1
|
Chen ZJ, Shi XZ, Qu YN, Li SY, Ai G, Wang YZ, Zeng LQ, Liu XL, Li X, Wang YH. Insights into the synergistic effects of exogenous glycine betaine on the multiphase metabolism of oxyfluorfen in Oryza sativa for reducing environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137970. [PMID: 40120261 DOI: 10.1016/j.jhazmat.2025.137970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Glycine betaine (GB), a secondary metabolite that regulates plant responses to biotic and abiotic stresses, may help reduce pesticide phytotoxicity, but this fact remains unestablished. This study investigated the physiological response of rice (Oryza sativa) to six dosages of oxyfluorfen (OFF) (0-0.25 mg/L) and two concentrations of GB (0 and 175 mg/L). GB treatment counteracted the considerable decrease in rice seedling growth caused by OFF treatment at doses higher than 0.15 mg/L. The biochemical processes and catalytic events associated with OFF-triggered degradation in rice were investigated using RNA-Seq-LC-Q-TOF-HRMS/MS after six rice root and shoot libraries were created and subjected to either OFF or OFF-GB. Rice treated with both GB and an ecologically relevant dose of OFF showed a marked upregulation of 1039 root genes and 111 shoot genes compared with those treated with OFF alone. Multiple OFF-degradative enzymes implicated in molecular metabolism and xenobiotic tolerance to environmental stress were identified by gene enrichment analysis. In comparison to treated with 0.25 mg/L OFF alone, exogenous GB administration decreased OFF accumulation, with the OFF concentration in roots being 44.47 % and in shoots being 51.03 %. The production of essential enzymes involved in the OFF decay process was attributed to certain genes with variable expression, including cytochrome P450, methyltransferase, glycosyltransferases, and acetyltransferases. Using LC-Q-TOF-HRMS/MS, 3 metabolites and 16 conjugates were identified in metabolic pathways including hydrolysis, acetylation, glycosylation, and interaction with amino acids in order to enhance OFF-degradative metabolism. All things considered, by reducing phytotoxicity and OFF buildup, external GB treatment can increase rice's resistance to oxidative stress caused by OFF. This study offers valuable insights into the function of GB in enhancing OFF degradation, which may have ramifications for designing genotypes that maximize OFF accumulation in rice crops and promote OFF degradation in paddy crops.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Xu Zhen Shi
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Nan Qu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Si Ying Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Zhuo Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Qing Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao Liang Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan Hui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
2
|
Leão GR, Silva LPS, Damacena-Silva L, Rocha TL. Toxicity of environmental chemicals in gastropods' hemocytes: Trends and insights based on investigations using Biomphalaria spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177522. [PMID: 39561895 DOI: 10.1016/j.scitotenv.2024.177522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Gabrielly Rodrigues Leão
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luiz Phelipe Souza Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luciana Damacena-Silva
- Research Laboratory on Parasite-Host Interaction, State University of Goiás, Anápolis, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Mesquita AF, Gonçalves FJM, Gonçalves AMM. Temperature influence on the sensitivity of Artemia franciscana to globally used pesticides - Oxyfluorfen and copper. CHEMOSPHERE 2024; 357:142092. [PMID: 38653396 DOI: 10.1016/j.chemosphere.2024.142092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Climate change further the world's human population increase is a mainstream political issue, and it's critical to search for solutions to produce enough food to feed everyone. Pesticides and fertilizers have been used as an easy solution to prevent pests and increase food production. Nevertheless, their overuse has dangerous effects on the ecosystems and communities. Oxyfluorfen (Oxy) and copper (Cu) based formulations are used as pesticides and widely applied on agricultural fields for crop protection. However, they have shown negative effects on non-target species. So, this work proposes to: a)determine the lethal concentration of Oxy and Cu to the zooplankton, Artemia franciscana, at different temperatures (15 °C, 20 °C and 25 °C); b)understand the biochemical impacts of these chemicals at the different temperatures scenarios, on A. franciscana and c)evaluate the impact of the climate changes, particularly the temperature increase, on this species sensitivity to the tested pesticides. Acute and sub-lethal bioassays with Oxy and Cu were performed at different temperatures to determine the lethal concentration of each chemical and to understand the effects of the compounds at different temperatures on the biochemical profiles of A. franciscana. Results showed an increase in chemicals toxicity with the temperature, and Oxy was revealed to be more noxious to A. franciscana than Cu; at a biochemical level, significant differences were observed among temperatures, with the biggest differences between the organisms exposed to 15 °C and 25 °C. Overall, a decrease in fatty acids (FA) and sugars was observed with the increase in Cu and oxyfluorfen concentrations. Different trends were observed with temperature increase, with FA increase in the organisms exposed to Cu and the opposite was observed in the ones exposed to oxyfluorfen. Sugar content decreases in the organisms exposed to oxyfluorfen with temperature increase and showed a non-linear behaviour in the ones exposed to Control and Cu treatments.
Collapse
Affiliation(s)
- A F Mesquita
- Department of Biology and CESAM, University of Aveiro, 3810 - 193, Aveiro, Portugal.
| | - F J M Gonçalves
- Department of Biology and CESAM, University of Aveiro, 3810 - 193, Aveiro, Portugal
| | - A M M Gonçalves
- Department of Biology and CESAM, University of Aveiro, 3810 - 193, Aveiro, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000 - 456, Coimbra, Portugal
| |
Collapse
|
4
|
Jang H, Song J, Ham J, An G, Lee H, Song G, Lim W. Oxyfluorfen induces cell cycle arrest by regulating MAPK, PI3K and autophagy in ruminant immortalized mammary epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105461. [PMID: 37248026 DOI: 10.1016/j.pestbp.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Oxyfluorfen, a phenoxy phenyl-type herbicide, causes significant damage to ecosystems through chronically effecting invertebrates, fish, and mammals. Considering its adverse effect on ecosystem conservation, it is necessary to investigate its toxic effects on animals. However, the mechanisms of oxyfluorfen toxicity on bovines are not well established. This study investigated the cytotoxic effect of oxyfluorfen on bovine mammary epithelial cells (MAC-T). We conducted several functional experiments to examine the response of MAC-T to oxyfluorfen under various concentrations (0, 1, 2, 5, and 10 ppm). Oxyfluorfen decreased cell viability and increased apoptotic cells by regulating the expression of apoptotic genes and proteins in MAC-T. In addition, oxyfluorfen-treated cells exhibited reduced PCNA expression with a low 3D spheroid formation as compared to that of control cells. Furthermore, oxyfluorfen treatment suppressed cell cycle progression with a decrease in cyclin D1 and cyclin A2 in MAC-T. Next, we performed western blot analysis to verify intercellular signaling changes in oxyfluorfen-treated MAC-T. The phosphor-AKT protein was increased, whereas MAPK signal pathways were decreased. Particularly, the combination of oxyfluorfen with U0126 or SP600125 completely blocked the ERK1/2 and JNK pathways leading to cell viability in MAC-T. Moreover, oxyfluorfen induced inflammatory gene expression and autophagy by increasing phosphorylation of P62 and LC3B in MAC-T. These results demonstrated that oxyfluorfen has cytotoxic effect on MAC-T, implying that the milk production capacity in cows may eventually harm humans.
Collapse
Affiliation(s)
- Hyewon Jang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Mansour AT, Amen RM, Mahboub HH, Shawky SM, Orabi SH, Ramah A, Hamed HS. Exposure to oxyfluorfen-induced hematobiochemical alterations, oxidative stress, genotoxicity, and disruption of sex hormones in male African catfish and the potential to confront by Chlorella vulgaris. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109583. [PMID: 36828347 DOI: 10.1016/j.cbpc.2023.109583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
The present study evaluated the effect of chronic exposure to oxyfluorfen (OXY) on different physiological responses of male African catfish, Clarias gariepinus, and the ameliorative effect of Chlorella vulgaris. The fish (160 ± 5.10 g) were exposed to 1/20 LC50 of OXY (0.58 mg/L) for 60 consecutive days with or without co-administration of C. vulgaris (25 g/kg diet) in triplicate groups. The results revealed that chronic exposure to a sublethal level of OXY induced severe anemia and leukopenia. OXY-exposed fish experienced hypoproteinemia, marked lower AchE levels, and a significant increase in glucose, liver, and kidney function biomarkers. The DNA fragmentation of the liver increased by 15 % in fish compared to the control. On the other hand, lipid peroxidation, superoxide dismutase, and catalase activities were markedly increased in the liver and testes homogenates of the OXY-exposed fish. Meanwhile, total antioxidant capacity and glutathione S-transferase levels declined in the same tissues. Exposure to OXY induced a significant reduction in testosterone and luteinizing hormone levels and a significant increase in follicle stimulating hormone and estradiol. Meanwhile, C. vulgaris dietary supplementation succeeded in alleviating the negative impact of OXY on hematobiochemical parameters and restoring the antioxidant balance in the liver and testes. Furthermore, it ameliorated endocrine disruption and repaired sex hormone levels. In conclusion, exposure to OXY could induce systemic stress, oxidative stress, and endocrine disruption in male C. gariepinus. The dietary supplementation of C. vulgaris could be a potential protective strategy against the toxicity of OXY.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Rehab M Amen
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sherif M Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Amany Ramah
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt..
| |
Collapse
|
6
|
Chen ZJ, Qiao Y, Zhang N, Yang H, Liu J. Acetyltransferase OsACE2 acts as a regulator to reduce the environmental risk of oxyfluorfen to rice production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161599. [PMID: 36640869 DOI: 10.1016/j.scitotenv.2023.161599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The constant use of the pesticide oxyfluorfen (OFF) in farmland contaminates the soil, posing threats to crop growth and human health. To avoid the contamination of food crops with OFF, it is critically important to understand its absorption and degradation mechanisms. In this study, we characterized a new functional locus encoding an acetyltransferase (OsACE2) that can facilitate OFF degradation in rice. OsACE2 was drastically induced by OFF at 0.04-0.2 mg L-1 for 6 days and the rice growth was significantly inhibited. To demonstrate the regulatory role of OsACE2 in resistance to OFF toxicity, we generated OsACE2 overexpression (OE) and knockout mutant using genetic transformation and gene-editing technologies (CRISPR/Cas9). The OE plants grown in the hydroponic medium showed improved growth (plant elongation and biomass), increased chlorophyll content, and reduced OFF-induced oxidative stress. The OsACE2-improved growth phenotypes of rice were attributed to the significantly lower OFF accumulation in OE plants. Conversely, knocking out OsACE2 resulted in compromised growth phenotypes compared to the wild-type (WT). Using LC-LTQ-HRMS/MS, five mono-metabolites and eleven conjugates of OFF were characterized through various canonical pathways, such as hydrolysis, oxidation, reduction, glycosylation, acetylation, malonylation, and interaction with amino acids. These metabolites increased in the OE plants, and five acetylated conjugates were reported for the first time. Collectively, OsACE2 plays a primary role in catabolizing OFF residues in rice through multiple degradation pathways and reducing OFF in its growth environment.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China; Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Souza-Silva G, de Souza CR, Pereira CADJ, Dos Santos Lima W, Mol MPG, Silveira MR. Using freshwater snail Biomphalaria glabrata (Say, 1818) as a biological model for ecotoxicology studies: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28506-28524. [PMID: 36701061 DOI: 10.1007/s11356-023-25455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Over time, a growing increase in human pollutants in the aquatic environment has been observed. The global presence of residues in water bodies reinforces the need to develop improved methods to detect them and evaluate their ecotoxicological effects in aquatic environments. Thus, this study aimed to present the main assays using Biomphalaria glabrata as a biological model for ecotoxicological studies. We performed a systematic literature review with data published up to June 2022 on the Web of Science, SCOPUS, Science Direct, PubMed, and SciELO databases. Thirty studies were selected for this review after screening. Biomphalaria glabrata has been studied as an ecotoxicological model for different substances through toxicity, embryotoxicity, cytotoxicity, genotoxicity, and bioaccumulation assays. Studies evaluating the impact of B. glabrata exposure to several substances have reported effects on their offspring, as well as toxicity and behavioral and reproductive effects. This review presents various assays using B. glabrata as a biological model for ecotoxicological studies. The use of a representative species of ecosystems from tropical regions is a necessary tool for tropical environmental monitoring. It was observed that the freshwater snail B. glabrata was effective for the evaluation of the ecotoxicity of several types of chemical substances, but further studies are needed to standardize the model.
Collapse
Affiliation(s)
- Gabriel Souza-Silva
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil.
| | - Clessius Ribeiro de Souza
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Cíntia Aparecida de Jesus Pereira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Walter Dos Santos Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Marcos Paulo Gomes Mol
- Department of Research and Development, Ezequiel Dias Foundation-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Micheline Rosa Silveira
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Batista JJ, de Araújo HDA, Aguiar TWDA, Ferreira SADO, Lima MDV, Pereira DR, Ferreira MRA, Soares LAL, Melo AMMDA, Albuquerque MCPDA, Aires ADL, Coelho LCBB. Toxic, cytotoxic and genotoxic effect of saline extract and fraction of Parkia pendula seeds in the developmental stages of Biomphalaria glabrata (Say 1818 - intermediate host) and cercaricide activity against the infectious agent of schistosomiasis. Acta Trop 2022; 228:106312. [PMID: 35033504 DOI: 10.1016/j.actatropica.2022.106312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/28/2022]
Abstract
This study describes for the first time the effect of saline extract and Parkia pendula seed fraction on Biomphalaria glabrata adult embryos and molluscs well as the reproductive parameters (fecundity and fertility) and survival, in addition to cytotoxicity and genotoxicity through the profile of blood cells after exposure to sublethal concentrations. Furthermore, we analyzed the action of both preparations against the cercariae of Schistosoma mansoni and their environmental safety using the bioindicator Artemia salina. The saline extract and fraction showed toxic effects for embryos (CL90 of 464.25, 479.62, 731.28, 643.28, 408.43 and 250.94, 318.03, 406.12, 635.64, 1.145 mg/mL, for blastula, gastrula, trocophore, veliger and hippo stage respectively), adult snails after 24 h of exposure (CL90 of 9.50 and 10.92 mg/mL, respectively) with increased mortality after 7 days of observation and significant decrease (p <0.05; p < 0.01 and p < 0.001) in egg mass deposition. At sublethal concentrations, an increase in quantitative and morphological changes in hemocytes was observed, and in the genotoxicity/comet assay analysis, varying degrees of nuclear damage were detected. In addition, the saline extract showed changes in the motility of the cercariae, while the fraction howed toxicity from a concentration of 1.0 mg/mL. The saline extract showed toxicity to A. salina at the highest concentrations (3.0, 4.0 and 5.0 mg/mL), while the fraction did not show ecotoxicity. Thus, the saline extract and fraction was promising in combating schistosomiasis by eliminating the intermediate host and causing alterations and/or mortality to the infectious agent.
Collapse
Affiliation(s)
- José Josenildo Batista
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Thierry Wesley de Albuquerque Aguiar
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Sílvio Assis de Oliveira Ferreira
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, CB, UFPE,Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, CB, UFPE,Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, CCS, UFPE, Avenida Prof. Arthur de Sá, Cidade Universitária, nº 1235, Recife-PE 50.740-520, Brazil
| | - Luiz Alberto Lira Soares
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, CCS, UFPE, Avenida Prof. Arthur de Sá, Cidade Universitária, nº 1235, Recife-PE 50.740-520, Brazil
| | | | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Departamento de Medicina Tropical, CCS, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil; Laboratório de ImunopatologiaKeizoAsami, LIKA, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - André de Lima Aires
- Departamento de Medicina Tropical, CCS, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil; Laboratório de ImunopatologiaKeizoAsami, LIKA, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil.
| |
Collapse
|
9
|
Morais VHT, de Luna Filho RLC, Dos Santos Júnior JA, Siqueira WN, Pereira DR, Lima MV, Fagundes Silva HAM, Joacir de França E, Amaral RDS, de Albuquerque Melo AMM. Use of Biomphalaria glabrata as a bioindicator of groundwater quality under the influence of NORM. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 242:106791. [PMID: 34894453 DOI: 10.1016/j.jenvrad.2021.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The Brazilian northeast is known to have sedimentary areas that contain minerals with anomalous concentrations of naturally occurring radioactive material (NORM). This characteristic can contribute to the elevation of natural radiation in the air, soil, and groundwater. Due to the inefficiency of drinking water distribution in this region, the use of water from wells has become essential for the population. Therefore, the objective of this research was to monitor the concentration of 238U and 232Th associated with biomonitoring with the species of mollusc Biomphalaria glabrata in waters of residential artesian wells, used for domestic consumption, in the municipalities of Abreu e Lima and São José do Sabugi, Brazil. To check the concentration of 238U and 232Th, ICP-MS was used. For biomonitoring, ecotoxicity techniques such as embryotoxicity and genotoxicity were used. The monitoring results confirmed high concentrations of natural uranium in one of the residential artesian wells, the data being above the limit allowed by the Ministry of Health of Brazil, whose study reference is the World Health Organization (WHO). The results of the bioassays showed embryotoxicity, with malformations and deaths in the exposed organisms being observed. The comet assay showed that groundwater caused changes in the mollusc's DNA, indicating genotoxicity. The bioassays suggest that embryotoxicity and genotoxicity were caused mainly by the high concentration of natural uranium. Therefore, the bioindicator B. glabrata was shown to be sensitive to the toxic effects of anomalous concentrations of NORM present in groundwater.
Collapse
Affiliation(s)
- Vinícius Henrique T Morais
- Department of Nuclear Energy, Center for Technology and Geosciences, Federal University of Pernambuco, 1000 Avenue Professor Luiz Freire, 50740-540, Recife, PE, Brazil.
| | - Ricardo Luiz C de Luna Filho
- Department of Nuclear Energy, Center for Technology and Geosciences, Federal University of Pernambuco, 1000 Avenue Professor Luiz Freire, 50740-540, Recife, PE, Brazil.
| | - José A Dos Santos Júnior
- Department of Nuclear Energy, Center for Technology and Geosciences, Federal University of Pernambuco, 1000 Avenue Professor Luiz Freire, 50740-540, Recife, PE, Brazil.
| | - Williams N Siqueira
- Department of Nuclear Energy, Center for Technology and Geosciences, Federal University of Pernambuco, 1000 Avenue Professor Luiz Freire, 50740-540, Recife, PE, Brazil; Departament of Biophysics and Radiobiology, Health Sciences Center, Federal University of Pernambuco, Avenue da Engenharia, 50670-420, Recife, PE, Brazil.
| | - Dewson R Pereira
- Departament of Biophysics and Radiobiology, Health Sciences Center, Federal University of Pernambuco, Avenue da Engenharia, 50670-420, Recife, PE, Brazil.
| | - Maíra V Lima
- Department of Nuclear Energy, Center for Technology and Geosciences, Federal University of Pernambuco, 1000 Avenue Professor Luiz Freire, 50740-540, Recife, PE, Brazil; Departament of Biophysics and Radiobiology, Health Sciences Center, Federal University of Pernambuco, Avenue da Engenharia, 50670-420, Recife, PE, Brazil.
| | - Hianna A M Fagundes Silva
- Departament of Biophysics and Radiobiology, Health Sciences Center, Federal University of Pernambuco, Avenue da Engenharia, 50670-420, Recife, PE, Brazil.
| | - Elvis Joacir de França
- Department of Nuclear Energy, Center for Technology and Geosciences, Federal University of Pernambuco, 1000 Avenue Professor Luiz Freire, 50740-540, Recife, PE, Brazil; Environmental Analysis Service (SEAMB), Northeast Regional Nuclear Science Center, 200 Avenue Professor Luiz Freire, 50.740-545, Recife, PE, Brazil.
| | - Romilton Dos S Amaral
- Department of Nuclear Energy, Center for Technology and Geosciences, Federal University of Pernambuco, 1000 Avenue Professor Luiz Freire, 50740-540, Recife, PE, Brazil.
| | - Ana Maria M de Albuquerque Melo
- Departament of Biophysics and Radiobiology, Health Sciences Center, Federal University of Pernambuco, Avenue da Engenharia, 50670-420, Recife, PE, Brazil.
| |
Collapse
|
10
|
Li Z, Guo J, Jia K, Zheng Z, Chen X, Bai Z, Yang Y, Chen B, Yuan W, Chen W, Yang J. Oxyfluorfen induces hepatotoxicity through lipo-sugar accumulation and inflammation in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113140. [PMID: 34979306 DOI: 10.1016/j.ecoenv.2021.113140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Oxyfluorfen (OXY) is widely used in agriculture as a herbicide, resulting in its continuous accumulation in the environment. The presence of OXY can be detected in soil and rivers. However, until now, the potential toxicity of OXY to aquatic organisms has not been evaluated. In this study, zebrafish was used as a model animal to evaluate OXY-induced liver toxicity. The study found that 0.25, 0.5, and 1 mg/L of OXY affected the early development of zebrafish and severely damaged the lipid and sugar metabolism in the liver of zebrafish larvae. Furthermore, a metabolic function disorder caused liver damage. OXY also caused inflammation by upregulating the inflammatory factors IL-6, IL-8, and TNF-α, and activated the apoptotic pathway to inhibit hepatocyte proliferation, resulting in zebrafish liver toxicity. Our research showed that OXY had certain toxic effects on zebrafish development and liver and could cause potential harm to other aquatic organisms and humans.
Collapse
Affiliation(s)
- Zekun Li
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Kun Jia
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 30031, Jiangxi, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhiguo Zheng
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Xiaomei Chen
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Zhonghui Bai
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuhao Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Bo Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Weihua Chen
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
11
|
de Siqueira WN, de França EJ, Pereira DR, Lima MDV, Silva HAMF, Sá JLF, de Araújo HDA, Melo AMMDA. Toxicity and genotoxicity of domestic sewage sludge in the freshwater snail Biomphalaria glabrata (Say, 1818). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69343-69353. [PMID: 34296413 DOI: 10.1007/s11356-021-15529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Waste produced in homes is one of the main sources of pollutants in freshwater ecosystems. Therefore, it is imperative to implement methodologies that aid in environmental monitoring procedures. The use of organisms as biomonitors has grown increasingly prevalent as they are models that provide data that can be adequately evaluated. In this work, we investigated the genotoxic and cytotoxic effects caused by domestic sewage sludge through an analysis of biomarkers in the mollusk Biomphalaria glabrata. For the tests, increasing concentrations of 50, 100, 150, and 500 mg L-1 of domestic sewage sludge were standardized, in addition to control groups. Assays were performed after the mollusks were exposed to the domestic sewage sludge in acute (48 h) and chronic (15 d) manner. Toxicity tests were performed with embryonic and adult snails. The cytoplasmic and nuclear changes were analyzed in the hemocyte cells. Lastly, genotoxic damage was analyzed using the comet assay. Adult snails and embryos of B. glabrata showed no significant morphological changes. Domestic sludge caused deleterious effects on mollusks as confirmed after cell genotoxicity tests. Therefore, based on the results obtained from the analysis of B. glabrata hemocytes, we can affirm that domestic sewage sludge causes genotoxic and cytotoxic effects on mollusk cells. Therefore, it is possible to conclude that the mollusk Biomphalaria glabrata can be used as a good low-cost alternative to assist in the biomonitoring of freshwater environments. Graphical Abstract.
Collapse
Affiliation(s)
- Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil.
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil.
| | - Elvis Joacir de França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | - José Luís Ferreira Sá
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
12
|
Sublethal concentrations of usnic acid potassium salt impairs physiological parameters of Biomphalaria glabrata (Say, 1818) (Pulmonata: Planorbidae) infected and not infected with Schistosoma mansoni. Acta Trop 2021; 222:106067. [PMID: 34303689 DOI: 10.1016/j.actatropica.2021.106067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is a public health problem in many developing countries. The mollusc Biomphalaria glabrata is the most important vector of Schistosoma mansoni in South America. The population control of this vector to prevent the spread of schistosomiasis is currently done with the application of highly toxic molluscicide to the environment. The screening of substances in sublethal concentrations that have deleterious effects on physiological parameters is very relevant for the control of schistosomiasis, since the effectiveness of disease prevention increases if it acts on population control of the vector and on reproduction and elimination in S. mansoni cercariae. The objective of this study was to evaluate the reproductive parameters (fecundity and fertility), intra-mollusk effect (sporocysts I (72 h) and II (14 days after)) on the development of cercariae of S. mansoni and the immune cell profile of B. glabrata exposed to sublethal concentrations (LC25 - 0.5 µg/mL and LC50 - 0.92 µg/mL) of the usnic acid potassium salt (potassium usnate). LC 25 and LC 50 significantly reduced (p < 0.05) the fecundity of B. glabrata when treated infected and/or not exposed to infection, while unviable embryos were not observed in sporocyst stage I, being only significant (p < 0.05) for mollusks infected and treated with LC50 on sporocyst II. LC25 and LC50 of the potassium usnate caused significant reductions (p < 0.05) in the production and cercarial shedding when evaluated on sporocysts I and II. In addition, the mortality of infected and treated B. glabrata in the sporocyst II phase was quite marked after the 9th week of infection. Regarding the immunological cell profile of uninfected B. glabrata, both concentrations led to immunomodulatory responses, with significant morphological changes predominant of hemocytes that entered programmed cell death (apoptosis). It was concluded that the application of LC25 and LC50 from the potassium usnate could be useful in the population control of B. glabrata, since it interferes both in their biology and physiology and in the reproduction of the infectious agent of schistosomiasis mansoni.
Collapse
|
13
|
Rodrigues CC, Caixeta MB, Araújo PS, Gonçalves BB, Araújo OA, Silva LD, Rocha TL. Gonadal histopathology and inflammatory response in the freshwater snail exposed to iron oxide nanoparticles and ferric chloride: Insights into reproductive nanotoxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105910. [PMID: 34273771 DOI: 10.1016/j.aquatox.2021.105910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Considering that most animals in an aquatic ecosystem are invertebrates, concerns about the ecotoxicological impact of emerging pollutants, such as nanomaterials, in these populations are relevant, which can lead to loss of aquatic biodiversity. However, knowledge concerning the effects of iron-based nanoparticles (IONPs) at cell and tissue-levels on freshwater gastropods remains limited. Thus, the present study aimed to analyse the histopathological changes and inflammatory response in the freshwater snail Biomphalaria glabrata after chronic exposure to gluconic-acid functionalized IONPs (GLA-IONPs) in comparison with their dissolved counterpart (FeCl3). Snails were exposed to both iron forms (1.0, 2.5, 6.25, and 15.62 mg L-1) for 28 days, and the qualitative and quantitative histopathological assessment on hermaphrodite gonads was conducted, following by analysis of histopathological indices and inflammatory responses. Results showed that both iron forms (GLA-IONPs and FeCl3) induced several gonadal histopathologies in the snails, mainly atresic acini, vacuolization of pre-vitellogenic oocytes, and atresic oocytes in a concentration-dependent pattern. GLA-IONPs induced a more intense inflammatory response and high frequency of vacuolized vitellogenic oocytes in comparison with FeCl3. Environmentally relevant concentration (2.5 mg L-1) of GLA-IONPs and FeCl3 induced high gonadal histopathological indices, indicating their potential reproductive toxicity. The current study showed that the chronic exposure of snails to GLA-IONPs and their dissolved counterpart (FeCl3) induced several gonadal histopathological changes and inflammatory responses in B. glabrata, confirming their potential risk to aquatic biodiversity.
Collapse
Affiliation(s)
- Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olacir Alves Araújo
- Laboratory of Chemistry and Molecular Modelling, Campus of Exact and Technological Science, State University of Goiás, Anápolis, Goiás, Brazil
| | - Luciana Damacena Silva
- Laboratory of Host-Parasite Interactions, State University of Goiás, Anápolis, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
14
|
Pirasath S, Samasundara Mudiyanselage AG, Seneviratne MH. Acute liver injury associated with Oxyfluorfen toxicity. SAGE Open Med Case Rep 2021; 9:2050313X211000454. [PMID: 33854778 PMCID: PMC8013628 DOI: 10.1177/2050313x211000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Oxyfluorfen is a phenoxyphenyl-type herbicide which is used for broad-spectrum control of broadleaf and grassy weeds. Ingestion of toxic dose of oxyfluorfen can be fatal among animals. However, toxicity to humans are rare in literature. The alterations in haem biosynthesis (anaemia) and in liver are the primary toxic effects. There are no specific antidotes and none of the current treatments have proven efficacious till date. Therefore, prevention needs to be the utmost priority, and on exposure, aggressive decontamination should be initiated. Herein, we described an oxyfluorfen toxicity with acute hepatic injury in a young woman who presented with a deliberate self-harming with an oxyfluorfen poisoning in Sri Lanka.
Collapse
|
15
|
Valladares V, Pasquini C, Thiengo SC, Fernandez MA, Mello-Silva CC. Field Application of NIR Spectroscopy for the Discrimination of the Biomphalaria Species That Are Intermediate Hosts of Schistosoma mansoni in Brazil. Front Public Health 2021; 9:636206. [PMID: 33777886 PMCID: PMC7994760 DOI: 10.3389/fpubh.2021.636206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Near Infrared Spectroscopy (NIRS) is a spectroscopic technique that evaluates the vibrational energy levels of the chemical bonds of molecules within a wavelength range of 750–2,500 nm. This simple method acquires spectra that provide qualitative and quantitative data on the chemical components of the biomass of living organisms through the interaction between the electromagnetic waves and the sample. NIRS is an innovative, rapid, and non-destructive technique that can contribute to the differentiation of species based on their chemical phenotypes. Chemical profiles were obtained by NIRS from three snail species (Biomphalaria glabrata, Biomphalaria straminea, and Biomphalaria tenagophila) that are intermediate hosts of Schistosoma mansoni in Brazil. The correct identification of these species is important from an epidemiological viewpoint, given that each species has distinct biological and physiological characteristics. The present study aimed to develop a chemometric model for the interspecific and intra-specific classification of the three species, focusing on laboratory and field populations. The data were obtained from 271 live animals, including 150 snails recently collected from the field, with the remainder being raised in the laboratory. Populations were sampled at three localities in the Brazilian state of Rio de Janeiro, in the municipalities of Sumidouro (B. glabrata) and Paracambi (B. straminea), and the borough of Jacarepaguá in the Rio de Janeiro city (B. tenagophila). The chemometric analysis was run in the Unscrambler® software. The intra-specific classification of the field and laboratory populations obtained accuracy rates of 72.5% (B. tenagophila), 77.5% (B. straminea), and 85.0% (B. glabrata). The interspecific differentiation had a hit rate of 75% for the field populations and 80% for the laboratory populations. The results indicate chemical and metabolic differences between populations of the same species from the field and the laboratory. The chemical phenotype, which is closely related to the metabolic profile of the snails, varied between environments. Overall, the NIRS technique proved to be a potentially valuable tool for medical malacology, enabling the systematic discrimination of the Biomphalaria snails that are the intermediate hosts of S. mansoni in Brazil.
Collapse
Affiliation(s)
- Vanessa Valladares
- Environmental Health Monitoring and Prevention Laboratory, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil
| | - Célio Pasquini
- Chemistry Institute, Universidade Estadual de Campinas/UNICAMP, Campinas, Brazil
| | - Silvana C Thiengo
- Malacology Laboratory, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil
| | - Monica A Fernandez
- Malacology Laboratory, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil
| | - Clélia C Mello-Silva
- Environmental Health Monitoring and Prevention Laboratory, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Araújo PS, Caixeta MB, Brito RDS, Gonçalves BB, da Silva SM, Lima ECDO, Silva LD, Bezerra JCB, Rocha TL. Molluscicidal activity of polyvinylpyrrolidone (PVP)-functionalized silver nanoparticles to Biomphalaria glabrata: Implications for control of intermediate host snail of Schistosoma mansoni. Acta Trop 2020; 211:105644. [PMID: 32682748 DOI: 10.1016/j.actatropica.2020.105644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
Silver nanoparticles (Ag NPs) have been applied in several commercial products due to their antimicrobial properties, while their molluscicide properties, mode of action and toxicity to snail species remain unclear. In this study, the comparative toxicity of polyvinylpyrrolidone (PVP)-functionalized Ag NPs and their dissolved counterpart (Ag ions) was analyzed during the early developmental stages of the freshwater snail Biomphalaria glabrata, intermediate host of Schistosoma mansoni. Ag NPs were synthesized and characterized by multiple techniques, and the snail embryotoxicity was analyzed in terms of mortality, hatching, developmental stages and morphological alterations, while the acute toxicity to newly-hatched snails was analyzed by mortality and behavioral impairments. Results showed that both Ag forms induced mortality, hatching delay and morphological alterations (especially hydropic abnormalities) in snail embryos in a concentration and exposure time dependent patterns. Ag NPs showed low embryotoxic effects and similar toxicity for newly-hatched snails when compared to their dissolved counterparts, indicating that the nanotoxicity was dependent of snail developmental stages. The knowledge about the Ag NP toxicity to different early development stages of B. glabrata contributes to its potential use as molluscicide and control of neglected tropical diseases, including schistosomiasis.
Collapse
Affiliation(s)
- Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sueli Maria da Silva
- Exact Sciences Department, Federal University of Goiás - Regional Jataí, Jataí, Goiás, Brazil
| | | | - Luciana Damacena Silva
- Laboratory of Host-Parasite Interactions, State University of Goiás, Anápolis, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
17
|
Siqueira WND, França EJD, Pereira DR, Lima MDV, Silva HAMF, Araújo HDAD, Sá JLF, Melo AMMDA. Study of genotoxic and cytotoxic effects after acute and chronic exposures to industrial sewage sludge on Biomphalaria glabrata hemocytes. CHEMOSPHERE 2020; 249:126218. [PMID: 32088462 DOI: 10.1016/j.chemosphere.2020.126218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Industrial development has provided numerous benefits to improve quality of life in modern times, however, it has also led to the development and use of a large number of toxic chemicals which have caused damage to various ecosystems. Consequently, knowledge of techniques and organisms that can be used to monitor, identify and quantify environmental pollutants has become increasingly relevant. Therefore, the objective of this study was to use the mollusk Biomphalaria glabrata to analyze biomarker and biomonitoring parameters of industrial sewage sludge. To perform the tests, concentrations of 50, 100, 150 and 500 mg L-1 of industrial sewage sludge were standardized. All the tests were performed after the animals were exposed to the sludge in acute and chronic forms. Embryos exposure to sludge did not show a significant percentage of the animals non-viable when compared to the control group. Subsequently, hemocytes were analyzed for the presence of cytoplasmic and nuclear alterations. Finally, the comet test was performed to quantify the genotoxic damage caused by exposure to industrial sludge. Analysis hemocytes showed a significant number of cellular alterations was observed, mainly due to the high frequency of apoptosis. Moreover, during the analysis of nucleoids several degrees of nuclear damage were identified, with the groups exposed to the highest concentrations presenting the greatest genotoxic damage. Thus, we can conclude that the parameters evaluated in the mollusk Biomphalaria glabrata have proven to be a good tool, along with other techniques and complementary organisms, to assist aspects related to biomonitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil.
| | - Elvis Joacir de França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | | | - José Luís Ferreira Sá
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
18
|
Abd El-Rahman GI, Ahmed SAA, Khalil AA, Abd-Elhakim YM. Assessment of hematological, hepato-renal, antioxidant, and hormonal responses of Clarias gariepinus exposed to sub-lethal concentrations of oxyfluorfen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105329. [PMID: 31648108 DOI: 10.1016/j.aquatox.2019.105329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Little is known about the effects of oxyfluorfen, a diphenyl ether herbicide, exposure on the African catfish (Clarias gariepinus) health. Consequently, the existing investigation was designed to highlight the impacts of oxyfluorfen exposure on C. gariepinus hematological indices, liver and kidney functions, reproductive hormones, and oxidative status. Furthermore, a consequent 10-day depuration period was adopted to evaluate the recovery of the disturbed indicators to normal values. In the first experiment, the 96-h lethal concentration 50 (LC50) of oxyfluorfen for C. gariepinus was determined using probit analysis. Next, in a second experiment, 180 healthy fish (average initial body weight: 164.23 ± 0.24) were randomly assigned to 4 experimental groups exposed to 0, 1/10, 1/8, or 1/5 96-h LC50 of oxyfluorfen. The hematological profile, hepatic enzymes, kidney damage byproducts, reproductive hormones, oxidative stress, and lipid peroxidation indicators together with acetylcholinesterase (AChE) content were assessed. A histopathological examination of the hepatic, renal, brain, and testicular tissues was accomplished. Moreover, the expression of the oxidative stress-related gene was carried out. The results showed that 96-h LC50 of oxyfluorfen for C. gariepinus was 11.698 mg/L. Exposure to sublethal levels of oxyfluorfen induced macrocytic hypochromic anemia, leukopenia, lymphopenia, monocytopenia, and eosinopenia. Also, a concentration-dependent increase in alanine transaminase, alkaline phosphatase, aspartate transaminase, urea, creatinine, catalase, and malondialdehyde was detected following oxyfluorfen exposure together with upregulation of catalase gene. But, significant concentration-dependent reductions in AChE, glutathione transferase, reduced to oxidized glutathione ratio, estradiol, and testosterone activities were recorded. These biochemical alterations were accompanied by pathological perturbations in hepatic, renal, brain, and testicular tissues. Following 10 days of recovery, only the hematological impairments were abolished. Conclusively, the herbicides oxyfluorfen could induce multiple negative impacts on C. gariepinus with oxidative stress as a probable underlying mechanism. Additionally, a recovery period of 10 days was not enough to restore these impairments.
Collapse
Affiliation(s)
- Ghada I Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Shaimaa A A Ahmed
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Alshimaa A Khalil
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| |
Collapse
|
19
|
Montalvão MF, Chagas TQ, da Silva Alvarez TG, Mesak C, da Costa Araújo AP, Gomes AR, de Andrade Vieira JE, Malafaia G. How leachates from wasted cigarette butts influence aquatic life? A case study on freshwater mussel Anodontites trapesiali. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:381-389. [PMID: 31277005 DOI: 10.1016/j.scitotenv.2019.06.385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
There are several reports on the damage smoking causes to human health available in the literature, but little is known about the environmental and biological consequences from inappropriate cigarette butt (CB) disposal in urban and natural environments. The immunotoxic, morphotoxic and mutagenic potential of leachates from cigarette butts (LCB) diluted at environmentally relevant rates (LCB1x: 1.375%; LCB10x: 13.75%) was evaluated in adult representatives of the bivalve species Anodontites trapesialis, which was adopted as model organism. Type II hyalinocytes and granulocytes (phagocytic cells) frequency increased in the hemolymph of subjects exposed to the pollutant for 14 days. Based on this outcome, LCB chemical constituents did not induce immunotoxic effects. The treatments also did not seem to have any impact on the subjects' hemocitary morphometry parameters: diameter, area, perimeter, circularity and nucleus - cytoplasm ratio. However, subjects in groups LCB1x and LCB10x recorded a larger number of hyalinocytes with some nuclear abnormality such as micronucleus, blebbed nucleus, asymmetric constriction nucleus, and nuclear multilobulation and binucleation. The association between these abnormalities and the treatments was confirmed by the Cr, Ni, Pb, Zn, Mn and Na bioaccumulation in tissue samples of the bivalve models exposed to LCB. To the best of our knowledge, this is the first report on LCB mutagenicity in representatives of a freshwater bivalve group. Given the chemical complexity of the addressed pollutants, it is imperative to develop further investigations about the topic.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Thales Quintão Chagas
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Tenilce Gabriela da Silva Alvarez
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Carlos Mesak
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Alex Rodrigues Gomes
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | | | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil.
| |
Collapse
|
20
|
de Vasconcelos Lima M, de Andrade Pereira MI, Cabral Filho PE, Nascimento de Siqueira W, Milca Fagundes Silva HA, de França EJ, Saegesser Santos B, Mendonça de Albuquerque Melo AM, Fontes A. Studies on Toxicity of Suspensions of CdTe Quantum Dots to Biomphalaria glabrata Mollusks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2128-2136. [PMID: 31233232 DOI: 10.1002/etc.4525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Quantum dots have generated great interest because of their optical properties, both to life sciences and electronics applications. However, possible risks to the environment associated with these nanoparticles are still under investigation. The present study aimed to evaluate the toxicity of suspensions of cadmium telluride (CdTe) quantum dots to Biomphalaria glabrata mollusks, a very sensitive aquatic environmental bioindicator for physical and chemical agents. Toxicity was examined by using embryos and adult mollusks as well as hemocytes. The distribution of cadmium in the organs of adults was also assessed. Effects of the stabilizing agent of the quantum dots were also evaluated. Animals were exposed to suspensions of quantum dots for 24 h, at concentrations varying from 1.2 to 20 nM for embryos and from 50 to 400 nM for adult mollusks. Results showed that suspensions of quantum dots induced malformations and mortality in embryos and mortality in adults, depending on the concentration applied. In the cytotoxicity study, hemocyte apoptosis was observed in adults exposed to the highest concentration of quantum dots applied as well as to the stabilizing agent. Cell binucleation and micronucleus frequencies were not significative. Bioaccumulation evaluation revealed that quantum dots targeted the digestive gland (hepatopancreas). Taken together, outcomes suggested that specific nano-effects related directly not only to composition but also to the aggregation of quantum dots may be mediating the observed toxicity. Thus B. glabrata was determined to be a very sensitive species for interpreting possible nano-effects in aquatic environments. Environ Toxicol Chem 2019;38:2128-2136. © 2019 SETAC.
Collapse
Affiliation(s)
| | | | | | - Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, UFPE, Recife, Pernambuco, Brazil
- Serviço de Monitoração Ambiental, CRCN-NE, Recife, Pernambuco, Brazil
| | | | | | | | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|