. Box 2713, Qatar
| |
Collapse
|
36
|
Görmez Ö, Yakar E, Gözmen B, Kayan B, Khataee A. CoFe 2O 4 nanoparticles decorated onto graphene oxide and graphitic carbon nitride layers as a separable catalyst for ultrasound-assisted photocatalytic degradation of Bisphenol-A. CHEMOSPHERE 2022; 288:132663. [PMID: 34710453 DOI: 10.1016/j.chemosphere.2021.132663] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The advanced oxidation process (AOP) through ultrasound-assisted photocatalytic degradation has attracted much attention in removing emerging contaminants. Herein, CoFe2O4-GO and CoFe2O4-g-C3N4 nanocomposites were synthesized using the ultrasound-assisted co-precipitation method. TEM, XRD, XPS, EDS, SEM, and FT-IR techniques characterized the structural, morphological, and chemical properties of the synthesized nanocomposites. The analyses showed that CoFe2O4 structure was nano-sized and distributed more homogeneously in graphene oxide (GO) layers with oxygenated functional groups than graphitic carbon nitride (g-C3N4). While the efficiency of composite catalysts, as photocatalysts, for degradation of bisphenol-A (BPA) was low in the visible region in the presence of persulfate, their catalytic efficacy was higher with sonolytic activation. The addition of persulfate as an oxidant remarkably enhanced the target pollutant degradation and TOC removal of BPA solution. Both composite catalysts showed 100 % BPA removal with the synergistic effect of visible region photocatalytic oxidation and sonocatalytic oxidation in the presence of persulfate at pH 6.8. In ultrasound-assisted photocatalytic oxidation of BPA, the highest mineralization efficiencies were obtained at 2 h treatment time, pH 6.8, 16 mM PS, catalyst dosages of 0.1 g/L CoFe2O4-GO, and 0.4 g/L CoFe2O4-g-C3N4 as 62 % and 55 %, respectively. An effective catalyst was obtained by reducing e-/h+ recombination and charge transfer resistance by decorating the GO layers with CoFe2O4.
Collapse
Affiliation(s)
- Özkan Görmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Ezgi Yakar
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Belgin Gözmen
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Berkant Kayan
- Department of Chemistry, Arts and Science Faculty, Aksaray University, 68100, Aksaray, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
37
|
Zhang J, Li J, Ma C, Yi L, Gu T, Wang J. High-efficiency and energy-saving alternating pulse current electrocoagulation to remove polyvinyl alcohol in wastewater. RSC Adv 2021; 11:40085-40099. [PMID: 35494124 PMCID: PMC9044541 DOI: 10.1039/d1ra08093h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Conventional direct current electrocoagulation (DC-EC) has disadvantages such as easy passivation of electrodes, high energy consumption, and large sludge production, which limit its use in polyvinyl alcohol (PVA) wastewater. Therefore, alternating pulse current electrocoagulation (APC-EC) has been developed to overcome these problems. In this study, the influencing factors and energy consumption of PVA treatment by APC-EC and DC-EC were explored, and the best operating conditions of APC-EC were obtained via the response surface method (RSM). The best process conditions for APC-EC were determined to be the electrode type of Fe/Fe, current density of 1.0 mA cm−2, initial pH of 7, electrode distance of 2.0 cm, supporting electrolyte of 0.08 mol L−1 NaCl, initial PVA concentration of 150 mg L−1, duty cycle of 30%, and frequency of 500 Hz. In addition, the floc properties of APC-EC and DC-EC were compared to explore the basic mechanism for the removal of PVA. Adsorption and co-precipitation with hydroxide iron complexes are the main methods for removing PVA from wastewater in the APC-EC process. Compared with DC-EC, the application of APC-EC can reduce electrode passivation and production of sludge and operating costs, and improve electrode stability and PVA removal efficiency. This study provides a new strategy and method for the PVA removal from wastewater by APC-EC with low cost and high efficiency, showing broad prospect for the applications of the APC-EC in removing PVA. Compared with DC-EC, the application of APC-EC can reduce electrode passivation and production of sludge and operating costs, and improve electrode stability and PVA removal efficiency.![]()
Collapse
Affiliation(s)
- Jiepei Zhang
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Junfeng Li
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Chengxiao Ma
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| | - Lijuan Yi
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University Xinjiang 832003 PR China
| | - Tiantian Gu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University Xinjiang 832003 PR China
| | - Jiankang Wang
- School of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China +86-993-2055060 +86-152-9992-1362
| |
Collapse
|
38
|
He LL, Zhu Y, Qi Q, Li XY, Bai JY, Xiang Z, Wang X. Synthesis of CaMoO4 microspheres with enhanced sonocatalytic performance for the removal of Acid Orange 7 in the aqueous environment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Synthesis of titanium oxyfluoride with oxygen vacancy as novel catalysts for pyrolysis of fluorinated greenhouse gasses to hydrofluoroolefins. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Ahmadi A, Zarei M, Hassani A, Ebratkhahan M, Olad A. Facile synthesis of iron(II) doped carbonaceous aerogel as a three-dimensional cathode and its excellent performance in electro-Fenton degradation of ceftazidime from water solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Das S, Chowdhury A. Recent advancements of g-C 3N 4-based magnetic photocatalysts towards the degradation of organic pollutants: a review. NANOTECHNOLOGY 2021; 33:072004. [PMID: 34731840 DOI: 10.1088/1361-6528/ac3614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous photocatalysis premised on advanced oxidation processes has witnessed a broad application perspective, including water purification and environmental remediation. In particular, the graphitic carbon nitride (g-C3N4), an earth-abundant metal-free conjugated polymer, has acquired extensive application scope and interdisciplinary consideration owing to its outstanding structural and physicochemical properties. However, several issues such as the high recombination rate of the photo-generated electron-hole pairs, smaller specific surface area, and lower electrical conductivity curtail the catalytic efficacy of bulk g-C3N4. Another challenging task is separating the catalyst from the reaction medium, limiting their reusability and practical applications. Therefore, several methodologies are adopted strategically to tackle these issues. Attention is being paid, especially to the magnetic nanocomposites (NCs) based catalysts to enhance efficiency and proficient reusability property. This review summarizes the latest progress related to the design and development of magnetic g-C3N4-based NCs and their utilization in photocatalytic systems. The usefulness of the semiconductor heterojunctions on the catalytic activity, working mechanism, and degradation of pollutants are discussed in detail. The major challenges and prospects of using magnetic g-C3N4-based NCs for photocatalytic applications are highlighted in this report.
Collapse
Affiliation(s)
- Suma Das
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
| | - Avijit Chowdhury
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
42
|
Iranfar S, Hekmati M, Ziyadi H, Ghasemi E, Esmaeili D. Synthesis of nanocomposite iron Oxide modified with Punica granatum peel extract and its application in azo dye degradation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Liu SL, Liu B, Xiang Z, Xu L, Wang XF, Liu Y, Wang X. Fabrication of CaWO4 microspheres with enhanced sonocatalytic performance for ciprofloxacin removal in aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Iazdani F, Nezamzadeh-Ejhieh A. The photocatalytic rate of ZnO supported onto natural zeolite nanoparticles in the photodegradation of an aromatic amine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53314-53327. [PMID: 34031830 DOI: 10.1007/s11356-021-14544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Aniline and its derivate are critical environmental pollutants, and thus, the introduction of an eco-friendly catalyst for removing them is an important research future. The ZnO supported on the ball-mill prepared clinoptilolite nanoparticles (CNPs) was prepared via an ion-exchange process followed by the calcination process. The amount of loaded ZnO in the ZnO-CNP (CZ) samples varied as 0.54, 0.63, 0.72, and 0.86 meq/g as the Zn(II) concentration in the ion-exchange solution varied from 0.1 to 0.5 M. The ZnO-CNP catalyst was briefly characterized by XRD, FTIR, and DRS techniques. The pHpzc value for the various ZnO-CNPs was about 7.1 that had no change with the ZnO loading. By applying the Scherrer equation on the XRD results, a nano-dimension of about 50 nm was obtained for the catalyst. Bandgap energy of the ZnO-CNP samples was estimated by applying the Kubelka-Munk equation on the DRS reflectance spectra. The value for the CZ2 catalyst was about 3.64 eV. The supported ZnO-CNP sample was then used in the photodegradation of 2,4-dichloroaniline (DCA). Raw zeolite showed a relatively low photocatalytic activity. The degradation efficiency was followed by recording the absorbance of the DCA solution by UV-Vis spectrophotometer. The effects of the essential critical operating factors on the degradation efficiency were kinetically studied by applying the Hinshelwood equation to the results. The ZnO-CNP catalyst with 2 w% ZnO showed the best photocatalytic rate in the optimal conditions of 0.75 g/L, CDCA: 15 ppm, and the initial pH: 5.8. Finally, HPLC analysis of the blank and the photodegraded DCA solutions at 180 and 300 min confirmed 74 and 87% of DCA molecules were degraded during these times. The results confirm that supported ZnO onto clinoptilolite caused enhanced photocatalytic activity because the zeolite internal electrical field prevents the e-/h+ recombination.
Collapse
Affiliation(s)
- Fereshteh Iazdani
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
45
|
Balarak D, Mengelizadeh N, Rajiv P, Chandrika K. Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49743-49754. [PMID: 33942261 DOI: 10.1007/s11356-021-13525-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/15/2021] [Indexed: 05/27/2023]
Abstract
The photocatalytic degradation of amoxicillin (AMX) by titanium dioxide nanoparticles loaded on graphene oxide (GO/TiO2) was evaluated under UV light. Experimental results showed that key parameters such as initial pH, GO/TiO2 dosage, UV intensity, and initial AMX concentration had a significant effect on AMX degradation. Compared to the photolysis and adsorption processes, the AMX degradation efficiency was obtained to be more than 99% at conditions including pH of 6, the GO/TiO2 dosage of 0.4 g/L, the AMX concentration of 50 mg/L, and the intensity of 36 W. Trapping tests showed that all three hydroxyl radical (OH•), superoxide radical (O2•-), and hole (h+) were produced in the photocatalytic process; however, h+ plays a major role in AMX degradation. Under UV irradiation, GO/TiO2 showed excellent stability and recyclability for 4 consecutive reaction cycles. The analysis of total organic carbon (TOC) suggested that AMX could be well degraded into CO2 and H2O. The formation of NH4+, NO3-, and SO42- as a result of AMX degradation confirmed the good mineralization of AMX in the GO/TiO2/UV process. The toxicity of the inlet and outlet samples of the process has been investigated by cultivation of Escherichia coli and Streptococcus faecalis, and the results showed that the condition is suitable for the growth of organisms. The photocatalytic degradation mechanism was proposed based on trapping and comparative tests. Based on the results, the GO/TiO2/UV process can be considered as a promising technique for AMX degradation due to photocatalyst stability, high mineralization efficiency, and effluent low toxicity.
Collapse
Affiliation(s)
- Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Nezamaddin Mengelizadeh
- Research Center of Health, Safety and Environment, Department of Environmental Health Engineering, Evaz Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Periakaruppan Rajiv
- Department of Biotechnology, Karpagam Academy of Higher Education, Eachanari post, Coimbatore, Tamil Nadu, 641021, India
| | - Kethineni Chandrika
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, 52250, India.
| |
Collapse
|
46
|
Ghanbari F, Wang Q, Hassani A, Wacławek S, Rodríguez-Chueca J, Lin KYA. Electrochemical activation of peroxides for treatment of contaminated water with landfill leachate: Efficacy, toxicity and biodegradability evaluation. CHEMOSPHERE 2021; 279:130610. [PMID: 34134413 DOI: 10.1016/j.chemosphere.2021.130610] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Contaminated water with landfill leachate (CWLL) with high salinity and high organic content (total organic carbon (TOC) = 649 mg/L and Chemical Oxygen Demand (COD) = 1175 mg/L) is a toxic and non-biodegradable effluent. The present research aimed to assess the treatment effectiveness of CWLL by electrocoagulation (EC)/oxidant process. The ferrous ions generated during the process were employed as coagulant and catalyst for the activation of different oxidants such as peroxymonosulfate (PMS), peroxydisulfate (PDS), hydrogen peroxide (HP), and percarbonate (PC) to decrease TOC in CWLL. Removal of ammonia, color, phosphorous, and chemical oxygen demand (COD) from CWLL effluent was explored at various processes. EC/HP had the best performance (∼73%) in mineralization of organic pollutants compared to others under the condition of pH 6.8, applied current of 200 mA, oxidant dosage of 6 mM, and time of 80 min. The oxidation priority was to follow this order: EC/HP > EC/PMS > EC/PDS > EC/PC. These processes enhanced the biodegradability of CWLL based on the average oxidation state and biochemical oxygen demand (BOD)/COD ratio. SUVA254 and E2/E3 indices were also investigated on obtained effluents. The phytotoxicity evaluation was carried out based on the germination index, indicating that the electro-activated oxidant was an effective system to reduce the toxicity of polluted waters. EC/HP showed supremacy compared to others in terms of efficiency, cost, and detoxification. Therefore, the electro-activated oxidant system is a good means for removing organic pollutants from real wastewater.
Collapse
Affiliation(s)
- Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey.
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Jorge Rodríguez-Chueca
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros Industriales, Departamento de Ingeniería Química Industrial y Del Medio Ambiente, C/ de José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
47
|
Pourshirband N, Nezamzadeh-Ejhieh A. An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: Focus on the scavenging agent and mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116543] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Zhang W, Xu D, Wang F, Chen M. Element-doped graphitic carbon nitride: confirmation of doped elements and applications. NANOSCALE ADVANCES 2021; 3:4370-4387. [PMID: 36133458 PMCID: PMC9417723 DOI: 10.1039/d1na00264c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 05/11/2023]
Abstract
Doping is widely reported as an efficient strategy to enhance the performance of graphitic carbon nitride (g-CN). In the study of element-doped g-CN, the characterization of doped elements is an indispensable requirement, as well as a huge challenge. In this review, we summarize some useful characterization methods which can confirm the existence and chemical states of doped elements. The advantages and shortcomings of these characterization methods are discussed in detail. Various applications of element-doped g-CN and the function of doped elements are also introduced. Overall, this review article aims to provide helpful information for the research of element-doped g-CN.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Datong Xu
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Fengjue Wang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Meng Chen
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| |
Collapse
|
49
|
Analysis of Photocatalytic Degradation of Phenol with Exfoliated Graphitic Carbon Nitride and Light-Emitting Diodes Using Response Surface Methodology. Catalysts 2021. [DOI: 10.3390/catal11080898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Response surface methodology (RSM) involving a Box–Benkhen design (BBD) was employed to analyze the photocatalytic degradation of phenol using exfoliated graphitic carbon nitride (g-C3N4) and light-emitting diodes (wavelength = 430 nm). The interaction between three parameters, namely, catalyst concentration (0.25–0.75 g/L), pollutant concentration (20–100 ppm), and pH of the solution (3–10), was examined and modeled. An empirical regression quadratic model was developed to relate the phenol degradation efficiency with these three parameters. Analysis of variance (ANOVA) was then applied to examine the significance of the model; this showed that the model is significant with an insignificant lack of fit and an R2 of 0.96. The statistical analysis demonstrated that, in the studied range, phenol concentration considerably affected phenol degradation. The RSM model shows a significant correlation between predicted and experimental values of photocatalytic degradation of phenol. The model’s accuracy was tested for 50 ppm of phenol under optimal conditions involving a catalyst concentration of 0.4 g/L catalysts and a solution pH of 6.5. The model predicted a degradation efficiency of 88.62%, whereas the experimentally achieved efficiency was 83.75%.
Collapse
|
50
|
Ghanbari F, Hassani A, Wacławek S, Wang Z, Matyszczak G, Lin KYA, Dolatabadi M. Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: Key operating parameters, mineralization and toxicity assessment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118533] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|