1
|
González N, Domingo JL. Levels of Rare Earth Elements in Food and Human Dietary Exposure: A Review. Biol Trace Elem Res 2025; 203:2240-2256. [PMID: 38970711 PMCID: PMC11920342 DOI: 10.1007/s12011-024-04297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Rare earth elements (REEs) are a group consisting of the following 17 metals: Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Pm, Sc, Sm, Tb, Tm, Y and Yb. In the current century, the number of applications of REEs has significantly increased. They are being used as components in high technology devices of great importance industrial/economic. However, information on the risk of human exposure to REEs, as well as the potential toxic effects of these elements is still limited. In general terms, dietary intake is the main route of exposure to metals for non-occupationally exposed individuals, which should be also expected for REEs. The current paper aimed at reviewing the studies -conducted over the world- that focused on determining the levels of REEs in foods, as well as the dietary intake of these elements. Most studies do not suggest potential health risk for consumers of freshwater and marine species of higher consumption, or derived from the intake of a number of vegetables, fruits, mushrooms, as well as other various foodstuffs (honey, tea, rice, etc.). The current estimated daily intake (EDI) of REEs does not seem to be of concern. However, considering the expected wide use of these elements in the next years, it seems to be clearly recommendable to assess periodically the potential health risk of the dietary exposure to REEs. This is already being done with well-known toxic elements such as As, Cd, Pb and Hg, among other potentially toxic metals.
Collapse
Affiliation(s)
- Neus González
- School of Medicine, Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, 43201, Reus, Catalonia, Spain
| | - Jose L Domingo
- School of Medicine, Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
2
|
Li Y, Saparov G, Zeng T, Abuduwaili J, Ma L. Geochemical behavior of rare earth elements in agricultural soils along the Syr Darya River within the Aral Sea Basin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:493. [PMID: 38691227 DOI: 10.1007/s10661-024-12647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
The widespread use of rare earth elements (REEs) across various industries makes them a new type of pollutant. Additionally, REEs are powerful indicators of geochemical processes. As one of the two main rivers in the Aral Sea, identifying the geochemical behavior of REEs in agricultural soils of the Syr Darya River is of great significance for subsequent indicative studies. In this study, the geochemical characteristics, influencing factors, and potential application significance of REEs in agricultural soils from three sampling areas along the Syr Darya River were analyzed using soil geography and elemental geochemical analyses. The results showed that the highest total concentration of REEs in the agricultural soil was in Area I, with a mean value of 142.49 μg/g, followed by Area III with a mean value of 124.56 μg/g, and the lowest concentration was in Area II with a mean value of 122.48 μg/g. The agricultural soils in the three regions were enriched in light rare earth elements (LREEs), with mean L/H values of 10.54, 10.13, and 10.24, respectively. The differentiation between light and heavy rare earth elements (HREEs) was also high. The concentration of REEs in agricultural soil along the Syr Darya River was primarily influenced by minerals such as monazite and zircon, rather than human activities (the pollution index of all REEs was less than 1.5). The relationship between Sm and Gd can differentiate soils impacted by agricultural activities from natural background soils. The results of this study can serve as a basis for indicative studies of REEs in Central Asia.
Collapse
Affiliation(s)
- Yizhen Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Galymzhan Saparov
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- Kazakh Research Institute of Soil Science and Agrochemistry Named After U. U. Uspanov, Almaty, 050060, Kazakhstan
| | - Tao Zeng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Urumqi, 830011, China.
| |
Collapse
|
3
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. Can rare earth elements be recovered from abandoned mine tailings by means of electrokinetic-assisted phytoextraction? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26747-26759. [PMID: 38456984 PMCID: PMC11052889 DOI: 10.1007/s11356-024-32759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Given the high impact of traditional mining, the recovery of rare earth elements (REEs) from hazardous waste materials could become an option for the future in accordance with the principles of the circular economy. In this work, the technical feasibility of REEs recovery from metal mine tailings has been explored using electrokinetic-assisted phytoremediation with ryegrass (Lolium perenne L.). Phytoextraction combined with both AC current and DC current with reversal polarity was applied (1 V cm-1, 8 h day-1) to real mine tailings containing a total concentration of REEs (Sc, Y, La, Ce, Pr, and Nd) of around 146 mg kg-1. Changes in REEs geochemical fractionation and their concentrations in the soil pore water showed the mobilization of REEs caused by plants and electric current; REE availability was increased to a higher extent for combined electrokinetic-assisted phytoextraction treatments showing the relevant role of plants in the process. Our results demonstrated the initial hypothesis that it is feasible to recover REEs from real metal mining waste by phytoextraction and that the performance of this technology can be significantly improved by applying electric current, especially of the AC type, which increased REE accumulation in ryegrass in the range 57-68% as compared to that of the treatment without electric field application.
Collapse
Affiliation(s)
- Hassay Lizeth Medina-Díaz
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, S/N, 13071, Ciudad Real, Spain
| | - Francisco Javier López-Bellido
- School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, S/N, 13003, Ciudad Real, Spain
| | - Jacinto Alonso-Azcárate
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/N, 45071, Toledo, Spain
| | - Francisco Jesús Fernández-Morales
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, S/N, 13071, Ciudad Real, Spain
| | - Luis Rodríguez
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, S/N, 13071, Ciudad Real, Spain.
| |
Collapse
|
4
|
Falandysz J, Kilanowicz A, Fernandes AR, Zhang J. Rare earth contamination of edible vegetation: Ce, La, and summed REE in fungi. Appl Microbiol Biotechnol 2024; 108:268. [PMID: 38506962 PMCID: PMC10954923 DOI: 10.1007/s00253-024-13087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The increasing and diversified use of rare earth elements (REE) is considered a potential source of pollution of environmental media including soils. This work documents critically overview data on the occurrence of REE in the fruiting bodies of wild and farmed species of edible and medicinal mushrooms, as this was identified as the largest published dataset of REE occurrence in foodstuff. Most of the literature reported occurrences of cerium (Ce) and lanthanum (La), but a number of studies lacked data on all lanthanides. The Ce, La, and summed REE occurrences were assessed through the criteria of environmental geochemistry, analytical chemistry, food toxicology, mushroom systematics, and ecology. Ce and La accumulate similarly in fruiting bodies and are not fractionated during uptake, maintaining the occurrence patterns of their growing substrates. Similarly, there is no credible evidence of variable REE uptake because the evaluated species data show natural, unfractionated patterns in accordance with the Oddo-Harkins' order of environmental lanthanide occurrence. Thus, lithosphere occurrence patterns of Ce and La as the first and the third most abundant lanthanides are reflected in wild and farmed mushrooms regardless of substrate and show that Ce is around twice more abundant than La. The current state of knowledge provides no evidence that mushroom consumption at these REE occurrence levels poses a health risk either by themselves or when included with other dietary exposure. Macromycetes appear to bio-exclude lanthanides because independently reported bioconcentration factors for different species and collection sites, typically range from < 1 to 0.001. This is reflected in fruiting body concentrations which are four to two orders of magnitude lower than growing substrates. KEY POINTS: •Original REE occurrence patterns in soils/substrates are reflected in mushrooms •No evidence for the fractionation of REE during uptake by fungi •Mushrooms bio-exclude REE in fruiting bodies.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Anna Kilanowicz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Panlong District, Kunming, 650200, China
| |
Collapse
|
5
|
Falandysz J, Fernandes AR. A critical review of the occurrence of scandium and yttrium in mushrooms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:107-141. [PMID: 38783723 DOI: 10.1016/bs.aambs.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Scandium (Sc) and Yttrium (Y) along with the other rare earth elements (REE) are being increasingly extracted to meet the escalating demand for their use in modern high technology applications. Concern has been voiced that releases from this escalating usage may pollute environments, including the habitats of wild species of mushrooms, many of which are foraged and prized as foods. This review collates the scarce information on occurrence of these elements in wild mushrooms and also reviews soil substrate levels, including forested habitats. Sc and Y occurred at lower levels in mushrooms (<1.0-1000 µg kg-1 dw for Sc and<1.8-1500 µg kg-1 dw for Y) compared to the corresponding range for the sum of the lanthanides in the same species (16-8400 µg kg-1 dw). The reported species showed considerably more variation in Y contents than Sc which show a narrow median distribution range (20-40 µg kg-1 dw). Data allowing temporal examination was very limited but showed no increasing trend between the 1970s to 2019, nor were any geographical influences apparent. The study of the essentiality, toxicity or other effects of REE including Sc and Y at levels of current dietary intake are as yet undefined. High intake scenarios using the highest median concentrations of Sc and Y, resulted in daily intakes of 1.2 and 3.3 μg respectively from 300 g portions of mushroom meals. These could be considered as low unless future toxicological insights make these intake levels relevant.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, Łódź, Poland.
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Falandysz J. Comment on "Mineral composition of elements in wood-growing mushroom species collected from of two regions of Poland" by Mleczek et al., https://doi.org/10.1007/s11356-020-10788-y. Focus on lanthanides for which the analytical quality of the results can be objectively and easily verified. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51371-51377. [PMID: 36905539 DOI: 10.1007/s11356-023-26366-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/03/2023] [Indexed: 04/16/2023]
Affiliation(s)
- Jerzy Falandysz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Lodz, Poland.
| |
Collapse
|
7
|
Mędyk M, Falandysz J, Nnorom IC. Scandium, yttrium, and lanthanide occurrence in Cantharellus cibarius and C. minor mushrooms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41473-41484. [PMID: 36633747 PMCID: PMC10067650 DOI: 10.1007/s11356-023-25210-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
There is a dearth of data on rare earth elements (REE), yttrium and scandium in foods which extends also to baseline datasets for edible wild mushrooms, though this has started to change in the last decade. Concentrations and shale normalized patterns of REE and Y (REY) were studied by using inductively coupled plasma-quadrupole mass spectrometer in 22 pools (2235 specimens) of Cantharellus cibarius (Golden Chanterelle) collected in Poland and also a pool of C. minor (Small Chanterelle) (153 specimens) from Yunnan (Chinese Province). The total REY plus Sc varied in C. cibarius from 10 to 593 µg kg-1 dw whereas that for the Yunnan's C. minor was 2072 µg kg-1 dw. C. minor from Yunnan has higher REY and Sc compared to the C. cibarius. Sc concentrations in twenty C. cibarius pools were below 1 µg kg-1 dw, but 17 and 27 µg kg-1 dw were detected at the other two sites and 66 µg kg-1 dw was detected in C. minor. The median Y content of C. cibarius and C. minor was 22 µg kg-1 dw and 200 µg kg-1 dw. The difference in REY and Sc concentrations and shale normalized patterns between mushrooms from Poland and Yunnan seems to reflect the regional difference in concentration and composition of these elements in the soil bedrock.
Collapse
Affiliation(s)
- Małgorzata Mędyk
- Environmental Chemistry & Ecotoxicology, University of Gdańsk, 63 Wita Stwosza Str., 80-308, Gdańsk, PL, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Innocent Chidi Nnorom
- Analytical/Environmental Unit, Department of Pure and Industrial Chemistry, Abia State University, Uturu, Nigeria
| |
Collapse
|
8
|
Abstract
The island of Hunga Tonga Hunga Ha'apai (HTHH) in the Kingdom of Tonga was formed by Surtseyan eruptions and persisted for 7 years before being obliterated by a massive volcanic eruption on 15 January 2022. Before it was destroyed, HTHH was an unparalleled natural laboratory to study primary succession on a newly formed landmass. We characterized the microbial communities found on the surface sediments of HTHH using a combination of quantitative PCR, marker gene sequencing, and shotgun metagenomic analyses. Contrary to expectations, photosynthetic cyanobacteria were not detected in these sediments, even though they are typically dominant in the earliest stages of primary succession in other terrestrial environments. Instead, our results suggest that the early sediment communities were composed of a diverse array of bacterial taxa, including trace gas oxidizers, anoxygenic photosynthesizers, and chemolithotrophs capable of metabolizing inorganic sulfur, with these bacteria likely sourced from nearby active geothermal environments. While the destruction of HTHH makes it impossible to revisit the site to conduct in situ metabolic measurements or observe how the microbial communities might have continued to change over time, our results do suggest that the early microbial colonizers have unique origins and metabolic capabilities. IMPORTANCE The volcanic island of Hunga Tonga Hunga Ha'apai in the Kingdom of Tonga represents a very rare example of new island formation and thus a unique opportunity to study how organisms colonize a new landmass. We found that the island was colonized by diverse microbial communities shortly after its formation in 2015, with these microbes likely originating from nearby geothermal environments. Primary succession in this system was distinct from that typically observed in other terrestrial environments, with the early microbial colonizers relying on unique metabolic strategies to survive on the surface of this newly formed island, including the capacity to generate energy via sulfur and trace gas metabolism.
Collapse
|
9
|
Falandysz J. Letter to the Editor - comment on: "Anthropogenic contamination leads to changes in mineral composition of soil- and tree-growing mushroom species: A case study of urban vs. rural environments and dietary implications"- rare earth elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159484. [PMID: 36280082 DOI: 10.1016/j.scitotenv.2022.159484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego Street, 90-151 Łódź, Poland.
| |
Collapse
|
10
|
Falandysz J. Comment on "Worldwide basket survey of multielemental composition of white button mushroom Agaricus bisporus": The credibility of the concentration data reported for REE are questioned - are they reliable enough to be included in the database on nutrients in mushrooms? CHEMOSPHERE 2023; 310:136857. [PMID: 36265707 DOI: 10.1016/j.chemosphere.2022.136857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The focus of this comment is on the Lanthanides (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) which, together with Sc and Y are also called the rare earth elements (REE). Individual REE have similar chemical properties and can be treated as a group. They behave similarly in the environment and in food webs. However, the determination of REE in foods, including edible mushrooms is analytically very challenging. In study by Siwulski et al. (2020) concentrations were reported for Ce, Nd, Sm, La, Sm and Tm, but the others were not detected above the method quantification limit. The sum of Ce (340-2730 μg kg-1 dw), Nd (10-1220 μg kg-1 dw), Sm (10-420 μg kg-1 dw), La (10-130 μg kg-1 dw), Sm (10-420 μg kg-1 dw), Tm (10-170 μg kg-1 dw) in 32 samples of A. bisporus was in the range of 430-3510 μg kg-1 dry weight. The first visible characteristic is a large difference in the concentrations of Ce, Nd, Sm, La and Tm between the A. bisporus samples and various wild species and cultivated Cyclocybe cylindracea and Pleurotus ostreatus. Secondly, there is no correspondence with the Oddo-Harkins order and the concentrations pattern of Ce, Nd, Sm, La and Tm reported for the A. bisporus samples. The pattern is clearly different from that observed in the wild mushrooms and the two cultivated species reported by other studies. The ICP-OES and also the low resolution ICP-MS determination of REE directly from a fungal digest can suffer from spectral interferences of different types including an effect of the matrix which have to be overcome in the course of reliable and controlled analysis of REE.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego St., 90-151, Łódź, Poland.
| |
Collapse
|
11
|
Mędyk M, Falandysz J. Occurrence, bio-concentration and distribution of rare earth elements in wild mushrooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158159. [PMID: 35988594 DOI: 10.1016/j.scitotenv.2022.158159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Using validated methodology, this study explores the bioconcentration potential and status of rare earth elements (REE) and yttrium (Y) in wild mushrooms collected from Belarus, China and Poland and in the associated forest topsoil. Baseline data for REE and Y distributions in the morphological parts of the fruiting bodies of Caloboletus calopus, Cantharellus cibarius, Craterellus cornucopioides, Imleria badia, Laccaria amethystina, Lactifluus piperatus, Leccinum scabrum and Suillus grevillei are presented. REE were in the range of 14 to 42 mg kg-1 dw in forest topsoil and from 35 to 48 mg kg-1 dw in profiled soil layers from the Sobowidz site in Poland. Forest topsoil sampled in Belarus contained 67 mg kg-1 dw. Yttrium concentrations in soil ranged from 2.9 to 10 mg kg-1 dw. The median REE concentration in wild mushrooms was around 200 μg kg-1 dw (20 μg kg-1 fresh weight). This implies negligible dietary intake even for high level consumers. The bioconcentration factors (BCF) of individual REE and Y ranged from 0.0002 to 0.0229, showing bio-exclusion. The BCF tended to be similar for groups of REE (La to Tb and Dy to Lu) depending on the mushroom species and site. REE from Dy to Lu were better bioconcentrated than those from La to Tb. The similarity of the BCFs of individual REE by species at a given site implies the same absorption pathway, although a lower concentration in the topsoil favoured bioconcentration. REE and Y concentrations varied between species as well as within the same species between sites. Their accumulation in mushrooms appears to reflect condition at the site of collection, and may also be species-specific but confirming this would require further investigation of different species, topsoils and sites.
Collapse
Affiliation(s)
- Małgorzata Mędyk
- University of Gdańsk, Laboratory of Environmental Chemistry and Ecotoxicology, Gdańsk, Poland
| | - Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego St., 90-151 Łódź, Poland.
| |
Collapse
|
12
|
Günther A, Wollenberg A, Vogel M, Drobot B, Steudtner R, Freitag L, Hübner R, Stumpf T, Raff J. Speciation and spatial distribution of Eu(III) in fungal mycelium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158160. [PMID: 35988601 DOI: 10.1016/j.scitotenv.2022.158160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Europium, as an easy-to-study analog of the trivalent actinides, is of particular importance for studying the behavior of lanthanides and actinides in the environment. Since different soil organisms can influence the migration behavior of these elements, a detailed knowledge of these interaction mechanisms is important. The aim of this study was to investigate the interaction of mycelia of selected wood-inhabiting (S. commune, P. ostreatus, L. tigrinus) and soil-inhabiting fungi (L. naucinus) with Eu(III). In addition to determining the Eu(III) complexes in the sorption solution, the formed Eu(III) fungal species were characterized using scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, chemical microscopy in combination with the time-resolved laser-induced fluorescence spectroscopy. Our data show that S. commune exhibited significantly higher Eu(III) binding capacity in comparison to the other fungi. Depending on fungal strain, the metal was immobilized on the cell surface, in the cell membranes, and within the membranes of various organelles, or in the cytoplasm in some cases. During the bioassociation process two different Eu(III) fungal species were formed in all investigated fungal strain. The phosphate groups of organic ligands were identified as being important functional groups to bind Eu(III) and thus immobilize the metal in the fungal matrix. The information obtained contributes to a better understanding of the role of fungi in migration, removal or retention mechanisms of rare earth elements and trivalent actinides in the environment.
Collapse
Affiliation(s)
- Alix Günther
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
| | - Anne Wollenberg
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Manja Vogel
- HZDR Innovation GmbH, Bautzner Landstr. 400, 01328 Dresden, Germany; VKTA-Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Leander Freitag
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Johannes Raff
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| |
Collapse
|
13
|
Falandysz J. Comment on „Mineral composition of traditional and organic-cultivated mushroom Lentinula edodes in Europe and Asia – Similar or different?” – are the data on lanthanides correct? Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Falandysz J. Comment on: "Family and species as determinants modulating mineral composition of selected wild-growing mushroom species" by Mleczek et al., https://doi.org/10.1007/s11356-020-10508-6. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89796-89800. [PMID: 36269486 DOI: 10.1007/s11356-022-23759-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Jerzy Falandysz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| |
Collapse
|
15
|
Pereira WVDS, Ramos SJ, Melo LCA, Braz AMDS, Dias YN, Almeida GVD, Fernandes AR. Levels and environmental risks of rare earth elements in a gold mining area in the Amazon. ENVIRONMENTAL RESEARCH 2022; 211:113090. [PMID: 35278468 DOI: 10.1016/j.envres.2022.113090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Artisanal gold (Au) mining may have increased the concentrations of rare earth elements (REEs) in the Serra Pelada mine (southeastern Amazon, Brazil), which has not been evaluated so far. The objectives of this study were to determine the concentrations of cerium (Ce), lanthanum (La), scandium (Sc), and yttrium (Y) in the surroundings of the Serra Pelada mine, as well as the environmental risks associated with these elements. Therefore, 27 samples were collected in agricultural, forest, mining, and urban areas, and submitted to chemical and particle size characterization. The concentrations of REEs were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and used to estimate pollution indices and environmental risks of the studied elements. All REEs had higher levels in the anthropized areas when compared to the forest area, except Sc in the mining and urban areas. Pollution load indices revealed that all areas are contaminated (>1) by the combined effect of REEs, especially the agricultural areas (index of 2.3). The element of greatest enrichment in the studied areas was Y, with enrichment factors of 18.2, 39.0, and 44.4 in the urban, agriculture, and mining areas, respectively. However, the potential ecological risk indices were low (<150) in all areas, indicating that there are no current environmental risks by the studied REEs.
Collapse
Affiliation(s)
| | - Sílvio Junio Ramos
- Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil
| | - Leônidas Carrijo Azevedo Melo
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900, Lavras, Minas Gerais, Brazil
| | | | - Yan Nunes Dias
- Institute of Agricultural Sciences, Federal Rural University of the Amazon, 66077-830, Belém, Pará, Brazil
| | | | | |
Collapse
|
16
|
Falandysz J, Nnorom IC, Mędyk M. Rare Earth Elements in Boletus edulis (King Bolete) Mushrooms from Lowland and Montane Areas in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8948. [PMID: 35897319 PMCID: PMC9331855 DOI: 10.3390/ijerph19158948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Mining/exploitation and commercial applications of the rare-earth elements (REEs: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in the past 3 decades have raised concerns about their emissions to the environment, possible accumulation in food webs, and occupational/environmental health effects. The occurrence and distribution of REEs Y and Sc in the fruitbodies of Boletus edulis collected from geographically diverse regions in Poland were studied in 14 composite samples that were derived from 261 whole fruiting bodies. Individual REE median concentrations ranged from 0.4-95 µg kg-1 dry weight (dw). The summed REE concentrations varied widely, with a median value of 310 µg kg-1 dw and a range of 87 to 758 µg kg-1. The Sc and Y median concentrations (dw) were 35 and 42 µg kg-1, respectively. Ce, La, and Nd, with median values of 95, 51, and 32 µg kg-1, respectively, showed the highest occurrence. B. edulis collected from a forested area formerly used as a military shooting range-possibly a historically contaminated site-had an elevated summed REE content of 1796 µg kg-1. REE concentrations were generally low in Polish King Bolete. Dietary intake from a mushroom meal was negligible, posing no health risk to consumers.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Łódź, Poland
| | - Innocent Chidi Nnorom
- Analytical/Environmental Unit, Department of Pure and Industrial Chemistry, Abia State University, Uturu P.M.B. 2000, Nigeria;
| | - Małgorzata Mędyk
- Laboratory of Environmental Chemistry and Ecotoxicology, University of Gdańsk, 80-309 Gdańsk, Poland;
| |
Collapse
|
17
|
Syrvatka V, Rabets A, Gromyko O, Luzhetskyy A, Fedorenko V. Scandium-microorganism interactions in new biotechnologies. Trends Biotechnol 2022; 40:1088-1101. [PMID: 35346528 DOI: 10.1016/j.tibtech.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Scandium (Sc) plays a special role in high-tech industries because of its wide application in green, space, and defense technologies. However, Sc mining and purification are problematic due to political, technological, and environmental difficulties. The deficit of this element limits global technological development. One sustainable solution to this problem is to use microorganisms to extract Sc from ore and waste, as well as to concentrate and separate it from other elements. Sc also demonstrates attractive metabolic effects on microbes that is of great interest in white biotechnology. Sc increases the production of proteins and secondary metabolites and activates poorly expressed genes. This review offers a comprehensive analysis of current knowledge on the application of Sc-microorganism interactions in promising biotechnologies, its perspectives, and future challenges.
Collapse
Affiliation(s)
- Vasyl Syrvatka
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrii Rabets
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Oleksandr Gromyko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Victor Fedorenko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine.
| |
Collapse
|
18
|
Martino C, Chianese T, Chiarelli R, Roccheri MC, Scudiero R. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. Int J Mol Sci 2022; 23:ijms23052876. [PMID: 35270017 PMCID: PMC8911218 DOI: 10.3390/ijms23052876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level. This review focused on the impact of lanthanides in marine organisms on reproductive fitness, fertilization and embryonic development, using the sea urchin as a biological model system. Scientific evidence shows that exposure to lanthanides triggers a wide variety of toxic insults, including reproductive performance, fertilization, redox metabolism, embryogenesis, and regulation of embryonic gene expression. This was thoroughly demonstrated for gadolinium, the most widely used lanthanide in diagnostic medicine, whose uptake in sea urchin embryos occurs in a time- and concentration-dependent manner, correlates with decreased calcium absorption and primarily affects skeletal growth, with incorrect regulation of the skeletal gene regulatory network. The results collected on sea urchin embryos demonstrate a variable sensitivity of the early life stages of different species, highlighting the importance of testing the effects of pollution in different species. The accumulation of lanthanides and their emerging negative effects make risk assessment and consequent legislative intervention on their disposal mandatory.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
19
|
Đurđić S, Stanković V, Ražić S, Mutić J. Is a Lead Isotope Ratios in Wine Good Marker for Origin Assessment? Front Chem 2021; 9:746695. [PMID: 34671591 PMCID: PMC8521031 DOI: 10.3389/fchem.2021.746695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Lead isotope ratio pattern (206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb) was analyzed in 59 samples of Serbian wine, from four geographical regions. By utilization of powerful inductively coupled plasma mass spectrometry (ICP-QMS), lead isotope ratios were used as unique "fingerprint", when combined with multivariate methods of analysis (Principal Component Analysis), provided information on the geographical origin of wine. In validation of ICP- QMS method and quantitative analysis, the certified reference material NIST SRM 981 was employed to test the mass-bias correction and thallium isotopes 203Tl and 205Tl (NIST SRM 997) as an internal standard. The obtained results were discussed in correlation with the corresponding values of LIRs of different European and Australian wines. In addition, the impact of anthropogenic Pb from different sources on the total Pb isotopic composition in Serbian wines was analyzed too. On the other side, the obtained values of Pb content were compared with the applicable health safety standards, according to the International Code of Oenological Practices.
Collapse
Affiliation(s)
- Slađana Đurđić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Vesna Stanković
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Slavica Ražić
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Mutić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Jančo I, Šnirc M, Hauptvogl M, Demková L, Franková H, Kunca V, Lošák T, Árvay J. Mercury in Macrolepiota procera (Scop.) Singer and Its Underlying Substrate-Environmental and Health Risks Assessment. J Fungi (Basel) 2021; 7:772. [PMID: 34575810 PMCID: PMC8467616 DOI: 10.3390/jof7090772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Wild-growing edible mushrooms are valuable food with a high content of proteins, fibers, antioxidants, and they are characterized by their specific taste and flavor. However, from an ecotoxicological point of view, they are a risk commodity because of their extremely high bioaccumulative capacity to accumulate the risk elements and contaminants from the environment. In the present study, we examined mercury (Hg) contamination in 230 fruiting bodies of Macrolepiota procera (Scop.) Singer and 230 soil/substrate samples, which were collected in foraging seasons 2015-2019 from 22 different locations in Slovakia. Total mercury content was determined by cold-vapor AAS analyzer AMA 254. The level of contamination and environmental risks were assessed by contamination factor (Cf), index of geoaccumulation (Igeo), and potential environmental risk index (PER). Bioaccumulation factor (BAF) was calculated for individual anatomical parts of M. procera. Mercury content in the soil/substrate samples varied between 0.02 and 0.89 mg kg-1 DW, and in mushroom samples between 0.03 and 2.83 mg kg-1 DW (stems), and between 0.04 and 6.29 mg kg-1 DW (caps). The obtained results were compared with the provisional tolerable weekly intake for Hg defined by WHO to determine a health risk resulting from regular and long-term consumption of M. procera.
Collapse
Affiliation(s)
- Ivona Jančo
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| | - Marek Šnirc
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| | - Martin Hauptvogl
- Faculty of European Studies and Regional Development, Institute of Environmental Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| | - Lenka Demková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 081 16 Prešov, Slovakia;
| | - Hana Franková
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| | - Vladimír Kunca
- Department of Applied Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 01 Zvolen, Slovakia;
| | - Tomáš Lošák
- Department of Environmentalistics and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, 613 00 Brno, Czech Republic;
| | - Július Árvay
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| |
Collapse
|
21
|
Culicov OA, Trtić-Petrović T, Balvanović R, Petković A, Ražić S. Spatial distribution of multielements including lanthanides in sediments of Iron Gate I Reservoir in the Danube River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44877-44889. [PMID: 33851297 PMCID: PMC8364546 DOI: 10.1007/s11356-021-13752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Recent studies show that lanthanides (Ln) are becoming emerging pollutants due to their wide application in new technologies, but their environmental fate, transport, and possible accumulation are still relatively unknown. This study aims to determine major and trace elements including Ln in the Danube River sediment which either belong or close to the Iron Gate Reservoir. The Iron Gate Reservoir is characterized by accumulation of sediments as an effect of building hydropower dam Iron Gate I. The surface sediments were collected on the Danube River-1141 to 864 km and three tributaries along this waterway. Two samples of deep sediments were used for comparison. The results indicate the significant upward enrichment of Zn, Sb, Cr, Nd, and Dy in sediments belongs to the Iron Gate Reservoir. The sample 4-Smed is labelled as a hot spot of contamination with Zn, Cr, As, Sb, Nd, and Dy. Also, a trend of increasing concentration in the time period from 1995 to 2016 was found for elements Zn, Cr, and Ni in sediment samples in the Iron Gate Reservoir. Chemometric analysis shows the grouping of sample sites into clusters characterized by the following properties: (i) increased concentration of all measured elements (samples within the Iron Gate Reservoir); (ii) increased Cu concentration (11-Pek); and (iii) lower concentrations of the measured elements (deep sediments). The data presented hereby contribute to the monitoring of pollution of the River Danube sediments and give the first view of Ln profile in the studied sediments.
Collapse
Affiliation(s)
- Otilia Ana Culicov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russian Federation
- National Institute for R&D in Electrical Engineering ICPE-CA, Bucharest, Romania
| | - Tatjana Trtić-Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade, 11001, Serbia.
| | - Roman Balvanović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade, 11001, Serbia
| | - Anđelka Petković
- "JaroslavČerni" Institute for the Development of Water Resources, Belgrade, Serbia
| | - Slavica Ražić
- Faculty of Pharmacy - Department of Analytical Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Pittet PA, Josset M, Boilley D, Bernollin A, Rougier G, Froidevaux P. Origin and age of an ongoing radioactive contamination of soils near La hague reprocessing plant based on 239+240Pu/ 238Pu and 241Am/ 241Pu current ratios and 90Sr and Ln(III) soil contents. CHEMOSPHERE 2021; 270:129332. [PMID: 33422999 DOI: 10.1016/j.chemosphere.2020.129332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Nuclear reprocessing plants are sources of environmental contamination by gaseous or liquid discharges. Numerous radionuclides are of concern, with actinides and 90Sr being the most radiotoxic. Environmental radioactivity survey programs mostly use γ-spectrometry to track contaminations because γ-spectrometry is very cost effective and can be carried out on raw samples. On the other hand, the determination of β- or α-emitting radionuclides in environmental samples requires rather sophisticated analytical methods, and are thus dedicated to specific goals. However, measuring radionuclides such as Pu, Am, and Sr often provides more information about the presence of a current or prior contamination and on its origin, based on the isotopic composition of the samples. We found that the analysis of 241Pu, 239+240Pu, 241Am, and 90Sr of a few selected soil samples taken near the nuclear reprocessing plant of La Hague, France, revealed the presence of a previous environmental contamination originating from several incidents in La Hague site involving atmospheric transfer and leaks in flooded waste pits. The 241Am-241Pu dating method indicated a contamination period prior to 1983. The presence of elevated levels of light non-radioactive lanthanides and yttrium in the soil samples confirmed the involvement of cold fuel. Our results demonstrate how long-lived actinides are likely to reveal a long-term contamination of the environment by spent fuel. Our study indicates that there is a requirement to use more sophisticated tools than γ-spectrometry when surveying the environments surrounding industrial plants for nuclear power and nuclear reprocessing with a potential for the accidental release of radioactivity into the environment.
Collapse
Affiliation(s)
- Pierre-André Pittet
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mylène Josset
- ACRO, Association pour le Contrôle de La Radioactivité Dans L'Ouest, 138, Rue de L'Eglise, 14200, Hérouville St Clair, France
| | - David Boilley
- ACRO, Association pour le Contrôle de La Radioactivité Dans L'Ouest, 138, Rue de L'Eglise, 14200, Hérouville St Clair, France
| | - Antoine Bernollin
- ACRO, Association pour le Contrôle de La Radioactivité Dans L'Ouest, 138, Rue de L'Eglise, 14200, Hérouville St Clair, France
| | - Guillaume Rougier
- ACRO, Association pour le Contrôle de La Radioactivité Dans L'Ouest, 138, Rue de L'Eglise, 14200, Hérouville St Clair, France
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Souza IC, Morozesk M, Azevedo VC, Mendes VAS, Duarte ID, Rocha LD, Matsumoto ST, Elliott M, Baroni MV, Wunderlin DA, Monferrán MV, Fernandes MN. Trophic transfer of emerging metallic contaminants in a neotropical mangrove ecosystem food web. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124424. [PMID: 33183835 DOI: 10.1016/j.jhazmat.2020.124424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Emerging metallic contaminants (EMCs) are of concern due their presence in aquatic ecosystems and the lack of environmental regulations in several countries. This study verifies the presence of EMCs in two neotropical mangrove estuarine ecosystems (Espírito Santo Brazil) by evaluating abiotic and biotic matrices across six trophic levels (plankton, oyster, shrimp, mangrove trees, crabs and fish) and hence interrogates the trophic transfer of these elements and their possible input sources. Using the oyster Crassostrea rhizophorae as a biomonitor, ten EMCs (Bi, Ce, La, Nb, Sn, Ta, Ti, W, Y and Zr) were determined. Bi input was from iron export and pelletizing industries; Ce, La and Y inputs were mainly associated with solid waste from steel production, while Zr, Nb and Ti were related to atmospheric particulate matter emissions. EMCs were detected at various trophic levels, showing biomagnification for most of them in the Santa Cruz estuary but biodilution in Vitória Bay. These contrasting results between the estuaries could be attributed to different pollution degrees, needing further research to be fully understood. This is the first report demonstrating EMCs trophic pathways in situ, constituting an essential baseline for future research and safety regulations involving EMCs in the environment.
Collapse
Affiliation(s)
- Iara C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil
| | - Mariana Morozesk
- Instituto de Ciências Puras e Aplicadas, Universidade Federal de Itajubá (ICPA/UNIFEI), Irmã Ivone Drumond St., 200, Distrito Industrial II, 35903-087 Itabira, Minas Gerais, Brazil
| | - Vinicius C Azevedo
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
| | - Vitor A S Mendes
- Departamento de Engenharia de Materiais, Universidade Federal de São Carlos (DEMa/UFSCar), São Carlos, SP, Brazil Ave. Washington Luiz, km 235, São Carlos, 13565-905, São Paulo, Brazil
| | - Ian D Duarte
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Livia D Rocha
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX UK; International Estuarine & Coastal Specialists Ltd. Leven HU17 5LQ, UK
| | - María V Baroni
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil.
| |
Collapse
|
24
|
Siwulski M, Budka A, Rzymski P, Mleczek P, Budzyńska S, Gąsecka M, Szostek M, Kalač P, Kuczyńska-Kippen N, Niedzielski P, Goliński P, Magdziak Z, Kaniuczak J, Mleczek M. Multiannual monitoring (1974-2019) of rare earth elements in wild growing edible mushroom species in Polish forests. CHEMOSPHERE 2020; 257:127173. [PMID: 32497838 DOI: 10.1016/j.chemosphere.2020.127173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
There is a growing demand for rare earth elements (REEs) due to their use in modern technologies, and this may result in their emission to the environment. This is the first long-term study to monitor the content of REEs in four edible mushroom species. Over 21,900 samples of fruit bodies (sporocarps) of Boletus edulis, Imleria badia, Leccinum scabrum and Macrolepiota procera and their underlying soils, collected between 1974 and 2019 from 42 forest sites in Poland were examined in an attempt to understand the time evolution of the presence of REEs in the environment. In general, I. badia and B. edulis displayed a greater total content of REEs on mg per kg basis than L. scabrum and M. procera. A gradual increase in REEs in the studied mushrooms as well as associated forest soil samples was observed over the monitored period. Both levels were also highly correlated. Regardless of the considered period, human consumption of these mushrooms would not contribute significantly to dietary exposure to REEs. Wild growing mushroom species studied over a long time period may be a good bioindicator of REE migration to the environment.
Collapse
Affiliation(s)
- Marek Siwulski
- Poznan University of Life Sciences, Department of Vegetable Crops, Dąbrowskiego 159, 60-594, Poznań, Poland
| | - Anna Budka
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Piotr Rzymski
- Poznan University of Medical Sciences, Department of Environmental Medicine, Rokietnicka 8, 60-806, Poznań, Poland
| | - Patrycja Mleczek
- Poznan University of Life Sciences, Department of Ecology and Environmental Protection, Piątkowska 94c, 60-649, Poznań, Poland
| | - Sylwia Budzyńska
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Monika Gąsecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Małgorzata Szostek
- University of Rzeszów, Department of Soil Science, Environmental Chemistry and Hydrology, Zelwerowicza 8b, 35-601, Rzeszów, Poland
| | - Pavel Kalač
- University of South Bohemia, Faculty of Agriculture, Department of Applied Chemistry, 370 04, České Budějovice, Czech Republic
| | - Natalia Kuczyńska-Kippen
- Adam Mickiewicz University, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614, Poznań, Poland
| | - Przemysław Niedzielski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614, Poznań, Poland
| | - Piotr Goliński
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Zuzanna Magdziak
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Janina Kaniuczak
- University of Rzeszów, Department of Soil Science, Environmental Chemistry and Hydrology, Zelwerowicza 8b, 35-601, Rzeszów, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland.
| |
Collapse
|
25
|
Wang Z, Yin L, Xiang H, Qin X, Wang S. Accumulation patterns and species-specific characteristics of yttrium and rare earth elements (YREEs) in biological matrices from Maluan Bay, China: Implications for biomonitoring. ENVIRONMENTAL RESEARCH 2019; 179:108804. [PMID: 31622893 DOI: 10.1016/j.envres.2019.108804] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The critical usage of rare earth elements (REEs) in a variety of industrial applications has increased their release to the environment as emerging contaminants, while little is known about the fate and transport of REEs in coastal aquatic biota. In the present study, seven common species were collected and the concentrations of 15 naturally occurring REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) were determined. Significant differences in total REEs concentrations were found among species even in the same taxa or phylum, suggesting that REEs bioaccumulation patterns appeared to be species- and element-dependent even in the same taxa or phylum, but with limited potential for bio-magnification based on the nitrogen isotope signatures (δ15N). Except for occasional anomalies for redox-sensitive elements of Ce and Eu, the abundance patterns of REEs normalized to chondrite revealed similar REE distribution trends, indicating a common source of REEs in all samples. Additionally, the abundances of light REEs (from La to Eu) were much higher than those of heavy REEs (from Gd to Lu and Y), demonstrating the fractionation between the light and heavy REEs. Furthermore, REEs concentrations in molluscs were notably higher than other species, implying their potential as bio-indicators of REEs due to the habitat and specific feeding behavior. Overall, this is not only the first study to focus on distribution levels, accumulation characteristics, geochemical and fractionation patterns of REEs in coastal species from identical area, but quantifying and tracing REE behavior will contribute to better evaluating the possible environmental impacts of REEs enrichment for future biomonitoring research.
Collapse
Affiliation(s)
- Zaosheng Wang
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China.
| | - Lei Yin
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| | - Huayong Xiang
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| | - Xiaohai Qin
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| | - Shufang Wang
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
26
|
Borovička J, Konvalinková T, Žigová A, Ďurišová J, Gryndler M, Hršelová H, Kameník J, Leonhardt T, Sácký J. Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus Amanita strobiliformis from two sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133679. [PMID: 31400682 DOI: 10.1016/j.scitotenv.2019.133679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Amanita strobiliformis (European Pine Cone Lepidella) is an ectomycorrhizal fungus of the Amanitaceae family known to hyperaccumulate Ag in the sporocarps. Two populations (ecotypes) of A. strobiliformis collected from two urban forest plantations in Prague, Czech Republic, were investigated. The concentrations of Ag, Cu, Cd, and Zn were determined in the mushrooms. The metal mobility and fractionation in the soils was investigated by single extractions and sequential extraction. The soil distribution of A. strobiliformis mycelium was assessed by quantitative polymerase chain reaction (qPCR). The metal uptake from the soil into the mushroom sporocarps was traced by Pb isotopic fingerprinting. The findings suggested that A. strobiliformis (i) accumulates primarily Ag from the topsoil layer (circa 12cm deep) and (ii) accumulates Ag associated with the "reducible soil fraction". The concentrations of all metals, particularly Ag and Cu, were significantly higher in the A. strobiliformis sporocarps from one of the investigated sites (Klíčov). The elevated concentrations of Ag in the sporocarps from Klíčov can possibly be attributed to the higher Ag content in the topsoil layer found at this site. However, the simultaneously elevated concentrations of Cu in A. strobiliformis from Klíčov cannot be explained by the differences in the geochemical background and should be attributed to biological factors.
Collapse
Affiliation(s)
- Jan Borovička
- Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic; Nuclear Physics Institute, Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic.
| | - Tereza Konvalinková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Anna Žigová
- Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic
| | - Jana Ďurišová
- Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic
| | - Milan Gryndler
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Hana Hršelová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Jan Kameník
- Nuclear Physics Institute, Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|