1
|
Kalman J, Muñiz-González AB, García MÁ, Martínez-Guitarte JL. Chironomus riparius molecular response to polystyrene primary microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161540. [PMID: 36642273 DOI: 10.1016/j.scitotenv.2023.161540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Judit Kalman
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain; Grupo de Riesgos Ambientales para la Salud y el Medio Ambiente (RiSAMA), Facultad de Ciencias de la Salud, Universidad de Rey Juan Carlos, Spain
| | - Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain
| | | | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain.
| |
Collapse
|
2
|
Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect eluates from bulk fill resin-based-composites. Dent Mater 2022; 38:489-507. [DOI: 10.1016/j.dental.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
3
|
Muñiz-González AB, Paoli F, Martínez-Guitarte JL, Lencioni V. Molecular biomarkers as tool for early warning by chlorpyrifos exposure on Alpine chironomids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118061. [PMID: 34523523 DOI: 10.1016/j.envpol.2021.118061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Pesticides used in agriculture can be transported at a medium-high distance due to the drift effect, reaching even remote areas as mountain regions, glaciers, and snow cover. With the melting process, pesticides enter freshwater glacier ecosystems, becoming a threat to wildlife fauna, mainly dominated by Diptera Chironomidae. Chlorpyrifos (CPF), as one of the most commonly used pesticides in alpine vineyards and apple orchards, is frequently detected in icemelt waters. We selected as target species, larvae of the cold stenothermal chironomid Diamesa zernyi, collected in two glacier-fed streams (Presena and Amola) in the Italian Alps. Firstly, a de novo transcriptome was obtained, and secondly, a gene array was designed to study the molecular response of a wild population of D. zernyi exposed to three sub-lethal CPF concentrations corresponding to 1/100 LC10 (0.011 μg/L), 1/10 LC10 (0.11 μg/L), and LC10 (1.1 μg/L), for 24 h. The sub-organismal response was evaluated by Real-Time Polymerase Chain Reaction (RT-PCR), employing 40 genes related to essential metabolic routes as future candidates for biomarkers in wildlife chironomids. After 24 h, the endocrine system (E75, E93, EcR, and Met), detoxification response (GSTO3, GSTS1), and stress response (hsp75, hsp83, HYOU1) were altered. CPF seems to act as an endocrine disruptor and could lead to defective larval development, disrupted cellular homeostasis through heat shock proteins (HSPs) alteration (defective protein folding and mitochondrial functions), as well as oxidative damage (confirmed by increased GST expression). For the first time, molecular studies detected early alarm signals in wildlife in glacier environments. Our findings confirm the high environmental risk of CPF affecting aquatic insect metabolism and raise the level of concern about this pesticide in high altitude water bodies, generally considered pristine. Furthermore, this study emphasizes the incipient need to use non-model organisms for the evaluation of natural ecosystems. We also highlight the demand for research into new molecular biomarkers, and the importance of including molecular approaches in toxicology evaluations to detect the early adverse effects of pollutants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain.
| | - Francesca Paoli
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| | - José-Luis Martínez-Guitarte
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain
| | - Valeria Lencioni
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| |
Collapse
|
4
|
Sandoval-Gío JJ, Noreña-Barroso E, Escalante-Herrera K, Rodríguez-Fuentes G. Effect of Benzophenone-3 to Acetylcholinesterase and Antioxidant System in Zebrafish (Danio rerio) Embryos. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:814-819. [PMID: 34129062 DOI: 10.1007/s00128-021-03277-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-3 (BP-3) is one of the most used UV filters. The present study aimed to evaluate the toxic effects of BP-3 during embryo stages of zebrafish four hours post-fertilization (4hpf). Embryos were exposed to 0, 1, and 10 µg L-1 of BP-3 for 72 h. We investigated biochemical and molecular biomarkers of neurotoxicity (AChE) and the antioxidant system (gene expression of catalase, CAT, superoxide dismutase, SOD, glutathione peroxidase, GPX, the concentration of total glutathione, GSH, and lipid hydroperoxides, LPO). Results indicated that the acute exposure to BP-3 in zebrafish embryos did not show significant differences in survival, hatching rate, or antioxidant system biomarkers. In contrast, there were significant differences associated with AChE gene expression and activity.
Collapse
Affiliation(s)
- Juan José Sandoval-Gío
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico
- Tecnológico Nacional de México/Instituto Tecnológico de Tizimín, Tizimín, YUC, Mexico
| | - Elsa Noreña-Barroso
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico
| | - Karla Escalante-Herrera
- Unidad Multidisciplinaria de Docencia e Investigación Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Sisal, Sisal, YUC, Mexico.
| |
Collapse
|
5
|
Carrasco-Navarro V, Muñiz-González AB, Sorvari J, Martínez-Guitarte JL. Altered gene expression in Chironomus riparius (insecta) in response to tire rubber and polystyrene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117462. [PMID: 34091266 DOI: 10.1016/j.envpol.2021.117462] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 05/12/2023]
Abstract
The extent until which plastics are present in our surrounding environment completely exceeds our expectations. Plastic materials in the form of microplastics have been found in terrestrial, freshwater and marine environments and are transported through the atmosphere even to remote locations. However, we are still far from understanding the effects that they may have caused and are causing to biota. In the present study, we investigated the alterations in the expression of twelve genes in the aquatic insect Chironomus riparius after 36 h exposures to polystyrene and tire rubber microplastics at nominal concentrations of 1 and 10 mg L-1. The results indicated that several genes encoding for heat shock proteins (hsp90, Glycoprotein 93 (Gp93), hsc70, hsp60, hsp40, and the small HSP hsp17) were overexpressed respect to the control. In addition, the genes coding for manganese superoxide dismutase (SOD Mn, related to alleviation of oxidative stress) and for the FK506-binding protein of 39 kDa. (FKBP39, related to development and pupation) showed altered expression. Most of the alterations on gene expression level occurred at a concentration of 10 mg L-1 of tire rubber microplastics, although specific modifications arose at other concentrations of both rubber and polystyrene. On the contrary, one hsp gene (hsp10) and genes related to biotransformation and detoxification (Cyp9f2, Cyp12a2, and ABCB6) did not alter their expression in any of the treatments. Overall, the results of the gene expression indicated that microplastics (especially tire rubber) or their additives caused cellular stress that led to some alterations in the normal gene expression but did not cause any mortality after 36 h. These results highlight the need for more studies that describe the alterations caused by microplastics at the molecular level. Additionally, it opens questions about the effects caused to aquatic fauna in environmental realistic situations, especially in hot spots of microplastic contamination (e.g., tire rubber released in storm water runoff discharge points).
Collapse
Affiliation(s)
- Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211, Kuopio, Finland.
| | - Ana-Belén Muñiz-González
- Group of Biology and Environmental Toxicology, Department of Mathematical Physics and Fluids, Faculty of Sciences, National Distance Education University (UNED), Madrid, Spain
| | - Jouni Sorvari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211, Kuopio, Finland
| | - Jose-Luis Martínez-Guitarte
- Group of Biology and Environmental Toxicology, Department of Mathematical Physics and Fluids, Faculty of Sciences, National Distance Education University (UNED), Madrid, Spain
| |
Collapse
|
6
|
Pinto TJDS, Rocha GS, Moreira RA, Silva LCMD, Yoshii MPC, Goulart BV, Montagner CC, Daam MA, Espindola ELG. Multi-generational exposure to fipronil, 2,4-D, and their mixtures in Chironomus sancticaroli: Biochemical, individual, and population endpoints. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117384. [PMID: 34030066 DOI: 10.1016/j.envpol.2021.117384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Conventional farming delivers a range of pesticides to aquatic ecosystems leading to implications for the indigenous species. Due to the multiple applications and persistence of molecules, organisms may be exposed for a prolonged period over multiple generations. The present study outlines a full life-cycle design over three generations of Chironomus sancticaroli exposed to the insecticide fipronil, the herbicide 2,4-D, and their mixtures. The experiment started with newly hatched larvae from the parental generation and lasted with the emerged adults from the second generation. Five nominal concentrations of fipronil and 2,4-D were tested, as well as six combinations of both pesticides. As additional responses, the total carbohydrates and the lipid classes were evaluated in the parental generation. The first and second generations were more susceptible to the tested compounds compared with the parental ones. Survival of larvae and pupae was decreased by both pesticides and their mixtures along with the generations. Only fipronil impaired the survival of emerged adults. Both pesticides (isolated and in the mixture) altered the emergence and the fraction of males and females. Moreover, the number of eggs produced, and their hatchability decreased. Only one combination of the pesticides increased the content of carbohydrates. Fipronil, 2,4-D, and its mixture altered the profile of the lipid classes. All mixture treatments and the three highest concentrations of fipronil extinguished the population of C. sancticaroli at the end of the first generation. In the remaining treatments with the insecticide, the population did not survive the second generation. Only three concentrations of 2,4-D and the control persisted until the end of the experiment. The results indicate that a prolonged exposition to these pesticides may disrupt the natural populations of exposed organisms with consequences to ecosystems' functioning, considering the importance of chironomids to aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
| | - Giseli Swerts Rocha
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| |
Collapse
|
7
|
Pinto TJDS, Moreira RA, Silva LCMD, Yoshii MPC, Goulart BV, Fraga PD, Montagner CC, Daam MA, Espindola ELG. Impact of 2,4-D and fipronil on the tropical midge Chironomus sancticaroli (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111778. [PMID: 33338803 DOI: 10.1016/j.ecoenv.2020.111778] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Increased use of pesticides in conventional agriculture implies potential risks to the environment. In aquatic ecosystems, benthic organisms may be exposed to pesticides via contaminated water and sediment, leading to several potential cascading effects on the food web. The aim of this study was to assess the functional implications of environmental realistic concentrations of the herbicide 2,4-D and the insecticide fipronil (alone and in combination) to the native tropical chironomid Chironomus sancticaroli. These two pesticides are widely applied to different crops and have frequently been detected (together) in surface water bodies in Brazil and elsewhere. Commercial products containing fipronil (Regent® 800WG) and 2,4-D (DMA® 806BR) were evaluated in 8-day toxicity tests for their effects on larval survival, growth (body length and biomass), head capsule width, development, and mentum deformities. Fipronil decreased the larval survival at the highest test concentration and the effective concentrations (EC) after eight days of exposure were: EC10 = 0.48 µg L-1 (0.395-0.565), EC20 = 1.06 µg L-1 (0.607-1.513), and EC50 = 3.70 µg L-1 (1.664-5.736). All sublethal test concentrations of fipronil decreased the larval growth, causing reductions in biomass up to 72%. The two highest test concentrations of fipronil decreased the head capsule width and after exposure to 3.7 µg fipronil L-1, only half of the larvae reached the fourth instar. The incidence of deformities was increased by fipronil in a concentration dependent manner with an increase ranging from 23% to 75%. The highest test concentration of 2.4-D (426 µg L-1) decreased the head capsule width, but larval development was unaffected at all concentrations evaluated. In the mixture tests, antagonism was observed at lower fipronil concentrations and synergism at higher fipronil concentrations for growth. The incidence of deformities rose with increasing fipronil concentrations. The results showed that environmental realistic concentrations of fipronil may have serious ecological implications for C. sancticaroli populations and that a mixture with the herbicide 2,4-D can have synergistic effects, potentiating the risks to the aquatic ecosystem.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Priscille Dreux Fraga
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| |
Collapse
|
8
|
Boyd A, Stewart CB, Philibert DA, How ZT, El-Din MG, Tierney KB, Blewett TA. A burning issue: The effect of organic ultraviolet filter exposure on the behaviour and physiology of Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141707. [PMID: 33182172 DOI: 10.1016/j.scitotenv.2020.141707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) filters are compounds utilized in many manufacturing processes and personal care products such as sunscreen to protect against UV-radiation. These highly lipophilic compounds are emerging contaminants of concern in aquatic environments due to their previously observed potential to bioaccumulate and exert toxic effects in marine ecosystems. Currently, research into the toxic effects of UV filter contamination of freshwater ecosystems is lacking, thus the present study sought to model the effects of acute and chronic developmental exposures to UV filters avobenzone, oxybenzone and octocrylene as well as a mixture of these substances in the freshwater invertebrate, Daphnia magna, at environmentally realistic concentrations. Median 48-hour effect and lethal concentrations were determined to be in the low mg/L range, with the exception of octocrylene causing 50% immobilization near environmental concentrations. 48-hour acute developmental exposures proved to behaviourally impair daphnid phototactic response; however, recovery was observed following a 19-day post-exposure period. Although no physiological disruptions were detected in acutely exposed daphnids, delayed mortality was observed up to seven days post-exposure at 200 μg/L of avobenzone and octocrylene. 21-day chronic exposure to 7.5 μg/L octocrylene yielded complete mortality within 7 days, while sublethal chronic exposure to avobenzone increased Daphnia reproductive output and decreased metabolic rate. 2 μg/L oxybenzone induced a 25% increase in metabolic rate of adult daphnids, and otherwise caused no toxic effects at this dose. These data indicate that UV filters can exert toxic effects in freshwater invertebrates, therefore further study is required. It is clear that the most well-studied UV filter, oxybenzone, may not be the most toxic to Daphnia, as both avobenzone and octocrylene induced behavioural and physiological disruption at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Aaron Boyd
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada.
| | - Connor B Stewart
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Danielle A Philibert
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada; Huntsman Marine Science Centre, St. Andrews E5B 2L7, Canada
| | - Zuo Tong How
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Keith B Tierney
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| |
Collapse
|
9
|
Muñiz-González AB. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103537. [PMID: 33157253 DOI: 10.1016/j.etap.2020.103537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The concern about pharmaceuticals has been increased over the last decade due to their burgeoning consumption. Ibuprofen has an extensive presence in surface water with risks for the aquatic biota. This study focuses on the effects of ibuprofen at environmental concentrations on the survival, transcriptional level, and enzymatic activity for 24, 96 h on Chironomus riparius. Ibuprofen developed a substantial effect on survival by all the conditions. mRNA levels of EcR, Dronc, and Met (endocrine system), hsp70, hsp24, and hsp27 (stress response), and Proph and Def (immune system) were modified, joined to increased GST and PO activity. The results confirmed alterations on the development of C. riparius, as well as two essential mechanisms, involved in protection against external toxicological challenge. Ibuprofen poses an incipient risk to C. riparius and could at an organismal level by compromising their survival, development, and ability to respond to adverse conditions on the future populations.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Toxicology and Biology Group, Department of Mathematics and Fluid Physics, UNED, Spain.
| |
Collapse
|
10
|
Carve M, Nugegoda D, Allinson G, Shimeta J. A systematic review and ecological risk assessment for organic ultraviolet filters in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115894. [PMID: 33120145 DOI: 10.1016/j.envpol.2020.115894] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 05/21/2023]
Abstract
Organic ultraviolet filters (OUVFs) are used in a wide range of manufactured products including personal care (e.g. sunscreens) and plastic items. This review summarizes the available data regarding the toxic effects of OUVFs on marine and freshwater organisms and generates the predicted no-effect concentration (PNEC) values necessary for assessing ecological risk. Through a systematic search of the literature, 89 studies were identified and ecotoxicological data extracted. Collectively, these studies described toxicity testing with 39 OUVF from 10 structural classes, with derivatives of benzophenones (49%) and camphors (16%) most studied. There was a bias towards selecting freshwater species (61%), and evaluating single OUVF effects (87%) rather than OUVF mixtures. Short-term (acute) experimentation (58%) was marginally more common than long-term (chronic) testing (42%). Reproductive, developmental, genetic, and neurological toxicity were the most commonly identified effects in aquatic organism, and were associated with molecular interactions with steroid receptors, DNA, or the production of reactive oxygen species. Species sensitivity distribution and/or assessment factors were used to calculate PNECs for 22 OUVFs and the risk quotients for 12 OUVFs. When using maximum concentrations, high risk was observed for six OUVFs in marine environments (4-methylbenzylidene-camphor, octocrylene, padimate-O, benzophenone-1, and oxybenzone, ethylhexyl-4-methoxycinnamate), and for four OUVFs in freshwater environments (ethylhexyl-4-methoxycinnamate, octocrylene, avobenzone and oxybenzone). When using median concentrations, a risk to marine environments was observed for oxybenzone. The results of this review underline that there is limited knowledge of the pathological effects of OUVFs and their metabolites in aquatic environments, and this inhibits the development of informed water-quality guidelines.
Collapse
Affiliation(s)
- Megan Carve
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
11
|
Park K, Kwak IS. Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:77-122. [PMID: 34661753 DOI: 10.1007/398_2021_79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In freshwater ecosystems, aquatic invertebrates are influenced continuously by both physical stress and xenobiotics. Chironomids (Diptera; Chironomidae), or non-biting midges, are the most diverse and abundant invertebrates in freshwater habitats. They are a fundamental link in food chains of aquatic ecosystems. Chironomid larvae tolerate stress factors in their environments via various physiological processes. At the molecular level, environmental pollutants induce multi-level gene responses in Chironomus that regulate cellular protection through the activation of defense processes. This paper reviews literature on the transcriptional responses of biomarker genes to environmental stress in chironomids at the molecular level, in studies conducted from 1991 to 2020 (120 selected literatures of 374 results with the keywords "Chironomus and gene expression" by PubMed search tool). According to these studies, transcriptional responses in chironomids vary depending on the type of stress factor and defensive responses associated with antioxidant activity, the endocrine system, detoxification, homeostasis and stress response, energy metabolism, ribosomal machinery, apoptosis, DNA repair, and epigenetics. These data could provide a comprehensive overview of how Chironomus species respond to pollutants in aquatic environments. Furthermore, the transcriptomic data could facilitate the development of genetic tools for water quality and environmental monitoring based on resident chironomid species.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science and Fisheries Science Institute, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
12
|
Muñiz-González AB, Martínez-Guitarte JL. Unveiling complex responses at the molecular level: Transcriptional alterations by mixtures of bisphenol A, octocrylene, and 2'-ethylhexyl 4- (dimethylamino)benzoate on Chironomus riparius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111199. [PMID: 32889307 DOI: 10.1016/j.ecoenv.2020.111199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Living organisms are exposed to mixtures of pollutants in the wild. Inland aquatic ecosystems contain many compounds from different sources that pollute the water column and the sediment. However, majority of toxicological research is focused on the effects of single exposures to toxicants. Furthermore, studies have been principally oriented toward ecologically relevant effects of intoxication, and lack an analysis of the cellular and molecular mechanisms involved in the response to toxicants. Effects of single, binary, and ternary mixtures of three compounds, bisphenol A, octocrylene, and 2'-ethylhexyl 4- (dimethylamino)benzoate, were assessed using a Real-Time PCR array. Forty genes, and additional six reference genes, were included in the array. The genes were selected based on their association with hormone responses, detoxification mechanisms, the stress response, DNA repair, and the immune system. The study was performed on Chironomus riparius, a benthic dipteran with an essential role in the food web. Transcriptional responses were assessed both 24 and 96 h post-exposure, to determinate short- and medium-term cellular responses. Individual fourth instar larvae were exposed to 0.1 and 1 mg/L of each of the toxic compounds and compound mixtures. A weak response was detected at 24 h, which was stronger in larvae exposed to mixtures than to individual toxicants. The response at 96 h was complex and principally involved genes related to the endocrine system, detoxification mechanisms, and the stress response. Furthermore, exposure to mixtures of compounds altered the expression patterns of an increased number of genes than did individual compound exposures, which suggested complex interactions between compounds affected the regulation of transcriptional activity. The results obtained highlight the importance of analyzing the mechanisms involved in the response to mixtures of compounds over extended periods and offer new insights into the basis of the physiological responses to pollution.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda Del Rey 9, 28040, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda Del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Llorente L, Herrero Ó, Aquilino M, Planelló R. Prodiamesa olivacea: de novo biomarker genes in a potential sentinel organism for ecotoxicity studies in natural scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105593. [PMID: 32861021 DOI: 10.1016/j.aquatox.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Along with traditional ecotoxicological approaches in model organisms, toxicological studies in non-model organisms are being taken into consideration in order to complement them and contribute to more robust approaches. This allows us to figure out the complexity of the exposures involved in natural ecosystems. In this context, in the present research we have used the model species Chironomus riparius (Chironomidae, Diptera) and the non-model species Prodiamesa olivacea (Chironomidae, Diptera) to assess the aquatic toxic effects of acute 4-h and 24-h exposures to 1 μgL-1 of three common environmental pollutants: butyl benzyl phthalate (BBP), bisphenol A (BPA), and benzophenone 3 (BP3). Individuals of both species were collected from a contaminated river (Sar) in Galicia (Spain). Regarding Chironomus, there are four OECD standardized tests for the evaluation of water and sediment toxicity, in which different species in this genus can be used to assess classical toxicity parameters such as survival, immobilization, reproduction, and development. In contrast, Prodiamesa is rarely used in toxicity studies, even though it is an interesting toxicological species because it shares habitats with Chironomus but requires less extreme conditions (e.g., contamination) and higher oxygen levels. These different requirements are particularly interesting in assessing the different responses of both species to pollutant exposure. Quantitative real-time PCR was used to evaluate the transcriptional changes caused by xenobiotics in different genes of interest. Since information about P. olivacea in genomic databases is scarce, its transcriptome was obtained using de novo RNAseq. Genes involved in biotransformation pathways and the oxidative stress response (MnSOD, CAT, PHGPx, Cyp4g15, Cyp6a14-like and Cyp6a2-like) were de novo identified in this species. Our results show differential toxic responses depending on the species and the xenobiotic, being P. olivacea the dipteran that showed the most severe effects in most of the studied biomarker genes. This work represents a multi-species approach that allows us to deepen in the toxicity of BBP, BPA, and BP3 at the molecular level. Besides, it provides an assessment of the tolerance/sensitivity of natural populations of model and non-model insect species chronically exposed to complex mixtures of pollutants in natural scenarios. These findings may have important implications for understanding the adverse biological effects of xenobiotics on P. olivacea, providing new sensitive biomarkers of exposure to BBP, BPA, and BP3. It also highlights the suitability of Prodiamesa for ecotoxicological risk assessment, especially in aquatic ecosystems.
Collapse
Affiliation(s)
- Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Mónica Aquilino
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Muñiz-González AB, Martínez-Guitarte JL. Combined effects of benzophenone-3 and temperature on gene expression and enzymatic activity in the aquatic larvae Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134292. [PMID: 31514035 DOI: 10.1016/j.scitotenv.2019.134292] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 06/14/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Climate change and pollution are two of the main environmental problems living organisms currently face. Temperature can modify a toxicant's effects and the organism's response to it. Global warming is expected to increase the temperature of freshwater ecosystems. In this work, we analyzed the effect of a mild temperature increase on the acute response of the aquatic larvae Chironomus riparius to the ultraviolet filter benzophenone-3 (BP3). This substance is commonly used in sunscreens and other commercial products and can reach the environment in different ways. We exposed larvae to BP3 at 18.5 or 23 °C for 8 or 24 h and analyzed the acute response at the molecular level. By quantitative real-time polymerase chain reaction (q-PCR), we studied altered messenger RNA (mRNA) levels of genes related to the endocrine system (EcR, InR and Met), detoxification mechanisms (Cyp4d2, Cyp6b7, GST d6, GST o1 and MRP-1) and stress response (Hsp22, Hsp27, Hsp70, HYOU and Gp93). Moreover, enzyme activity was evaluated, with a focus on glutathione-S-transferase (GST), phenoloxidase (PO) and acetylcholinesterase (AChE). Results showed that temperature affected the acute response of this organism by modifying the expression of EcR, Cyp6b7, GST d6, GST o1, MRP-1, Hsp22, Hsp27 and Hsp70 genes. These results suggest that even mild temperature change can affect the response of this organism to BP3 influencing short-term progress of the population. Although longer exposures are required to determine the ability of C. riparius to manage the pollutants in this novel environmental conditions, in order to know the possible mechanisms of detoxification or adaptation that may develop. This research represents a first step in the analysis of multi-stress response in this animal, and opens new possibilities in the toxicity evaluation of this organism in line with the real scenario that organisms face today.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
15
|
Martín-Folgar R, Martínez-Guitarte JL. Effects of single and mixture exposure of cadmium and copper in apoptosis and immune related genes at transcriptional level on the midge Chironomus riparius Meigen (Diptera, Chironomidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:590-598. [PMID: 31071664 DOI: 10.1016/j.scitotenv.2019.04.364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Metals and heavy metals are natural contaminants with an increasing presence in aquatic ecosystems as a result of human activities. Although they are mixed in the water, research is usually focused on analyzing them in isolation, so there is a lack of knowledge about their combined effects. The aim of this work was to assess the damage produced by mixtures of cadmium and copper, two frequent metals used in industry, in the harlequin midge Chironomus riparius (Diptera). The effects of acute doses of cadmium and copper were evaluated in fourth instar larvae by analyzing the mRNA levels of six genes related to apoptosis (DRONC, IAP1), immune system (PO1, Defensin), stress (Gp93), and copper homeostasis (Ctr1). DRONC, Ctr1, and IAP1 transcripts are described here for first time in this species. Individual fourth instar larvae were submitted to 10 μM, 1 μM and 0.1 μM of CdCl2 or CuCl2, and mixture. The employed individuals came from different egg masses. Real-time PCR analysis showed a complex pattern of alterations in transcriptional activity for two genes, DRONC and Gp93, while the rest of them did not show any statistically significant differences. The effector caspase DRONC showed upregulation with the highest concentration tested of the mixture. In case of gp93, chaperone involved in regulation of immune response, differences in expression levels were found with 1 and 10 μM Cu and 0.1 and 10 μM of mixtures, compared to control samples. These results suggest that mixtures affect the transcriptional activity differently and produce changes in apoptosis and stress processes, although it is also possible that Gp93 alteration could be related to the immune system since it is homologous to human protein Gp96, which has been related with Toll-like receptors. In conclusion, cadmium and copper mixtures can affect the population by affecting the ability of larvae to respond to the infection and the apoptosis, an important process in the metamorphosis of insects.
Collapse
Affiliation(s)
- Raquel Martín-Folgar
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
16
|
Novo M, Muñiz-González AB, Trigo D, Casquero S, Martínez Guitarte JL. Applying sunscreens on earthworms: Molecular response of Eisenia fetida after direct contact with an organic UV filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:97-104. [PMID: 31029904 DOI: 10.1016/j.scitotenv.2019.04.238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The use of organic Ultraviolet (UV) filters has increased in the last years, either in sunscreens, other cosmetics, or even food packaging. These filters may end up in soil and water since the Wastewater Treatment Plants may not successfully remove them. Among them, benzophenones are known to act as endocrine disruptors. However, most of the studies are directed towards vertebrates and aquatic invertebrates, while there is a lack of information on the molecular mechanisms affected by these compounds on soil dwelling invertebrates. Here, we study the impact of direct acute (48 h) contact of 4-hydroxybenzophenone (4-OHBP) at two sublethal concentrations (0.02 and 0.2 mg/mL) on gene expression of the earthworm Eisenia fetida. Investigated genes were involved in endocrine pathways, stress response, detoxification mechanisms, genotoxicity, energy metabolism and epigenetics. Three of them were identified for the first time in earthworms. Our results suggest that exposure to 4-OHBP affected endocrine pathways, causing an increase in the Ecdysone receptor gene (EcR) expression. Moreover, the UV filter induced changes in the CuZn superoxide dismutase gene (CuZn SOD), indicating an effect in the stress response. Finally, significant changes were detected for glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) expression, indicating that energy metabolism is influenced by the 4-OHBP and highlighting the risks of using GAPDH as an internal reference for Real Time PCR.
Collapse
Affiliation(s)
- M Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Spain; Mathematical and Fluid Physics, Department Environmental Toxicology and Biology Group, Sciences Faculty, UNED, Spain.
| | - A B Muñiz-González
- Mathematical and Fluid Physics, Department Environmental Toxicology and Biology Group, Sciences Faculty, UNED, Spain
| | - D Trigo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Spain
| | - S Casquero
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Spain
| | - J L Martínez Guitarte
- Mathematical and Fluid Physics, Department Environmental Toxicology and Biology Group, Sciences Faculty, UNED, Spain
| |
Collapse
|