1
|
Celik MN, Yesildemir O. Endocrine Disruptors in Child Obesity and Related Disorders: Early Critical Windows of Exposure. Curr Nutr Rep 2025; 14:14. [PMID: 39775248 PMCID: PMC11706864 DOI: 10.1007/s13668-024-00604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Endocrine disruptors (EDs) can mimic or interfere with hormones in the body, leading to non-communicable diseases, such as obesity, diabetes, and metabolic syndrome. Susceptibility to EDs increases during prenatal and postnatal life, a critical time window. This review aims to summarize the latest evidence on the relation of early life exposure to some EDs with obesity and the other metabolic disorders. RECENT FINDINGS: There is increasing evidence that early life exposure to EDs may impair adipogenesis by increasing the number and size of adipocytes, thereby increasing susceptibility to obesity in childhood. It is stated that exposure to EDs during the prenatal and postnatal period may raise the risk of type 2 diabetes in adulthood by disrupting glucose, lipid, and insulin homeostasis in the offspring. They can also accelerate the development of type 1 diabetes through various mechanisms, like immunomodulation, gut microbiota, and vitamin D pathways. There is a growing understanding that ED exposure during critical stages of life could play an important role in the development of obesity and metabolic disorders. We suggest setting national goals, global standards, and policies to reduce environmental exposure to pregnant and lactating women, and babies, considered sensitive populations.
Collapse
Affiliation(s)
- Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey.
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
2
|
Keskesiadou GN, Tsokkou S, Konstantinidis I, Georgaki MN, Sioga A, Papamitsou T, Karachrysafi S. Endocrine-Disrupting Chemicals and the Development of Diabetes Mellitus Type 1: A 5-Year Systematic Review. Int J Mol Sci 2024; 25:10111. [PMID: 39337594 PMCID: PMC11432464 DOI: 10.3390/ijms251810111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION According to the Institute of Environmental Sciences, endocrine-disrupting chemicals (EDCs) are "natural or human-made chemicals that may mimic, block, or interfere with the body's hormones, associated with a wide array of health issues", mainly in the endocrine system. Recent studies have discussed the potential contribution of EDCs as risk factors leading to diabetes mellitus type 1 (T1DM), through various cellular and molecular pathways. PURPOSE The purpose of this study was to investigate the correlation between the EDCs and the development of T1DM. METHODOLOGY Thus, a 5-year systematic review was conducted to bring light to this research question. Using the meta-analysis and systematic review guideline protocol, a PRISMA flow diagram was constructed and, using the keywords (diabetes mellitus type 1) AND (endocrine-disrupting chemicals) in the databases PubMed, Scopus and ScienceDirect, the relevant data was collected and extracted into tables. Quality assessment tools were employed to evaluate the quality of the content of each article retrieved. RESULTS Based on the data collected and extracted from both human and animal studies, an association was found between T1DM and certain EDCs, such as bisphenol A (BPA), bisphenol S (BPS), persistent organic pollutants (POPs), phthalates and dioxins. Moreover, based on the quality assessments performed, using the Newcastle-Ottawa Scale and ARRIVE quality assessment tool, the articles were considered of high quality and thus eligible to justify the correlation of the EDCs and the development of T1DM. CONCLUSION Based on the above study, the correlation can be justified; however, additional studies can be made focusing mainly on humans to understand further the pathophysiologic mechanism involved in this association.
Collapse
Affiliation(s)
- Georgia-Nektaria Keskesiadou
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.-N.K.); (S.T.); (I.K.); (M.-N.G.); (A.S.); (S.K.)
| | - Sophia Tsokkou
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.-N.K.); (S.T.); (I.K.); (M.-N.G.); (A.S.); (S.K.)
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Konstantinidis
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.-N.K.); (S.T.); (I.K.); (M.-N.G.); (A.S.); (S.K.)
| | - Maria-Nefeli Georgaki
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.-N.K.); (S.T.); (I.K.); (M.-N.G.); (A.S.); (S.K.)
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonia Sioga
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.-N.K.); (S.T.); (I.K.); (M.-N.G.); (A.S.); (S.K.)
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Papamitsou
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.-N.K.); (S.T.); (I.K.); (M.-N.G.); (A.S.); (S.K.)
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sofia Karachrysafi
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.-N.K.); (S.T.); (I.K.); (M.-N.G.); (A.S.); (S.K.)
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Bresson SE, Ruzzin J. Persistent organic pollutants disrupt the oxidant/antioxidant balance of INS-1E pancreatic β-cells causing their physiological dysfunctions. ENVIRONMENT INTERNATIONAL 2024; 190:108821. [PMID: 38885551 DOI: 10.1016/j.envint.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Persistent organic pollutants (POPs) have emerged as potent diabetogenic agents, but their mechanisms of action remain poorly identified. OBJECTIVES In this study, we aim to determine the mechanisms regulating the damaging effects of POPs in pancreatic β-cells, which have a central role in the development of diabetes. METHODS We treated INS-1E pancreatic β-cells with PCB-153, p,p'-DDE, PCB-126, or TCDD at doses ranging from 1 × 10-15to 5 × 10-6M. We measured insulin content and secretion, cell viability and assessed the mRNA expression of the xenobiotic nuclear receptors Nr1i2 and Nr1i3, and the aryl hydrocarbon receptor (Ahr). In addition, we evaluated the antioxidant defense and production of reactive oxygen species (ROS). Finally, we studied the ability of the antioxidant N-acetyl-L-cysteine (NAC) to counteract the effects of POPs in INS-1E cells. RESULTS When exposed to environmental POP levels, INS-1E cells had impaired production and secretion of insulin. These defects were observed for all tested POPs and were paralleled by reduced Ins1 and Ins2 mRNA expression. While POP treatment for 3 days did not affect INS-1E cell viability, longer treatment progressively killed the cells. Furthermore, we found that the xenobiotic detoxification machinery is poorly expressed in the INS-1E cells, as characterized by the absence of Nr1i2 and Nr1i3 and their respective downstream targets Cyp3a1/Cyp3a2 and Cyp2b1/Cyp2b3, and the weak functionality of the Ahr/Cyp1a1 signaling. Interestingly, POPs dysregulated key antioxidant enzymes such as glutathione peroxidases, peroxiredoxins, thioredoxins, and catalases. In parallel, the production of intracellular ROS, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), was increased by POP exposure. Improving the oxidant scavenging capacity of INS-1E cells by NAC treatment restored the production and secretion of insulin. CONCLUSION By promoting oxidative stress and impairing the ability of INS-1E cells to produce and secrete insulin, this study reveals how POPs can mechanistically act as diabetogenic agents, and provides new scientific evidence supporting the concept that POPs are fueling the diabetes epidemics.
Collapse
Affiliation(s)
- Sophie Emilie Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Huang RG, Li XB, Wang YY, Wu H, Li KD, Jin X, Du YJ, Wang H, Qian FY, Li BZ. Endocrine-disrupting chemicals and autoimmune diseases. ENVIRONMENTAL RESEARCH 2023; 231:116222. [PMID: 37224951 DOI: 10.1016/j.envres.2023.116222] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) widely exist in people's production and life which have great potential to damage human and animal health. Over the past few decades, growing attention has been paid to the impact of EDCs on human health, as well as immune system. So far, researchers have proved that EDCs (such as bisphenol A (BPA), phthalate, tetrachlorodibenzodioxin (TCDD), etc.) affect human immune function and promotes the occurrence and development of autoimmune diseases (ADs). Therefore, in order to better understand how EDCs affect ADs, we summarized the current knowledge about the impact of EDCs on ADs, and elaborated the potential mechanism of the impact of EDCs on ADs in this review.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | | | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
5
|
Sinioja T, Bodin J, Duberg D, Dirven H, Berntsen HF, Zimmer K, Nygaard UC, Orešič M, Hyötyläinen T. Exposure to persistent organic pollutants alters the serum metabolome in non-obese diabetic mice. Metabolomics 2022; 18:87. [PMID: 36329300 PMCID: PMC9633531 DOI: 10.1007/s11306-022-01945-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Autoimmune disorders such as type 1 diabetes (T1D) are believed to be caused by the interplay between several genetic and environmental factors. Elucidation of the role of environmental factors in metabolic and immune dysfunction leading to autoimmune disease is not yet well characterized. OBJECTIVES Here we investigated the impact of exposure to a mixture of persistent organic pollutants (POPs) on the metabolome in non-obese diabetic (NOD) mice, an experimental model of T1D. The mixture contained organochlorides, organobromides, and per- and polyfluoroalkyl substances (PFAS). METHODS Analysis of molecular lipids (lipidomics) and bile acids in serum samples was performed by UPLC-Q-TOF/MS, while polar metabolites were analyzed by GC-Q-TOF/MS. RESULTS Experimental exposure to the POP mixture in these mice led to several metabolic changes, which were similar to those previously reported as associated with PFAS exposure, as well as risk of T1D in human studies. This included an increase in the levels of sugar derivatives, triacylglycerols and lithocholic acid, and a decrease in long chain fatty acids and several lipid classes, including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins. CONCLUSION Taken together, our study demonstrates that exposure to POPs results in an altered metabolic signature previously associated with autoimmunity.
Collapse
Affiliation(s)
- Tim Sinioja
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Johanna Bodin
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Daniel Duberg
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Hubert Dirven
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Hanne Friis Berntsen
- Norwegian University of Life Sciences, 1432, Ås, Norway
- National Institute of Occupational Health, 0363, Oslo, Norway
| | - Karin Zimmer
- Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Unni C Nygaard
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden.
| |
Collapse
|
6
|
Bresson SE, Isom S, Jensen ET, Huber S, Oulhote Y, Rigdon J, Lovato J, Liese AD, Pihoker C, Dabelea D, Ehrlich S, Ruzzin J. Associations between persistent organic pollutants and type 1 diabetes in youth. ENVIRONMENT INTERNATIONAL 2022; 163:107175. [PMID: 35303528 PMCID: PMC11696922 DOI: 10.1016/j.envint.2022.107175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diabetes affects millions of people worldwide with a continued increase in incidence occurring within the pediatric population. The potential contribution of persistent organic pollutants (POPs) to diabetes in youth remains poorly known, especially regarding type 1 diabetes (T1D), generally the most prevalent form of diabetes in youth. OBJECTIVES We investigated the associations between POPs and T1D in youth and studied the impacts of POPs on pancreatic β-cell function and viability in vitro. METHODS We used data and plasma samples from the SEARCH for Diabetes in Youth Case Control Study (SEARCH-CC). Participants were categorized as Controls, T1D with normal insulin sensitivity (T1D/IS), and T1D with insulin resistance (T1D/IR). We assessed plasma concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides and estimated the odds of T1D through multivariable logistic regression. In addition, we performed in vitro experiments with the INS-1E pancreatic β-cells. Cells were treated with PCB-153 or p,p'-DDE at environmentally relevant doses. We measured insulin production and secretion and assessed the mRNA expression of key regulators involved in insulin synthesis (Ins1, Ins2, Pdx1, Mafa, Pcsk1/3, and Pcsk2), glucose sensing (Slc2a2 and Gck), and insulin secretion (Abcc8, Kcnj11, Cacna1d, Cacna1b, Stx1a, Snap25, and Sytl4). Finally, we assessed the effects of PCB-153 and p,p'-DDE on β-cell viability. RESULTS Among 442 youths, 112 were controls, 182 were classified with T1D/IS and 148 with T1D/IR. The odds ratios (OR) of T1D/IS versus controls were statistically significant for p,p'-DDE (OR 2.0, 95% confidence interval (CI) 1.0, 3.8 and 2.4, 95% CI 1.2, 5.0 for 2nd and 3rd tertiles, respectively), trans-nonachlor (OR 2.5, 95% CI 1.3, 5.0 and OR 2.3, 95% CI 1.1, 5.1 for 2nd and 3rd tertiles, respectively), and PCB-153 (OR 2.3, 95% CI 1.1, 4.6 for 3rd tertile). However, these associations were not observed in participants with T1D/IR. At an experimental level, treatment with p,p'-DDE or PCB-153, at concentrations ranging from 1 × 10-15 M to 5 × 10-6 M, impaired the ability of pancreatic β-cells to produce and secrete insulin in response to glucose. These failures were paralleled by impaired Ins1 and Ins2 mRNA expression. In addition, among different targeted genes, PCB-153 significantly reduced Slc2a2 and Gck mRNA expression whereas p,p'-DDE mainly affected Abcc8 and Kcnj11. While treatment with PCB-153 or p,p'-DDE for 2 days did not affect β-cell viability, longer treatment progressively killed the β-cells. CONCLUSION These results support a potential role of POPs in T1D etiology and demonstrate a high sensitivity of pancreatic β-cells to POPs.
Collapse
Affiliation(s)
- Sophie E Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Scott Isom
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Joseph Rigdon
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James Lovato
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Angela D Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, SC, USA
| | - Catherine Pihoker
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center and Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shelley Ehrlich
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical center, Cincinnati, OH, USA; Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Taha-Khalde A, Haim A, Karakis I, Shashar S, Biederko R, Shtein A, Hershkovitz E, Novack L. Air pollution and meteorological conditions during gestation and type 1 diabetes in offspring. ENVIRONMENT INTERNATIONAL 2021; 154:106546. [PMID: 33866061 DOI: 10.1016/j.envint.2021.106546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Growing evidence indicates that air pollution is capable of disrupting the immune system and therefore, might be associated with an onset of Type 1 diabetes (T1D). OBJECTIVES We explored possible links of T1D with ambient exposures in the population of southern Israel, characterized by hot and dry climate and frequent dust storms. METHODS We conducted a matched nested case-control study where exposure to environmental pollutants during gestation in T1D cases was compared to that of healthy children. Up to 10 controls were matched to every case by age, gender and ethnicity, in all 362 cases and 3512 controls. Measurements of pollutants' concentrations, nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3) and particulate matter of size less than 10 and 2.5 μm in diameter (PM10 and PM2.5), as well as the mean daily measurements of meteorological conditions were obtained from the local monitoring stations. The association between T1D and pollution, solar radiation (SR), temperature and relative humidity was adjusted for socioeconomic status, temperature, maternal age and pre-gestational maternal DM, using conditional logistic regression. The environmental exposures were presented as indicators of quartiles averaged over whole pregnancy and by trimesters. RESULTS Exposure to ozone and solar radiation during gestation were both associated with the T1D in offspring, although at borderline significance. Compared to the lowest quartile, the odds ratio (OR) for exposure to 3rd and 4th quartile of O3 was equal 1.61 (95%CI: 0.95; 2.73) and 1.45 (95%CI: 0.83; 2.53), respectively. Likewise, the ORs for exposure to SR were equal 1.83 (95%CI: 0.92; 3.64), 2.54 (95%CI: 1.21; 5.29) and 2.06 (95%CI: 0.95; 4.45) for to 2nd, 3rd and 4th quartiles, respectively. Exposure to SO2 followed a dose-response pattern, but was not statistically significant. Other environmental factors were not independently related to T1D. Analysis of exposures one year prior to the disease onset indicated a positive association between T1D and SR. CONCLUSIONS We showed that exposure to high ozone levels and solar radiation during gestation might be related to the T1D. More scientific evidence needs to accumulate to support the study findings.
Collapse
Affiliation(s)
- Alaa Taha-Khalde
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Haim
- Division of Pediatric Medicine, Pediatric Endocrinology and Diabetes Clinic, Soroka University Medical Center, Beer-Sheva, Israel
| | | | - Sagi Shashar
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ron Biederko
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Alexandra Shtein
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli Hershkovitz
- Division of Pediatric Medicine, Pediatric Endocrinology and Diabetes Clinic, Soroka University Medical Center, Beer-Sheva, Israel
| | - Lena Novack
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
9
|
Predieri B, Bruzzi P, Bigi E, Ciancia S, Madeo SF, Lucaccioni L, Iughetti L. Endocrine Disrupting Chemicals and Type 1 Diabetes. Int J Mol Sci 2020; 21:ijms21082937. [PMID: 32331412 PMCID: PMC7215452 DOI: 10.3390/ijms21082937] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is the most common chronic metabolic disease in children and adolescents. The etiology of T1D is not fully understood but it seems multifactorial. The genetic background determines the predisposition to develop T1D, while the autoimmune process against β-cells seems to be also determined by environmental triggers, such as endocrine disrupting chemicals (EDCs). Environmental EDCs may act throughout different temporal windows as single chemical agent or as chemical mixtures. They could affect the development and the function of the immune system or of the β-cells function, promoting autoimmunity and increasing the susceptibility to autoimmune attack. Human studies evaluating the potential role of exposure to EDCs on the pathogenesis of T1D are few and demonstrated contradictory results. The aim of this narrative review is to summarize experimental and epidemiological studies on the potential role of exposure to EDCs in the development of T1D. We highlight what we know by animals about EDCs’ effects on mechanisms leading to T1D development and progression. Studies evaluating the EDC levels in patients with T1D were also reported. Moreover, we discussed why further studies are needed and how they should be designed to better understand the causal mechanisms and the next prevention interventions.
Collapse
Affiliation(s)
- Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
- Correspondence: ; Tel.: +39-059-422-5217
| | - Patrizia Bruzzi
- Pediatric Unit, Department of Pediatrics—AOU Policlinic of Modena, Largo del Pozzo, 71-41124 Modena, Italy; (P.B.); (S.F.M.)
| | - Elena Bigi
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
| | - Silvia Ciancia
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| | - Simona F. Madeo
- Pediatric Unit, Department of Pediatrics—AOU Policlinic of Modena, Largo del Pozzo, 71-41124 Modena, Italy; (P.B.); (S.F.M.)
| | - Laura Lucaccioni
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| |
Collapse
|
10
|
Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol 2020; 8:226-238. [PMID: 31999944 PMCID: PMC7332108 DOI: 10.1016/s2213-8587(19)30412-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes is a chronic, immune-mediated disease characterised by the destruction of insulin-producing cells. Standardised registry data show that type 1 diabetes incidence has increased 3-4% over the past three decades, supporting the role of environmental factors. Although several factors have been associated with type 1 diabetes, none of the associations are of a magnitude that could explain the rapid increase in incidence alone. Moreover, evidence of changing prevalence of these exposures over time is insufficient. Multiple factors could simultaneously explain the changing type 1 diabetes incidence, or the magnitude of observed associations could have been underestimated because of exposure measurement error, or the mismodelling of complex exposure-time-response relationships. The identification of environmental factors influencing the risk of type 1 diabetes and increased understanding of the cause at the individual level, regardless of the ability to explain the changing incidence at the population level, is important because of the implications for prevention.
Collapse
Affiliation(s)
- Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
| | - Randi K Johnson
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lars C Stene
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
11
|
Howard SG. Exposure to environmental chemicals and type 1 diabetes: an update. J Epidemiol Community Health 2019; 73:483-488. [PMID: 30862699 DOI: 10.1136/jech-2018-210627] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
This narrative review summarises recently published epidemiological and in vivo experimental studies on exposure to environmental chemicals and their potential role in the development of type 1 diabetes mellitus (T1DM). These studies focus on a variety of environmental chemical exposures, including to air pollution, arsenic, some persistent organic pollutants, pesticides, bisphenol A and phthalates. Of the 15 epidemiological studies identified, 14 include measurements of exposures during childhood, 2 include prenatal exposures and 1 includes adults over age 21. Together, they illustrate that the role of chemicals in T1DM may be complex and may depend on a variety of factors, such as exposure level, timing of exposure, nutritional status and chemical metabolism. While the evidence that these exposures may increase the risk of T1DM is still preliminary, it is critical to investigate this possibility further as a means of preventing T1DM.
Collapse
Affiliation(s)
- Sarah G Howard
- Diabetes and Environment Program, Commonweal, Bolinas, CA 94924, USA
| |
Collapse
|