1
|
Liu Y, Li Y, Waterhouse GIN, Liu C, Jiang X, Zhang Z, Yu L. Smart photo-driven composite system containing thermosensitive P(NIPAM-NVK) and photoactive PANI for the rapid removal of anionic dyes. J Colloid Interface Sci 2025; 690:137310. [PMID: 40112526 DOI: 10.1016/j.jcis.2025.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
A smart composite system based on thermosensitive polymers and photosensitive polyaniline (PANI) was constructed in this work, enabling efficient photo-driven adsorption and separation of anionic dyes within a short time. Thermosensitive copolymers (P(NIPAM-NVK)) of N-isopropylacrylamide (NIPAM) and N-vinylcarbazole (NVK) with adjustable low critical solution temperatures (LCST) were synthesized via a free radical copolymerization method. PANI was then composited with P(NIPAM-NVK) as a photothermal agent and dye adsorbent. The developed P(NIPAM-NVK)/PANI composite systems showed a rapid temperature increase under visible light irradiation, triggering the transition of P(NIPAM-NVK) from the sol state to a bulk gel state. Simultaneously, PANI and Congo Red (CR) anionic dye were efficiently encapsulated within the gel state of P(NIPAM-NVK) via intermolecular interactions, facilitating the rapid separation of aqueous CR through a direct solid-liquid process to yield clean water. The P(NIPAM-NVK10)/PANI0.5 composite system afforded a removal efficiency > 98 % for CR (80 mg/L) within 5 min under visible light illumination. These findings hold great promise for the eco-friendly treatment of dye-containing wastewater.
Collapse
Affiliation(s)
- Yanhua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuanyue Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | | | - Chenchen Liu
- 248 Geological Brigade of Shandong Nuclear Industry, No.1 Xingguo Road, Licang District, Qingdao City, China
| | - Xiaohui Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, and Sanya Oceanographic Laboratory, Sanya 572024, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, and Sanya Oceanographic Laboratory, Sanya 572024, China.
| |
Collapse
|
2
|
Jamwal P, Chauhan S, Kumar K, Chauhan GS. Fabricating pine needles derived spherical nanocellulose with polyaniline and montmorillonite clay for simultaneous removal of cationic and anionic dyes from binary mixtures. Int J Biol Macromol 2025; 301:140340. [PMID: 39880263 DOI: 10.1016/j.ijbiomac.2025.140340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.30 % and 85.50 % removal, respectively, while the cationic dyes, MG and FB followed Elovich model with 95.10 % and 83.10 % removal, respectively. Non-linear isotherm analysis showed all the dyes to follow Langmuir isotherm with maximum adsorption capacity of 282.394 and 298.420 mgg-1 (120 min, 25 °C, 7.0 pH) for MG and CR, respectively, whereas the same for FB and MO were 194.126 and 185.757 mgg-1, respectively. The dyes were adsorbed through electrostatic, π-π, ion-dipole interactions, and hydrogen-bonding. The SNC-PANI-MMT showed regeneration and reusability upto nine cycles with high cumulative adsorption capacity. Thus, the composite has appreciable cost-effectiveness, high sustainability, environmental friendliness, and holistic characteristics for the treatment of real dyes-polluted wastewater.
Collapse
Affiliation(s)
- Pooja Jamwal
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| |
Collapse
|
3
|
Abu Elella MH, Abdallah HM, Ali EA, Makhado E, Abd El-Ghany NA. Recent developments in conductive polysaccharide adsorbent formulations for environmental remediation: A review. Int J Biol Macromol 2025; 304:140915. [PMID: 39947533 DOI: 10.1016/j.ijbiomac.2025.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Environmental remediation is crucial for human life and ecosystems, involving the cleanup of contaminated water to protect health and restore ecological balance. However, rapid industrialization and population growth have worsened pollution, particularly in water bodies, making effective wastewater treatment a key challenge in ensuring clean drinking water, and the adsorption of toxic gases for air treatment are the main strategies for environmental remediation. Among the various treatment methods, adsorption stands out for its high selectivity, low energy and chemical use, ease of operation, and cost-effectiveness. To date, innovative, highly efficient, non-toxic, engineered adsorbent materials have received potential interest from scientific and governmental communities. Conducting polymer-modified polysaccharide formulations are crucial in wastewater treatment due to their high surface area, adsorption efficiency, excellent stability, and eco-friendly, biodegradable properties. This review offers an extensive overview of recent progress in synthesizing conducting polymer-modified polysaccharide formulations (hydrogels, aerogels, nanofibers, and nanocomposites) for capturing toxic heavy metal ions, organic dyes, pharmaceuticals, phenols as well as adsorbing different toxic gases using various adsorption mechanisms. It also emphasizes the integration of different nanofillers, including carbon-based materials, Mxenes, nanoclay, metal/metal oxides, and hybrid nanomaterials, into conductive polysaccharide chains to improve their physicochemical properties and adsorption efficiency. The reported data showed that these engineered adsorbent materials based on conductive polysaccharide formulations have immense potential for wastewater treatment applications, offering more effective and sustainable solutions.
Collapse
Affiliation(s)
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Eman AboBakr Ali
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, Polokwane 0727, South Africa
| | | |
Collapse
|
4
|
Cocheci L, Visa A, Maranescu B, Lupa L, Pop A, Dragan ES, Popa A. Glycine-Group-Functionalized Polymeric Materials Impregnated with Zn(II) Used in the Photocatalytic Degradation of Congo Red Dye. Polymers (Basel) 2025; 17:641. [PMID: 40076133 PMCID: PMC11902704 DOI: 10.3390/polym17050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic loads used in its preparation. The degradation of organic dyes of the CR type was investigated using the photocatalytic activity of functionalized polymers. We have employed photodegradation procedures for both polymer-supported glycine groups (Code: AP2) and polymer-supported glycine-Zn(II) (Code: AP2-Zn(II)). A photocatalysis efficiency of 89.2% was achieved for glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (AP2) and 95.4% for the AP2-Zn(II) sample by using an initial concentration of CR of 15 mg/L, a catalyst concentration of 1 g/L, and 240 min of photocatalysis. The findings provided here have shown that the two materials (AP2 and AP2-Zn(II)) may be effectively employed in the heterogeneous photocatalysis method to remove CR from water. From the perspective of the degradation mechanism of CR, the two photocatalysts act similarly.
Collapse
Affiliation(s)
- Laura Cocheci
- Faculty of Chemical Engineering, Biotechnology and Environmental Protection, Politehnica University Timisoara, 6 Vasile Parvan Blvd., 300223 Timisoara, Romania; (L.L.); (A.P.)
| | - Aurelia Visa
- “Coriolan Drăgulescu” Institute of Chemistry, 24 Mihai Viteazu Blvd., 300223 Timisoara, Romania
| | - Bianca Maranescu
- Department of Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania;
| | - Lavinia Lupa
- Faculty of Chemical Engineering, Biotechnology and Environmental Protection, Politehnica University Timisoara, 6 Vasile Parvan Blvd., 300223 Timisoara, Romania; (L.L.); (A.P.)
| | - Aniela Pop
- Faculty of Chemical Engineering, Biotechnology and Environmental Protection, Politehnica University Timisoara, 6 Vasile Parvan Blvd., 300223 Timisoara, Romania; (L.L.); (A.P.)
| | - Ecaterina Stela Dragan
- Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania;
| | - Adriana Popa
- “Coriolan Drăgulescu” Institute of Chemistry, 24 Mihai Viteazu Blvd., 300223 Timisoara, Romania
| |
Collapse
|
5
|
Tenório E Silva DC, da Silva MLM, de Farias PHM, Galvão CC, Costa EMDS, Melo RA, Medeiros EBDM, de Lima Filho NM. Synthesis and characterization of polyaniline, sucrose octaacetate and chitosan blend for removal of remazol black by adsorption: Equilibrium, kinetics, and regeneration. Int J Biol Macromol 2025; 289:138863. [PMID: 39694391 DOI: 10.1016/j.ijbiomac.2024.138863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/18/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
In this work, a polymeric blend of polyaniline (PAni) and chitosan (Chi), modified with Sucrose Octaacetate (SOA), was synthesized and characterized using different techniques. The blend was used as an adsorbent to remove Remazol Black (RB) dye from aqueous solutions. The blend was synthesized using the chemical oxidation method with ammonium persulfate as the oxidizing agent. Characterization was carried out using SEM, FT-IR, UV-Vis, BET, TGA, Conductivity, and PZc techniques. The blend structure appeared as clusters, providing a favorable surface area for adsorption. The results showed that SOA improved the conductivity of the blend without altering the structure and oxidative state of PAni. The study investigated the adsorption of RB, considering the influence of adsorbent dosage, initial dye concentration, pH, and temperature. Kinetic and equilibrium studies, thermodynamic analysis, synthetic effluent testing, and adsorbent reuse tests were conducted. The optimal adsorption conditions, within the studied range, were adsorbent dosage of 0.25 g L-1, dye concentration of 60 mg L-1, pH range of 2 to 7, and temperature of 30 °C. Equilibrium results indicated that the Langmuir model was the most representative, with a maximum adsorption capacity of qmax = 285.23 mg g-1 and RL = 0.01, indicating favorable adsorption. The kinetic study revealed an equilibrium constant of Keq = 0.421 L mg-1 and a process order 0.63. The adsorption process followed a pseudo-first-order kinetics, demonstrating rapid adsorption on the adsorbent surface. The adsorption was physical, endothermic, and spontaneous, showing increased randomness with temperature. RB removal from synthetic effluent was effective within the pH range of 2-7, with the dye removal efficiency from the aqueous phase remaining above 74 % for up to 4 cycles of adsorption-desorption. The results support the hypothesis that the PAni-SOA@Chi blend is a promising alternative for removing this dye from the waste.
Collapse
Affiliation(s)
- Dayane Caroline Tenório E Silva
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil.
| | - Michael Lopes Mendes da Silva
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil
| | - Paulo Henrique Miranda de Farias
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil
| | - Chesque Cavassano Galvão
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil
| | - Elerson Max Dos Santos Costa
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil
| | - Rafael Araújo Melo
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil
| | - Eliane Bezerra de Moraes Medeiros
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil
| | - Nelson Medeiros de Lima Filho
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, PE, 50740-590, Brazil
| |
Collapse
|
6
|
Alkhair S, Zouari N, Ibrahim Ahmad Ibrahim M, Al-Ghouti MA. Efficacy of adsorption processes employing green nanoparticles for bisphenol A decontamination in water: A review. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:100963. [DOI: 10.1016/j.enmm.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Rashidi S, Soleiman-Beigi M, Kohzadi H. Rapid and efficient removal of water-soluble dyes via natural asphalt oxide as a new carbonaceous super adsorbent; NA-oxide synthesis and characterization. Sci Rep 2024; 14:24384. [PMID: 39420048 PMCID: PMC11487275 DOI: 10.1038/s41598-024-75106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
In this study, natural asphalt was oxidized to synthesize a new nano-structure adsorbent for dye removal. The functionalization of natural asphalt by oxidation introduced new properties that influenced its activity. The process of oxidizing natural asphalt with potassium permanganate resulted in a low-cost adsorbent, which can potentially be a more affordable option compared with synthetic alternatives. Characterization analysis confirmed the enhanced surface area, improving dye interaction and adsorption. The interconnected channels and capillaries of the oxidized natural asphalt facilitated the capillary action drawing in liquids, including dyes. The distinctive porosity of natural asphalt oxide (NA-oxide) was noted, and the experimental results showed that the NA-oxide nanoadsorbent efficiently adsorbed cationic and anionic dyes in water, with maximum capacities of 14.68 mg.g-1, 17.81 mg.g-1 and 16.47 mg.g-1 for methyl orange, methylene blue and Rhodamine B, respectively. The study investigated various parameters, such as concentration, adsorption dose, pH, contact time, and temperature, affecting the dye removal process. Langmuir, Freundlich, and Temkin isotherms along with pseudo-first and pseudo-second-order kinetic equations were applied to assess the adsorption process, indicating that dyes adhered to the pseudo-first-order model and Langmuir isotherm. Analysis of MO, MB, and RhB dyes revealed conformity to Langmuir isotherm and first-order kinetics. Thermodynamic evaluations like ΔH°, ΔS°, and ∆G° displayed the exothermic and spontaneous nature of dye adsorption on the NA-oxide adsorbent. Furthermore, the absorbent displayed remarkable stability with a recovery rate of 98.45% after ten cycles, signifying its potential for enduring effectiveness in dye removal processes.
Collapse
Affiliation(s)
- Shabnam Rashidi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Mohammad Soleiman-Beigi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran.
| | - Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| |
Collapse
|
8
|
Pereira PHF, Maia LS, da Silva AIC, Silva BAR, Pinhati FR, de Oliveira SA, Rosa DS, Mulinari DR. Prospective Life Cycle Assessment Prospective (LCA) of Activated Carbon Production, Derived from Banana Peel Waste for Methylene Blue Removal. ADSORPTION 2024; 30:1081-1101. [DOI: 10.1007/s10450-024-00485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 01/06/2025]
|
9
|
Yang X, Ma H, Chen Y, Venkateswaran S, Hsiao BS. Functionalization of cellulose acetate nanofibrous membranes for removal of particulate matters and dyes. Int J Biol Macromol 2024; 269:131852. [PMID: 38679253 DOI: 10.1016/j.ijbiomac.2024.131852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Particulates and organic toxins, such as microplastics and dye molecules, are contaminants in industrial wastewater that must be purified due to environmental and sustainability concerns. Carboxylated cellulose acetate (CTA-COOH) nanofibrous membranes were fabricated using electrospinning followed by an innovative one-step surface hydrolysis/oxidation replacing the conventional two-step reactions. This approach offers a new pathway for the modification strategy of cellulose-based membranes. The CTA-COOH membrane was utilized for the removal of particulates and cationic dyes through filtration and adsorption, respectively. The filtration performance of the CTA-COOH nanofibrous membrane was carried out; high separation efficiency and low pressure drop were achieved, in addition to the high filtration selectivity against 0.6-μm and 0.8-μm nanoparticles. A cationic Bismarck Brown Y, was employed to challenge the adsorption capability of the CTA-COOH nanofibrous membrane, where the maximum adsorption capacity of the membrane for BBY was 158.73 mg/g. The self-standing CTA-COOH membrane could be used to conduct adsorption-desorption for 17 cycles with the regeneration rate as high as 97.0 %. The CTA-COOH nanofibrous membrane has excellent mechanical properties and was employed to manufacture a spiral wound adsorption cartridge, which exhibited remarkable separation efficiency in terms of treated water volume, which was 5.96 L, and retention rate, which was 100 %.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| | - Yi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shyam Venkateswaran
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
10
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Tailoring electrospun nanocomposite fibers of polylactic acid for seamless methylene blue dye adsorption applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33393-9. [PMID: 38709414 DOI: 10.1007/s11356-024-33393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
The introduction of biopolymers, which are sustainable and green materials, desegregated nature's water purification proficiency with science and technology, opens a new sustainable methodology in water reclamation. In order to introduce an efficacious adsorbent system for MB dye-toxic pollutant, adsorption, providing robust mechanical properties and facile processability, a facile system was introduced via electrospinning utilizing polylactic acid (PLA) and Ti3C2Tx, viz., PMX. The addition of 3 wt.% Ti3C2Tx led to a 3-fold substantial augmentation in the uptake capacity of the membrane from 197.28 to 307 mg/g when the adsorbate concentration was 100 ppm. The adsorption followed a PSO behavior, proposing that the rate-limiting stage is chemisorption and data best fitted to Freundlich isotherm, indicating heterogeneous adsorption sites and multi-layer adsorption. Further, biodegradability was studied by simulating natural environmental conditions where the nanofibers exhibited 42-64% degradation after 270 days. Based on the result with PLA, it is anticipated that the prepared fibrous system will introduce a new perspective as a potential candidate for MB removal from wastewater, opening new directions toward the research and development in wastewater treatment with electrospun biopolymer fibers using waste PLA.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
11
|
Xu Y, Wang Q, Wang Y, Hu F, Sun B, Gao T, Zhou G. One-Step Synthesis of Polyethyleneimine-Grafted Styrene-Maleic Anhydride Copolymer Adsorbents for Effective Adsorption of Anionic Dyes. Molecules 2024; 29:1887. [PMID: 38675707 PMCID: PMC11054579 DOI: 10.3390/molecules29081887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Wastewater containing organic dyes has become one of the important challenges in water treatment due to its high salt content and resistance to natural degradation. In this work, a novelty adsorbent, PEI-SMA, was prepared by grafting polyethyleneimine (PEI) onto styrene-maleic anhydride copolymer (SMA) through an amidation reaction. The various factors, such as pH, adsorbent dosage, contact time, dye concentration, and temperature, which may affect the adsorption of PEI-SMA for Reactive Black 5 (RB5), were systematically investigated by static adsorption experiments. The adsorption process of PEI-SMA for RB5 was more consistent with the Langmuir isotherm model and the pseudo-second-order model, suggesting a single-layer chemisorption. PEI-SMA exhibits excellent adsorption performance for RB5 dye, with a maximum adsorption capacity of 1749.19 mg g-1 at pH = 2. Additionally, PEI-SMA exhibited highly efficient RB5 competitive adsorption against coexisting Cl- and SO42- ions and cationic dyes. The adsorption mechanism was explored, and it can be explained as the synergistic effect of electrostatic interaction, hydrogen bonding and π-π interaction. This study demonstrates that PEI-SMA could act as a high performance and promising candidate for the effective adsorption of anionic dyes from aqueous solutions.
Collapse
Affiliation(s)
- Yao Xu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| | - Qinwen Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| | - Yuanbo Wang
- Shandong Land and Space Ecological Restoration Center, Jinan 250014, China;
| | - Falu Hu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| | - Bin Sun
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Tingting Gao
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| |
Collapse
|
12
|
Hassan HHAM, Fattah MA, Maged FA. Poly (aniline-co-aniline-2,5-disulfonic acid) / L-ascorbic acid / Ag@SiO 2 / polysafranin nanocomposite: synthesis, characterization and anomalous electrical behaviour. BMC Chem 2024; 18:79. [PMID: 38643154 PMCID: PMC11032599 DOI: 10.1186/s13065-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
We report the synthesis of sulfonated copolyaniline/polysafranin/L-ascorbic acid/Ag@SiO2 fine powdered nanocomposites and investigate the influence of incorporating the dye on their conductivity. The composite was characterized via IR, UV, cyclic voltammetry (CV), electric, dielectric, SEM, TEM, TGA and DSC measurements. Microscopy images revealed intensified spherical particles that were dispersed across the entire surface, and the SiO2/Ag particles were distributed on the surface. The XRD results exhibited peaks at many 2q values, and their interatomic spacing (d) and crystallite (grain) sizes were calculated. The thermal degradation curves exhibited an interesting model of stability. The cyclic voltammogram exhibited redox peaks identical to those of the reported analogues. The d.c. conductivity of the oligomer varied from 0.06 - 0.016 (s/cm), and that of the composite varied from 0.008 to 0.016 (s/cm). The material changed from a semiconductor to a metallic material. The observed conductivity is mainly attributed to self-doping between the sulfonate groups and the charged nitrogen atoms in the polymer chains. The frequency dependence of the permittivity, ε', showed a marked effect on the frequency window under consideration. The permittivity, ε', is independent of the increase in the frequency of the oligomer and the composite. This behavior supports the non-Debye dependency by confirming the occurrence of electrode polarization and space charge effects. In conclusion, the incorporation of safranin dye with a thermally stable, highly sulfonated polyaniline derivative/Ag@SO2 nanocomposite achieved improved conductivity after heating. The d.c. conductivities are comparable to those of many commercial inorganic or organic composites, and because of their attractive electrical properties, we suggest that these materials are promising for electronic field applications.
Collapse
Affiliation(s)
- Hammed H A M Hassan
- Chemistry department, Faculty of Science, Alexandria University, P.O. 2, Moharram Beck, Alexandria, 21568, Egypt.
| | - Marwa Abdel Fattah
- Menoufia Higher Institute of Engineering and Technology MNF-HIET, Menoufia, Egypt
| | - Fatma Abdel Maged
- Canal High Institute of Engineering and Technology, Suez, 43713, Egypt
| |
Collapse
|
13
|
Papadopoulou-Fermeli N, Lagopati N, Gatou MA, Pavlatou EA. Biocompatible PANI-Encapsulated Chemically Modified Nano-TiO 2 Particles for Visible-Light Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:642. [PMID: 38607176 PMCID: PMC11013180 DOI: 10.3390/nano14070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Polyaniline (PANI) constitutes a very propitious conductive polymer utilized in several biomedical, as well as environmental applications, including tissue engineering, catalysis, and photocatalysis, due to its unique properties. In this study, nano-PANI/N-TiO2 and nano-PANI/Ag-TiO2 photocatalytic composites were fabricated via aniline's oxidative polymerization, while the Ag-and N-chemically modified TiO2 nanopowders were synthesized through the sol-gel approach. All produced materials were fully characterized. Through micro-Raman and FT-IR analysis, the co-existence of PANI and chemically modified TiO2 particles was confirmed, while via XRD analysis the composites' average crystallite size was determined as ≈20 nm. The semi-crystal structure of polyaniline exhibits higher photocatalytic efficiency compared to that of other less crystalline forms. The spherical-shaped developed materials are innovative, stable (zeta potential in the range from -26 to -37 mV), and cost-effective, characterized by enhanced photocatalytic efficiency under visible light (energy band gaps ≈ 2 eV), and synthesized with relatively simple methods, with the possibility of recycling and reusing them in potential future applications in industry, in wastewater treatment as well as in biomedicine. Thus, the PANI-encapsulated Ag and N chemically modified TiO2 nanocomposites exhibit high degradation efficiency towards Rhodamine B dye upon visible-light irradiation, presenting simultaneously high biocompatibility in different normal cell lines.
Collapse
Affiliation(s)
- Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece (M.-A.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece (M.-A.G.)
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece (M.-A.G.)
| |
Collapse
|
14
|
Yadav A, Sharma N, Yadav S, Sharma AK, Kumar S. Revealing the interface chemistry of polyaniline grafted biomass via statistical modeling of multi-component dye systems: optimization, kinetics, thermodynamics, and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21302-21325. [PMID: 38383933 DOI: 10.1007/s11356-024-32523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
The growing need to examine the adsorption capabilities of innovative materials in real-world water samples has encouraged a shift from single to multicomponent adsorption systems. In this study, a novel composite, PANI-g-SM was synthesized by covalently grafting a lignocellulosic biomass, Saccharum munja (SM) with polyaniline (PANI). The as-synthesized composite was investigated for the simultaneous adsorption of cationic (Methylene Blue (MB); Crystal Violet (CV)) and anionic dyes (Reactive Red 35 (RR); Fast Green FCF (FG)) from four single components and two binary systems, MB + RR and CV + FG. Further, the effect and interaction of pH (2-11), dosage (0.01-0.04 g/10 mL), and initial concentration (0.0313 to 0.1563 mmol/L) on the elimination of dyes by PANI-g-SM were studied through a novel design of Box-Behnken of Response Surface Methodology (RSM) technique which was found to be highly useful for revealing the chemistry of interfaces in multi-component systems. The extended Langmuir model for the binary system indicated the presence of synergism, as result the maximum monolayer adsorption capacity increased by 44.44%, 645.83%, 67.88%, and 441.07% for MB, RR, CV, and FG dye, respectively. Further, the adsorption process mainly followed a pseudo-second-order kinetic model, and the thermodynamic studies revealed the exothermic nature of adsorption for RR and FG dye while endothermic for MB and CV dye, respectively with Δ G varying from - 1.68 to - 6.12 kJ/mol indicating the spontaneity of the process. Importantly, the efficacy of the composite was evaluated for the treatment of textile industry effluent highlighting its potential as an adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Nishita Sharma
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Sarita Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, 131039, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India.
| |
Collapse
|
15
|
George G, Ealias AM, Saravanakumar MP. Advancements in textile dye removal: a critical review of layered double hydroxides and clay minerals as efficient adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12748-12779. [PMID: 38265587 DOI: 10.1007/s11356-024-32021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
The textile industry is responsible for producing large volumes of wastewater that contain a wide variety of dye compounds. This poses a significant environmental hazard and risks harming both ecosystems and living organisms. This review study explores the advancements in adsorption research for dye removal, with a particular emphasis on the development of various adsorbents. The article provides detailed insights into the toxicity and classification of dyes, different treatment techniques, and the characteristics of numerous adsorbents, with special attention to layered double hydroxides (LDH) and clay minerals. A comprehensive list of adsorbents, encompassing natural materials, agricultural by-products, industrial waste, and activated carbon, is discussed for effective removal of different dyes. Furthermore, the review extensively examines the influence of various adsorption variables, such as pH, initial dye concentration, adsorbent dosage, temperature, contact time, ionic strength, and pore volume of the adsorbent. Additionally, the application of response surface methodology for optimizing adsorption variables is elucidated. Commonly, electrostatic attraction, π-π interactions, n-π interactions, van der Waals forces, H-bonding, and pore diffusion play a major role in adsorption mechanism. The review also found that LDH can eliminate a wide range of dyes from wastewater, achieving excellent uptake capacities often exceeding 500 mg/g, with a removal efficiency of 99%. The Langmuir isotherm and pseudo-second-order kinetic equations gave the best fit to most of the adsorption data. Overall, this review serves as a valuable resource for researchers and practitioners seeking sustainable solutions to address the environmental challenges posed by textile dye contamination.
Collapse
Affiliation(s)
- Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., Green Fields, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., Green Fields, 522302, India
| | | |
Collapse
|
16
|
Raval H, Sharma R, Srivastava A. Novel protocol for fouling detection of reverse osmosis membrane based on methylene blue colorimetric method by image processing technique. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:513-528. [PMID: 38358486 PMCID: wst_2023_425 DOI: 10.2166/wst.2023.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In the current study, a novel methylene blue (MB)-based colorimetric method for a quick, inexpensive, and facile approach for the determination of fouling intensity of reverse osmosis (RO) membrane has been reported. This technique is based on the interaction of MB with the organic foulants and shows the corresponding change in the colour intensity depending on the severity of fouling. The organic foulants, such as albumin, sodium alginate, and carboxymethyl cellulose (CMC), were chosen as model foulants, and the membranes were subjected to foul under extreme fouling conditions. The fouled membranes underwent an MB treatment followed by image-processing analyses. The severity of surface fouling of membranes was evaluated in terms of fouling intensity and correlated with the corresponding decline of permeate flux. The maximum fouling intensity of the albumin, sodium alginate, and CMC sodium were found to be 8.83, 23.38, and 9.19%, respectively, for the definite concentration of foulants. The physico-chemical interactions of the given foulants and MB were confirmed by changes in zeta potentials and increased sizes of the foulant by the dynamic light scattering technique. The surface fouling over the membrane surface was confirmed by the characterization of membranes.
Collapse
Affiliation(s)
- Hiren Raval
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research-Central Salt and Marine, Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002, India E-mail:
| | - Ritika Sharma
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research-Central Salt and Marine, Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002, India
| | - Ashish Srivastava
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research-Central Salt and Marine, Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002, India
| |
Collapse
|
17
|
Wang Z, Gao Q, Luo H, Zhao J, Fan H, Chen Y, Xiang J. Visible Light-Driven SnIn 4S 8 Photocatalyst Decorated on Polyurethane-Impregnated Microfiber Non-Woven Fabric for Pollutant Degradation. Polymers (Basel) 2024; 16:369. [PMID: 38337258 DOI: 10.3390/polym16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, polyurethane has drawn great attention because of its many advantages in physical and chemical performance. In this work, firstly, polyurethane was impregnated in a non-woven fabric (NWF). Then, polyurethane-impregnated NWF was coagulated utilizing a wet phase inversion. Finally, after alkali treatment, microfiber non-woven fabrics with a porous polyurethane matrix (PNWF) were fabricated and used as substrates. SnIn4S8 (SIS) prepared by a microwave-assisted method was used as a photocatalyst and a novel SIS/PNWF substrate with multiple uses and highly efficient catalytic degradation ability under visible light was successfully fabricated. The surface morphology, chemical and crystal structures, optical performance, and wettability of SIS/PNWF substrates were observed. Subsequently, the photocatalytic performance of SIS/PNWF substrates was investigated by the decomposition of rhodamine B (RhB) under visible light irradiation. Compared with SIS/PNWF-2% (2%, the weight ratio of SIS and PNWF, same below), SIS/PNWF-5% as well as SIS/PNWF-15%, SIS/PNWF-10% substrates exhibited superior photocatalytic efficiency of 97% in 2 h. This may be due to the superior photocatalytic performance of SIS and the inherent hierarchical porous structure of PNWF substrates. Additionally, the hydrophobicity of SIS/PNWF substrates can enable them to float on the solution and further be applied on an open-water surface. Furthermore, tensile strength and recycle experiments demonstrated that SIS/PNWF substrates possessed superior mechanical strength and excellent recycle stability. This work provides a facile and efficient pathway to prepare SIS/PNWF substrates for the degradation of organic pollutants with enhanced catalytic efficiency.
Collapse
Affiliation(s)
- Zhonghui Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiang Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haihang Luo
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jianming Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haojun Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yi Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Wawrzkiewicz M, Podkościelna B, Podkościelny P, Gilev JB. New Methyl Methacrylate Derived Adsorbents - Synthesis, Characterization and Adsorptive Removal of Toxic Organic Compounds. Chemphyschem 2024; 25:e202300719. [PMID: 37899309 DOI: 10.1002/cphc.202300719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
This study aimed to synthesize polymeric adsorbents by suspension polymerization using methyl methacrylate (MMA) with different crosslinking monomers. Divinylbenzene (DVB) and aliphatic monomers: ethylene glycol dimethacrylate (EGDMA) or N,N'-methylenebisacrylamide (NN) containing additional amide groups were used. The possibility of using the prepared copolymers (MMA-NN, MMA-EGDMA, MMA-DVB) as adsorbents for the removal of toxic compounds such as dyes (C.I. Acid Red 18 (AR18), C.I. Acid Green 16 (AG16), C.I. Acid Violet 1 (AV1), C.I. Basic Yellow 2 (BY2), C.I. Basic Blue 3 (BB3) and C.I. Basic Red 46 (BR46)) and phenol (PhOH) from dye baths and effluents was evaluated. Preferential adsorption of basic-type dyes compared to acid-type dyes or phenol was observed by the polymers. Adsorbent based on MMA-EGDMA exhibited the highest capacity for investigated dyes and phenol. The pseudo-second order kinetic model as well as the intraparticle diffusion model can find application in predicting sorption kinetics. Based on the equilibrium sorption data fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich model, uptake of BB3, AV1 and PhOH is rather physisorption than chemisorption. The regeneration yield of MMA-EGDMA does not exceed 60 % using 1 M HCl, 1 M NaCl, and 1 M NaOH in 50 %v/v methanol.
Collapse
Affiliation(s)
- Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in, Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Poland
| | - Beata Podkościelna
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in, Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Poland
| | - Przemysław Podkościelny
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in, Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Poland
| | - Jadranka Blazhevska Gilev
- Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in, Skopje, R. N., Macedonia
| |
Collapse
|
19
|
Hou Y, Jia A, Qin X, Yang X, Xie J, Li X, Zhao Y. New insights on the preparation of amine covalent organic polymer and its adsorption properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122659. [PMID: 37839682 DOI: 10.1016/j.envpol.2023.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Dye pollution is becoming increasingly severe. This study used the Schiff base reaction to synthesize a polyaromatic ring covalent organic polymer material with amide bonds and high electronegativity named SLEL-9 to adsorb Methylene Blue (MB) and Rhodamine B (RhB). SLEL-9 was characterized by Fourier transform infra-red spectra, X-ray photoelectron spectra, Brunauer-Emmett-Teller (BET), zeta potential analysis, and other techniques. It was found that SLEL-9 material contains C-C, CN, C-N, and CO. SLEL-9 had a zeta potential of about -45 mV under neutral conditions, which proved that the material had been synthesized successfully. The BET and Langmuir surface areas of SLEL-9 were 35.187 m2 g-1 and 56.419 m2 g-1, respectively. The adsorptions of SLEL-9 on low concentration (10 mg L-1) Methylene Blue and Rhodamine B reached equilibrium within 48 h. The results showed that SLEL-9's adsorption of dye molecules are more consistent with pseudo-second-order kinetic and Langmuir isotherm model. The adsorption experiments showed that the adsorption process is a spontaneous endothermic reaction, mainly chemisorption. The maximum adsorption capacity of SLEL-9 for MB and RhB were 132.45 mg g-1 and 101.94 mg g-1. In addition, this study investigated to determine the optimal reaction parameters. The primary mechanisms of SLEL-9 adsorption of two dyes are n→π* interaction, π-π EDA interaction and electrostatic attraction. Selective adsorb ability experiment results showed that SLEL-9 could selectively adsorb MB and RhB to a certain extent. Finally, it was found that SLEL-9 can maintain over 70% adsorption capacity after five reuses and can maintain stability after soaking in different pH water and organic solvents for 120 h. SLEL-9 proved to be a promising organic covalent polymer adsorption material for the removal of Methylene Blue and Rhodamine B in water.
Collapse
Affiliation(s)
- Yutong Hou
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Aiyuan Jia
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xueming Qin
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xinru Yang
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Jiayin Xie
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xiaoyu Li
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yongsheng Zhao
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
20
|
Li B, Zhao Y. Facile synthesis and ultrastrong adsorption of a novel polyacrylamide-modified diatomite/cerium alginate hybrid aerogel for anionic dyes from aqueous environment. Int J Biol Macromol 2023; 253:127114. [PMID: 37778584 DOI: 10.1016/j.ijbiomac.2023.127114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
An eco-friendly cationic polyacrylamide (CPAM)-modified diatomite/Ce(III)-crosslinked sodium alginate hybrid aerogel (CPAM-Dia/Ce-SA) was synthesized successfully and characterized by SEM-EDS, XRD, FTIR, UV-Vis and XPS. Adsorption performance, interaction mechanism and reusability of CPAM-Dia/Ce-SA used for the removal of acid blue 113 (AB 113), acid blue 80 (AB 80), acid yellow 117 (AY 117), Congo red (CR) and Direct Green 6 (DG 6) anionic dyes from aqueous media were investigated in detail. The results demonstrate that CPAM-Dia/Ce-SA aerogel is macroscopic polymer hybrid spheres with a particle size of around 1.3 mm, unique undulating mountain-like surface and porous mesostructure, and exhibits outstanding adsorption capacity for anionic dyes and good reusability. The maximum adsorption amounts of AB 113, AB 80, AY 117, CR and DG 6 by CPAM-Dia/Ce-SA were 3008, 1208, 914, 1832 and 1232 mg/g at pH 2.0, 60 min contact time and 25 °C, and corresponding removal efficiency reached individually 97.5, 96.6, 99.7, 99.9 and 98.5 % respectively and were less affected by increasing pH up to 10.0. Dye adsorption behaviour and adsorption processes with spontaneous and exothermic nature were perfectly interpreted by the Langmuir and Pseudo-second-order rate models respectively. Physicochemical and multisite-H-bonding synergies promoted the ultrastrong biosorption of anionic dyes by CPAM-Dia/Ce-SA.
Collapse
Affiliation(s)
- Beigang Li
- Chemistry & Environment Science College, Inner Mongolia Normal University, China; Inner Mongolia Key Laboratory of Environmental Chemistry, Hohhot 010022, China.
| | - Yuting Zhao
- Chemistry & Environment Science College, Inner Mongolia Normal University, China; Inner Mongolia Key Laboratory of Environmental Chemistry, Hohhot 010022, China
| |
Collapse
|
21
|
Wu W, Li P, Wang M, Liu H, Zhao X, Wu C, Ren J. Comprehensive Evaluation of Polyaniline-Doped Lignosulfonate in Adsorbing Dye and Heavy Metal Ions. Int J Mol Sci 2023; 25:133. [PMID: 38203303 PMCID: PMC10779345 DOI: 10.3390/ijms25010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Lignosulfonate/polyaniline (LS/PANI) nanocomposite adsorbent materials were prepared by the chemical polymerization of lignosulfonate with an aniline monomer as a dopant and structure-directing agent, and the adsorption behavior of dyes as well as heavy metal ions was investigated. LS/PANI composites were used as dye adsorbents for the removal of different cationic dyes (malachite green, methylene blue, and crystal violet). The adsorption behavior of LS/PANI composites as dye adsorbents for malachite green was investigated by examining the effects of the adsorbent dosage, solution pH, initial concentration of dye, adsorption time, and temperature on the adsorption properties of this dye. The following conclusions were obtained. The optimum adsorption conditions for the removal of malachite green dye when LS/PANI composites were used as malachite green dye adsorbents were as follows: an adsorbent dosage of 20 mg, an initial concentration of the dye of 250 mg/L, an adsorption time of 300 min, and a temperature of 358 K. The LS/PANI composite adsorbed malachite green dye in accordance with the Langmuir adsorption model and pseudo-second-order kinetic model, which belongs to chemisorption-based monomolecular adsorption, and the equilibrium adsorption amount was 245.75 mg/g. In particular, the adsorption of heavy metal ion Pb2+ was investigated, and the removal performance was also favorable for Pb2+.
Collapse
Affiliation(s)
- Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Mingkang Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Huijun Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
| | - Xiufu Zhao
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| | - Jianpeng Ren
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (J.R.)
| |
Collapse
|
22
|
Yang Y, Xu M, Jin W, Jin J, Dong F, Zhang Z, Yan X, Shao M, Wan Y. PANI/MCM-41 adsorption for removal of Cr(VI) ions and its application in enhancing electrokinetic remediation of Cr(VI)-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121684-121701. [PMID: 37953422 DOI: 10.1007/s11356-023-30751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
In this study, a polyaniline/mesoporous silica (PANI/MCM-41) composite material that can be used as a filler for permeable reactive barrier (PRB) was prepared by in situ polymerization. Firstly, the adsorption capacity of PANI/MCM-41 on Cr (VI) in solution was investigated. The results show that the prepared PANI/MCM-41 exhibits a significant Cr (VI) adsorption capacity (~ 340 mg/g), and the adsorption process is more accurately described by the Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. In addition, adsorption-desorption cycle experiments proved the excellent reusability of the material. Subsequently, the material was utilized as a filler in the PRB for the remediation of Cr(VI)-contaminated soil using electrokinetic-permeable reactive barrier (EK-PRB) technology. The results show that compared with traditional electrokinetic remediation, the use of PANI/MCM-41 as an active filler can enlarge the current during remediation and enhance the conductivity of soil, which increases the removal rates of total Cr and Cr(VI) in soil (17.4% and 10.2%).
Collapse
Affiliation(s)
- Yanzhi Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingchen Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wenlou Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiacheng Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Fan Dong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhipeng Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xin Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Min Shao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yushan Wan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
23
|
Choi JS, Lim SH, Lingamdinne LP, Park SY, Koduru JR, Yang JK, Chang YY. Development of ultra-high surface area polyaniline-based activated carbon for the removal of volatile organic compounds from industrial effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122594. [PMID: 37742866 DOI: 10.1016/j.envpol.2023.122594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Removing volatile organic compounds (VOCs) from aqueous solutions is critical for reducing VOC emissions in the environment. Activated carbons are widely used for removal of VOCs from water. However, they show less application feasibility and low removal due to less surface area. Here, a cost-effective and high surface area activated carbonized polyaniline (ACP) was synthesized to sustainable removal of VOCs from water. The ACP microstructure, surface properties, and pore structure were investigated using Brunauer-Emmett-Teller (BET) theory, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The specific surface area of ACP6:1 (2988.13 m2/g) was greater than that of commercial activated carbon (PAC) (1094.49 m2/g), indicating that it has excellent VOC adsorption capacity. The effects of pH, initial VOC concentration, time, temperature, and ionic strength were studied. According to kinetic and thermodynamic studies on VOCs adsorption, it is an exothermic and spontaneous process involving rate-limiting kinetics. Adsorption isotherms follow the Freundlich isotherm model, suggesting that the adsorbent surface is heterogeneous with multilayer adsorption and maximum ACP adsorption capacities of 1913.9, 2453.3, 1635.8, and 3327.0 mg/g at 293 K for benzene, toluene, ethylbenzene, and perchloroethylene, respectively, representing a 3- to 5-fold improvement over PAC. ACP is a promising adsorbent with a high adsorption efficiency for VOC removal.
Collapse
Affiliation(s)
- Jong-Soo Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seon-Hwa Lim
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Se-Yeon Park
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
24
|
Salem MA, Salem IA, El-Dahrawy WM, El-Ghobashy MA. Nano-silica from white silica sand functionalized with PANI-SDS (SiO 2/PANI-SDS) as an adsorbent for the elimination of methylene blue from aqueous media. Sci Rep 2023; 13:18684. [PMID: 37907656 PMCID: PMC10618530 DOI: 10.1038/s41598-023-45873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Natural resources including sand are one of the best approaches for treating dye-polluted wastewater. The SiO2/PANI-SDS nanocomposite was synthesized by self-assembly and intermolecular interaction. The physicochemical features of the SiO2/PANI-SDS nanocomposite were explored by FT-IR, XRD, SEM, TEM, EDX, and N2 adsorption-desorption techniques to be evaluated as an adsorbent for the MB. The surface area of the SiO2/PANI-SDS is 23.317 m2/g, the pore size is 0.036 cm3/g, and the pore radius is 1.91 nm. Batch kinetic studies at different initial adsorbate, adsorbent and NaCl concentrations, and temperatures showed excellent pseudo-second-order. Several isotherm models were applied to evaluate the MB adsorption on the SiO2/PANI-SDS nanocomposite. According to R2 values the isotherm models were fitted in the following order: Langmuir > Dubinin-Radushkevich (D-R) > Freundlich. The adsorption/desorption process showed good reusability of the SiO2/PANI-SDS nanocomposite.
Collapse
Affiliation(s)
- Mohamed A Salem
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ibrahim A Salem
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Wafaa M El-Dahrawy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Marwa A El-Ghobashy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
25
|
Zhang X, Li Y, Zou W, Ding L, Chen J. Sorption enhancement of Cr(VI) from aqueous solution by polyaniline confined in three-dimensional network of composite porous hydrogel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92404-92416. [PMID: 37491493 DOI: 10.1007/s11356-023-28948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Hexavalent chromium Cr(VI) is a typical harmful pollutant, which is carcinogenic or mutagenic to aquatic animals and humans. In this study, sepiolite/humic acid/polyvinyl alcohol@ polyaniline (SC/HA/PVA@PANI) composite porous hydrogel adsorbent was synthesized by Pickering emulsion template in situ chemical oxidative polymerization for adsorption of Cr(VI) from aqueous solution. The in situ polymerization of aniline at the Pickering emulsion interface and the unique three-dimensional network structure of the hydrogel act as an effective "confinement" for the growth of the polymer. The porous structure of the material acts as a water channel, which effectively accelerates the binding of the adsorbate to the adsorption sites, and significantly improves the adsorption rate and adsorption capacity. The adsorption capacity of PANI for Cr(VI) confined in three-dimensional network of composite porous SC/HA/PVA@PANI hydrogel reached 1180.97 mg/g-PANI, which increased about 27-fold compared the adsorption capacity of pure PANI (43.48 mg/g). It is shown that the experimental design effectively avoids the agglomeration of PANI and improves its potential adsorption performance. In addition, the analysis of FESEM-EDX, FT-IR, and XPS spectra before and after adsorption confirmed that the main adsorption mechanisms of Cr(VI) on SC/HA/PVA@PANI included ion exchange, electrostatic attraction, and redox reaction. In conclusion, SC/HA/PVA@PANI has good stability and excellent adsorption performance, which is a new type of Cr(VI) ion adsorbent with great potential.
Collapse
Affiliation(s)
- Xuejiao Zhang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Yulin Li
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Wenjie Zou
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Li Ding
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China.
| |
Collapse
|
26
|
Almas M, Khan AS, Nasrullah A, Din IU, Fagieh TM, Bakhsh EM, Akhtar K, Khan SB, Khan SZ, Inayat A. Substantial increase in adsorption efficiency of local clay-alginate beads toward methylene blue impregnated with SDS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81433-81449. [PMID: 36350450 DOI: 10.1007/s11356-022-23949-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In the current research work, local clay-alginate beads loaded with sodium dodecyl sulfate (SDS) surfactant were prepared for efficient adsorption of methylene blue (MB). FTIR, SEM-EDX, and TGA instruments were used to examine the surface functional groups, morphology, elemental analysis, and thermal stability of beads, respectively. The adsorption efficiency of native clay for MB increases from 124.78 to 247.94 mg/g when loaded in alginate and SDS in beads form. The impacts of adsorbent dosage, initial pH, contact time, initial MB concentration, and temperature were investigated and optimized. The maximum adsorption capacity of beads for MB was 1468.5 mg/g. The process followed a pseudosecond order kinetic and Freundlich adsorption isotherm model. Thermodynamic study confirmed that MB adsorption on beads is endothermic and spontaneous in nature. The beads were recycled and reused for five times. According to the findings, local clay-alginate beads impregnated with SDS proved to be a promising and efficient adsorbent for extracting MB from aqueous solution.
Collapse
Affiliation(s)
- Muzdalfa Almas
- Department of Chemistry, University of Science and Technology, Bannu, Pakistan
| | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology, Bannu, Pakistan
| | - Asma Nasrullah
- Department of Chemistry, University of Science and Technology, Bannu, Pakistan
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Israf Ud Din
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, Saudi Arabia
| | - Taghreed M Fagieh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Shahan Zeb Khan
- Department of Chemistry, University of Science and Technology, Bannu, Pakistan
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
27
|
El-Aassar MR, Ibrahim OM, Omar BM, El-Hamid HTA, Alsohaim IH, Hassan HMA, Althobaiti IO, El-Sayed MY, Goher ME, Fakhry H. Hybrid Beads of Poly(Acrylonitrile-co-Styrene/Pyrrole)@Poly Vinyl Pyrrolidone for Removing Carcinogenic Methylene Blue Dye Water Pollutant. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2912-2929. [DOI: 10.1007/s10924-023-02776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 09/02/2023]
|
28
|
Guo X, Chen F, Zhang W. Analysis of 16 mycotoxins in genuine traditional Chinese medicine for five medicinal parts: Classification of analytical method based on PANI@CS extraction-UPLC-MS/MS. Heliyon 2023; 9:e17027. [PMID: 37342581 PMCID: PMC10277462 DOI: 10.1016/j.heliyon.2023.e17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
A novel PANI@CS solid-phase dispersive extractant combined with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed for the first time, which was used for high-throughput, multi-component, real-time online rapid pretreatment and quantitative classification of 16 mycotoxins from five different medicinal parts of 13 genuine traditional Chinese medicines (TCMs). Ultra performance liquid chromatography combined with triple quadrupole mass spectrometry was used for separation and ESI detection. An internal standard isotope matching calibration was used for quantification purposes to compensate for matrix effects. The limits of detection (LOD) of 16 mycotoxins ranged from 0.1 to 6.0 μg/kg. The linear coefficients (R2) were ≥0.996 in the linear range from 10.0 to 200 μg/L. The recoveries of the 16 mycotoxins ranged from 90.1% to 105.8%, and the relative standard deviations (RSDs) ranged from 1.3% to 4.1%. Thirteen TCMs from five representative medicinal parts were selected and tested under the best sample preparation procedure and chromatographic analysis conditions. The results showed that the method could improve the sensitivity and accuracy of the sample analysis, improve the selectivity and reproducibility of the decolorization and purification of TCMs, which is suitable for the practical application of mycotoxin in trace analysis. This method can also provide a new idea for accurate, efficient, rapid and multi-component online detection of mycotoxins for quality and safety control of TCMs.
Collapse
Affiliation(s)
- Xinying Guo
- Nantong Center for Disease Control and Prevention, Nantong, PR China
- Nantong Key Laboratory of Food Hygiene, Nantong Food Safety Testing Center, Nantong, PR China
| | - Feng Chen
- Nantong Center for Disease Control and Prevention, Nantong, PR China
- Nantong Key Laboratory of Food Hygiene, Nantong Food Safety Testing Center, Nantong, PR China
| | - Weibing Zhang
- Nantong Center for Disease Control and Prevention, Nantong, PR China
- Nantong Key Laboratory of Food Hygiene, Nantong Food Safety Testing Center, Nantong, PR China
- Nantong Teaching and Research Practice Base of Public Health and Preventive Medicine of Lanzhou University,Nantong, PR China
| |
Collapse
|
29
|
Chen S, Zhang M, Chen H, Fang Y. Removal of Methylene Blue from Aqueous Solutions by Surface Modified Talc. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093597. [PMID: 37176479 PMCID: PMC10179945 DOI: 10.3390/ma16093597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
In this study, raw talc powder surface modification was conducted, and the powder was modified in two different methods using acid washing and ball milling. Modified talc was characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). In order to investigate the adsorption capacity of modified talc on dyes, adsorption experiments were carried out with methylene blue (MB) in aqueous solutions as the target contaminant. The findings of the characterization revealed that both modifications increased the adsorption capacity of talc, which was attributed to changes in specific surface area and active groups. The influence of process parameters such as contact time, pH, dye concentration, and adsorbent dosage on the adsorption performance was systematically investigated. Modified talc was able to adsorb MB rapidly, reaching equilibrium within 60 min. Additionally, the adsorption performance was improved as the pH of the dye solution increased. The isotherms for MB adsorption by modified talc fitted well with the Langmuir model. The pseudo-second-order model in the adsorption kinetic model properly described the adsorption behavior. The results show that the modified talc can be used as an inexpensive and abundant candidate material for the adsorption of dyes in industrial wastewater.
Collapse
Affiliation(s)
- Shuyang Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mei Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hanjie Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Fang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
30
|
Ataabadi MR, Jamshidi M. Silane modification of TiO 2 nanoparticles and usage in acrylic film for effective photocatalytic degradation of methylene blue under visible light. Sci Rep 2023; 13:7383. [PMID: 37149687 PMCID: PMC10164108 DOI: 10.1038/s41598-023-34463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
To fabricate a photocatalytic acrylic paint, TiO2 nanoparticles were surface modified by a bi-functional amino silane (i.e. bis-3-(aminopropyltriethoxysilane)) at different concentrations and applied at 1, 3 and 5 wt% to an acrylic latex. It was found that the surface modification of nano TiO2 enhanced its specific surface area about 42%. The tensile properties of the pristine and nanocomposite acrylic films were assessed. The photocatalytic degradation of aqueous solution and stain of methylene blue (MB) were evaluated (under solar, visible, and UV illuminations) by nanoparticles and nanocomposites, respectively. Results showed that incorporating 3 wt% of the pure and modified nano TiO2 to arylic film caused 62 and 144% increment in the tensile strength. The modified nanoparticles showed higher MB degradation contents under UV, visible and solar irradiation (82, 70, 48%, respectively). The addition of pure and modified nanoparticles to the acrylic film caused decrement in the water contact angle from 84 to 70 and 46°, respectively. It also caused considerable enhancement in the glass transition temperature (Tg) of acrylic film compared to the pristine and pure nanocomposite films (i.e. about 17 and 9 °C, respectively). Furthermore, it was found that the modified nanocomposite caused more color change of MB stain (65%).
Collapse
Affiliation(s)
- Maryam Rostami Ataabadi
- Constructional Polymers and Composites Research Lab., School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Masoud Jamshidi
- Constructional Polymers and Composites Research Lab., School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
31
|
Khalili M, Dadfarnia S, Haji Shabani AM. Green thin-film microextraction based on polyaniline emeraldine salt-coated cellulose filter paper as an efficient preparation plane for extraction of Cd from environmental samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
32
|
Eizi R, Bastami TR, Mahmoudi V, Ayati A, Babaei H. Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
33
|
Diehl M, Silva LFO, Schnorr C, Netto MS, Bruckmann FS, Dotto GL. Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51920-51931. [PMID: 36820982 DOI: 10.1007/s11356-023-26006-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Herein, the methylene blue (MB) biosorption from the agroindustrial residue (cassava bagasse) is reported. The cassava bagasse residue presented an irregular surface, anionic character, and low specific surface area. The experiments were performed in batch mode. The biosorption behavior was investigated through the experimental variables, initial concentration of MB, pH, and temperature. The maximum biosorption capacity (170.13 mg g-1) reached 328 K and pH 10.0. The equilibrium and kinetics were better fitted by the Sips and general order (R2 ≥ 0.997 and R2adj ≥ 0.996) models, respectively. Furthermore, the thermodynamic study revealed a spontaneous (ΔG0 < 0) and endothermic process. Finally, the results showed cassava bagasse is a potential material for biosorption dyes from the aqueous medium. In addition, the biosorbent has a low aggregate cost and high availability, which contributes to the destination of large amounts of waste and inspires engineering applications.
Collapse
Affiliation(s)
- Matheus Diehl
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Matias S Netto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Franciele S Bruckmann
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
34
|
Alardhi SM, Abdalsalam AH, Ati AA, Abdulkareem MH, Ramadhan AA, Taki MM, Abbas ZY. Fabrication of polyaniline/zinc oxide nanocomposites: synthesis, characterization and adsorption of methylene orange. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
35
|
Kumar Ben S, Gupta S, Kumar Raj K, Chandra V. Adsorption of Malachite Green from Polyaniline Facilitated Cobalt Phosphate Nanocomposite from Aqueous Solution. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling. SEPARATIONS 2023. [DOI: 10.3390/separations10010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This research aimed to assess the adsorption properties of raw walnut shell powder (WNSp) for the elimination of methylene blue (MB) from an aqueous medium. The initial MB concentration (2–50 mg/L), the mass of the biomaterial (0.1–1 g/L), the contact time (10–120 min), the medium’s pH (2–12), and the temperature (25–55 °C) were optimized as experimental conditions. A maximum adsorption capacity of 19.99 mg/g was obtained at an MB concentration of 50 mg/L, a medium pH of 6.93 and a temperature of 25 °C, using 0.2 g/L of WNSp. These conditions showed that the MB dye elimination process occurred spontaneously. Different analytical approaches were used to characterize the WNSp biomaterial, including functional groups involved in MB adsorption, the surface characteristics and morphological features of the WNSp before and after MB uptake, and identification of WNSp based on their diffraction pattern. The experimental isotherm data were analyzed by the Langmuir and Freundlich models for the adsorption of MB dye. The corresponding values of parameter RL of Langmuir were between 0.51 and 0.172, which confirmed the WNSp’s favorable MB dye adsorption. The experimental kinetic data were examined, and the pseudo-second-order model was shown to be more suitable for describing the adsorption process, with an excellent determination coefficient (R2 = 0.999). The exchanged standard enthalpy (H° = −22.456 KJ.mol−1) was calculated using the van ‘t Hoff equation, and it was proven that the adsorption process was exothermic. The spontaneous nature and feasibility of the MB dye adsorption process on WNSp were validated by negative standard enthalpy values (G°) ranging from −2.580 to −0.469 at different temperatures. It was established that WNSp may be employed as a novel, effective, low-cost adsorbent for the elimination of methylene blue in aqueous solutions.
Collapse
|
37
|
Khamayseh MM, Kidak R. Equilibrium, kinetics, and thermodynamics study on the biosorption of reactive levofloxacin antibiotic on Pithophora macroalgae in aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:301. [PMID: 36645500 DOI: 10.1007/s10661-023-10925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Since untreated wastewater from hospitals and residential areas is being discharged directly into surface waterways, pharmaceutical contaminants have been shown to be higher in many countries. Therefore, the development of novel and effective techniques to extract antibiotic substances from wastewater is of utmost importance. The present work aims at the use of green Pithophora macroalgae to remove levofloxacin antibiotic from an aqueous solution through biosorption. Biosorption is an economical and eco-friendly method for treating wastewater. The macroalgae were dried, grounded, and used as biosorbent to remove the levofloxacin (LVX) antibiotics from the aqueous solution. The influence of operating conditions such as initial antibiotic concentration, biosorbent dosage, agitation speed, pH, and temperature was studied. The biosorbent was characterized by FTIR, SEM, and point zero charge. The experimental data were evaluated using Langmuir and Freundlich isotherms. The experimental data best fit the Freundlich isotherm model (R2 = 0.969), while the kinetic model for the experiment follows the pseudo-second-order (R2 = 0.998) with a maximum biosorption capacity of 17.8 mg/g. Maximized removal of LVX occurs at favorable conditions of 298 K temperature, 150 mg/L initial concentration of antibiotic, 0.5 g sorbent dose, and 6.5 pH. The calculated thermodynamic parameters reveal that the biosorption of LVX antibiotics occurs by an endothermic process. This study deduces that Pithophora macroalgae biomass proved to be an effective biosorbent for biosorption of LVX antibiotics and may be a novel alternative method for antibiotics removal from aqueous solutions.
Collapse
Affiliation(s)
- Murad M Khamayseh
- Faculty of Engineering, Department of Environmental Sciences, Cyprus International University, Nicosia, Turkey.
| | - Rana Kidak
- Faculty of Engineering, Department of Environmental Sciences, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
38
|
Synthesis of Polymer-Metal Oxide (PANI/ZnO/MnO2) Ternary Nanocomposite for Effective Removal of Water Pollutants. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
39
|
PVA-assisted CNCs/SiO2 composite aerogel for efficient sorption of ciprofloxacin. J Colloid Interface Sci 2023; 630:544-555. [DOI: 10.1016/j.jcis.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
|
40
|
A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Goswami S, Nandy S, Fortunato E, Martins R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Liu B, Wang S, Wang H, Wang Y, Xiao Y, Cheng Y. Quaternary Ammonium Groups Modified Magnetic Cyclodextrin Polymers for Highly Efficient Dye Removal and Sterilization in Water Purification. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010167. [PMID: 36615361 PMCID: PMC9822413 DOI: 10.3390/molecules28010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Water recovery is a significant proposition for human survival and sustainable development, and we never stop searching for more efficient, easy-operating, low-cost and environmentally friendly methods to decontaminate water bodies. Herein, we combined the advantages of β-cyclodextrin (β-CD), magnetite nanoparticles (MNs), and two kinds of quaternary ammonium salts to synthesize two porous quaternary ammonium groups capped magnetic β-CD polymers (QMCDP1 and QMCDP2) to remove organic pollutants and eradicate pathogenic microorganisms effectively through a single implementation. In this setting, β-CD polymer (CDP) was utilized as the porous substrate material, while MNs endowed the materials with excellent magnetism enhancing recyclability in practical application scenarios, and the grafting of quaternary ammonium groups was beneficial for the adsorption of anionic dyes and sterilization. Both QMCDPs outperformed uncapped MCDPs in their adsorption ability of anionic pollutants, using methyl blue (MB) and orange G (OG) as model dyes. Additionally, QMCDP2, which was modified with longer alkyl chains than QMCDP1, exhibits superior bactericidal efficacy with a 99.47% removal rate for Staphylococcus aureus. Accordingly, this study provides some insights into designing a well-performed and easily recyclable adsorbent for simultaneous sterilization and adsorption of organic contaminants in wastewater.
Collapse
Affiliation(s)
- Bingjie Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuoxuan Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - He Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - Yong Wang
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yue Cheng
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| |
Collapse
|
43
|
Bir R, Tanweer MS, Singh M, Alam M. Multifunctional Ternary NLP/ZnO@l-cysteine- grafted-PANI Bionanocomposites for the Selective Removal of Anionic and Cationic Dyes from Synthetic and Real Water Samples. ACS OMEGA 2022; 7:44836-44850. [PMID: 36530240 PMCID: PMC9753193 DOI: 10.1021/acsomega.2c04936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The development of competent adsorbents based on agro-waste materials with multifunctional groups and porosity for the removal of toxic dyes from aqueous solutions is still a challenge. Herein, a bionanocomposite made up of neem leaf powder (NLP), zinc oxide (ZnO), and amino acid (l-cysteine)-functionalized polyaniline (PANI), namely, NLP/ZnO@l-cysteine-grafted-PANI (NZC-g-PANI), has been prepared by an in situ polymerization method. The as-prepared bionanocomposite was tested for the adsorptive removal of three anionic dyes, namely, methyl orange (MO), amido black 10B (AB 10B), and eriochrome black T (EBT), as well as three cationic dyes, namely, brilliant green (BG), crystal violet (CV), and methylene blue (MB), from synthetic aqueous medium. The morphological and structural characteristics of the NZC-g-PANI nanocomposite were examined with the help of HR field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopy. FTIR and Raman studies show that the formulated NZC-g-PANI have an ample number of functional moieties such as carboxyl (-COOH), hydroxyl (-OH), amines (-NH2), and imines (-N=), thus demonstrating outstanding dye removal capacity. C-S linkage helps to attach l-cysteine with polyaniline. Moreover, the predominance of chemisorption via ionic/pi-pi interaction and hydrogen bonding between the NZC-g-PANI nanocomposite and dyes (BG and MO) has been realized by FTIR and fitting of kinetics data to the PSO model. For both BG and MO dyes, the biosorption isotherm was precisely accounted for by the Langmuir isotherm with q max values of up to 218.27 mg g-1 for BG at pH 6 and 558.34 mg g-1 for MO at pH 1. Additionally, thermodynamic studies revealed the endothermic and spontaneous nature of adsorption. NZC-g-PANI showed six successive regeneration cycles for cationic (MO: from 96.3 to 90.4%) and anionic (BG: from 94.7 to 88.7%) dyes. Also, batch adsorption operations were validated to demonstrate dye biosorption from real wastewater, such as tap water, river water, and laundry wastewater. Overall, this study indicates that the prepared NZC-g-PANI biosorbent could be used as an effective adsorbent for the removal of various types of anionic as well as cationic dyes from different aqueous solutions.
Collapse
Affiliation(s)
- Ritu Bir
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Mohd Saquib Tanweer
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| | - Meenakshi Singh
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Masood Alam
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
44
|
Msemwa GG, Ibrahim MG, Fujii M, Nasr M. Phytomanagement of textile wastewater for dual biogas and biochar production: A techno-economic and sustainable approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116097. [PMID: 36055101 DOI: 10.1016/j.jenvman.2022.116097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Phytoremediation has been widely employed for industrial effluent treatment due to its cost-effectiveness and eco-friendliness. However, this process generates large amounts of exhausted plant biomass, requiring appropriate management strategies to avoid further environmental pollution. To the best of the authors' knowledge, this study is the first to address the recyclability of water hyacinth after textile wastewater (TWW) phytoremediation for dual biogas and biochar production. A hydroponic culture system was occupied by 163 g (plant mass) per L (TWW) and operated under 16:8 h light:dark cycle (sunlight), 70-80% relative humidity, and 22-25 °C temperature. This water hyacinth-based system achieved chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and dye removal efficiencies of 58.60 ± 2.63%, 35.27 ± 1.65%, and 38.49 ± 2.24%, respectively, at a TWW fraction of 100 %v/v. The plant characterization study revealed that phytoabsorption and phytoextraction could be the main mechanisms involved in TWW pollution reduction. The lignin and hemicellulose of water hyacinth were slightly degraded during phytoremediation, making the cellulose fibers simply accessible to enzymes' attack in the subsequent anaerobic digestion process. This hypothesis was validated by increasing the crystallinity index from 50.13% to 60.21% during TWW phytoremediation. The spent plant was cleaned and then co-digested (37 °C) with cow dung at 1:1 (w/w, dry basis) for bioenergy production. The generated biogas was 162.78 ± 8.34 mL CH4/g COD (i.e., 225.63 ± 11.36 mL CH4/g volatile solids), representing about 490% higher than the utilization of raw water hyacinth in a mono-digestion process. The pyrolysis of digestate-containing plant residues yielded biochar with concentrated cationic macroelements (K+, Mg2+, and Ca2+). The economic feasibility of the phytoremediation/co-digestion/pyrolysis combined system showed an initial investment of 2090 USD and a payback period of 9.08 yr. Because the project succeeded in recovering the cost of its initial investment, it could fulfill the targets of several sustainable development goals related to economic profitability, social acceptance, and environmental protection.
Collapse
Affiliation(s)
- Gelasius Gregory Msemwa
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Mona G Ibrahim
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt; Environmental Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt
| |
Collapse
|
45
|
pH-Driven Selective Adsorption of Multi-Dyes Solutions by Loofah Sponge and Polyaniline-Modified Loofah Sponge. Polymers (Basel) 2022; 14:polym14224897. [PMID: 36433024 PMCID: PMC9693159 DOI: 10.3390/polym14224897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decades, sorbent materials characterized by low selectivity have been developed for the removal of pollutants (in particular dyes) from wastewater. However, following the circular economy perspective, the possibility to selectively adsorb and desorb dyes molecules today represents an unavoidable challenge deserving to be faced. Herein, we propose a sequential treatment based on the use of PANI-modified loofah (P-LS) and loofah sponge (LS) to selectively adsorb cationic (rhodamine, RHB, and methylene blue, MB) and anionic (methyl orange, MO) dyes mixed in aqueous solution by tuning the adsorption pH (100% MO removal by P-LS and 100% and 70% abatement of MB and RHB, respectively, by LS). The system maintained high sorption activity for five consecutive cycles. A simple and effective regeneration procedure for the spent adsorbents permits the recovery of the initial sorption capability of the materials (81% for MO, ca. 85% for both RHB and MB, respectively) and, at the same time, the selective release of most of the adsorbed cationic dyes (50% of the adsorbed MB and 50% of the adsorbed RHB), although the procedure failed regarding the release of the anionic component. This approach paved the way to overcome the traditional procedure based on an indiscriminate removal/degradation of pollutants, making the industrial wastewater a potential source of useful chemicals.
Collapse
|
46
|
Jin B, Zhao D, Yu H, Liu W, Zhang C, Wu M. Rapid degradation of organic pollutants by Fe 3O 4@PDA/Ag catalyst in advanced oxidation process. CHEMOSPHERE 2022; 307:135791. [PMID: 35872061 DOI: 10.1016/j.chemosphere.2022.135791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades, the development of novel catalysts on the degradation of organic pollutants has attracted increasing attention. In this work, we synthesized silver decorated magnetic nanoparticles (Fe3O4@PDA/Ag NPs) to activate H2O2 for organic pollutants removal via advanced oxidation processes (AOPs). The catalyst was prepared through in-situ reduction of AgNO3 by the polydopamine (PDA) layer on Fe3O4 NPs. Chemiluminescence results obtained from luminol/H2O2 system revealed that the catalyst exhibited excellent catalytic effect on the decomposition of H2O2 into reactive oxygen species (ROS) and superoxide radical (O2-) was mainly responsible for the oxidative degradation. Importantly, the fast evolution frequency of oxygen gas bubbles produced in the reaction of Ag NPs and H2O2 could generate vigorous fluid convection and autonomous motion of catalyst when H2O2 concentration reached 1%. Additionally, the catalyst can suspend in solution for several minutes. Therefore, by coupling the vigorous motion with slow sedimentation velocity, the catalyst can realize rapid degradation of organic pollutants without external mixing force. The Fe3O4@PDA/Ag NPs catalysts not only showed a high removal efficiency of malachite green, but also can be applied for the degradation of other dyes, making it to be a promise candidate for environmental remediation. With the merits of excellent catalytic effect, fast degradation speed, and simplicity of operation, the prepared catalysts exhibits great potential in the practical field.
Collapse
Affiliation(s)
- Bing Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Daoyuan Zhao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Huihui Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weishuai Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chunyong Zhang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
47
|
Bilal M, Ihsanullah I, Hassan Shah MU, Bhaskar Reddy AV, Aminabhavi TM. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115981. [PMID: 36029630 DOI: 10.1016/j.jenvman.2022.115981] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The presence of hazardous dyes in wastewater cause disastrous effects on living organisms and the environment. The conventional technologies for the remediation of dyes from water have several bottlenecks such as high cost and complex operation. This review aims to present a comprehensive outlook of various bio-sorbents that are identified and successfully employed for the removal of dyes from aqueous environments. The effect of physicochemical characteristics of adsorbents such as surface functional groups, pore size distribution and surface areas are critically evaluated. The adsorption potential at different experimental conditions of diverse bio-sorbents has been also explored and the influence of certain key parameters like solution pH, temperature, concentration of dyes, dosage of bio-sorbent and agitation speed is carefully evaluated. The mechanism of dyes adsorption, regeneration potential of the employed bio-sorbents and their comparison with other commercial adsorbents are discussed. The cost comparison of different adsorbents and key technological challenges are highlighted followed by the recommendations for future research.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi-580 031, India; Department of Biotechnology, Engineering and Food Technology, Chandigarh University, Mohali, Punjab, 140 413 India.
| |
Collapse
|
48
|
Kong EDH, Chau JHF, Lai CW, Khe CS, Sharma G, Kumar A, Siengchin S, Sanjay MR. GO/TiO 2-Related Nanocomposites as Photocatalysts for Pollutant Removal in Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193536. [PMID: 36234665 PMCID: PMC9565631 DOI: 10.3390/nano12193536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Water pollution has been a prevalent issue globally for some time. Some pollutants are released into the water system without treatment, making the water not suitable for consumption. This problem may lead to more grave problems in the future including the destruction of the ecosystem along with the organisms inhabiting it, and illness and diseases endangering human health. Conventional methods have been implemented to remove hazardous pollutants such as dyes, heavy metals, and oil but are incapable of doing so due to economic restraints and the inability to degrade the pollutants, leading to secondary pollution. Photocatalysis is a more recently applied concept and is proven to be able to completely remove and degrade pollutants into simpler organic compounds. Titanium dioxide (TiO2) is a fine example of a photocatalyst owing to its cost-effectiveness and superb efficiency. However, issues such as the high recombination rate of photogenerated electrons along with positive holes while being only limited to UV irradiation need to be addressed. Carbonaceous materials such as graphene oxide (GO) can overcome such issues by reducing the recombination rate and providing a platform for adsorption accompanied by photocatalytic degradation of TiO2. The history and development of the synthesis of GO will be discussed, followed by the methods used for GO/TiO2 synthesis. The hybrid of GO/TiO2 as a photocatalyst has received some attention in the application of wastewater treatment due to its efficiency and it being environmentally benign. This review paper thereby aims to identify the origins of different pollutants followed by the sickness they may potentially inflict. Recent findings, including that GO/TiO2-related nanocomposites can remove pollutants from the water system, and on the photodegradation mechanism for pollutants including aromatic dyes, heavy metal and crude oil, will be briefly discussed in this review. Moreover, several crucial factors that affect the performance of photocatalysis in pollutant removal will be discussed as well. Therefore, this paper presents a critical review of recent achievements in the use of GO/TiO2-related nanocomposites and photocatalysis for removing various pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Ethan Dern Huang Kong
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
- Correspondence: (E.D.H.K.); (C.W.L.)
| | - Jenny Hui Foong Chau
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (E.D.H.K.); (C.W.L.)
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Gaurav Sharma
- Nanshan District Key Lab for Biopolymer and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
- International Research Center of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- School of Science and Technology, Global University, Saharanpur 247001, India
| | - Amit Kumar
- International Research Center of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- School of Science and Technology, Global University, Saharanpur 247001, India
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Mavinkere Rangappa Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| |
Collapse
|
49
|
Wan X, Dai H, Zhang H, Yang H, Li F, Xu Q. Emerald-based polyaniline-modified polyacrylonitrile nanofiber mats based solid-phase extraction for efficient and simple detection of Sudan dyes in poultry feed. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|