1
|
Xu P, Shu L, Yang Y, Kumar S, Tripathi P, Mishra S, Qiu C, Li Y, Wu Y, Yang Z. Microbial agents obtained from tomato straw composting effectively promote tomato straw compost maturation and improve compost quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115884. [PMID: 38154152 DOI: 10.1016/j.ecoenv.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Appropriate management of agricultural organic waste (AOW) presents a significant obstacle in the endeavor to attain sustainable agricultural development. The proper management of AOW is a necessity for sustainable agricultural development. This can be done skillfully by incorporating microbial agents in the composting procedure. In this study, we isolated relevant bacteria strains from tomato straw AOW, which demonstrated efficient degradation of lignocellulose without any antagonistic effects in them. These strains were then combined to create a composite microbial agent called Zyco Shield (ZS). The performance of ZS was compared with a commercially effective microorganism (EM) and a control CK. The results indicate that the ZS treatment significantly prolonged the elevated temperature phase of the tomato straw pile, showing considerable degradation of lignocellulosic material. This substantial degradation did not happen in the EM and CK treatments. Moreover, there was a temperature rise of 4-6 ℃ in 2 days of thermophilic phase, which was not the case in the EM and CK treatments. Furthermore, the inoculation of ZS substantially enhanced the degradation of organic waste derived from tomato straw. This method increased the nutrient content of the resulting compost and elevated the enzymatic activity of lignocellulose-degrading enzymes, while reducing the urease enzyme activity within the pile. The concentrations of NH4+-N and NO3--N showed increases of (2.13% and 47.51%), (14.81% and 32.17%) respectively, which is again very different from the results of the EM and CK treatments. To some extent, the alterations observed in the microbial community and the abundance of functional microorganisms provide indirect evidence supporting the fact that the addition of ZS microbial agent facilitates the composting process of tomato straw. Moreover, we confirmed the degradation process of tomato straw through X-ray diffraction, Fourier infrared spectroscopy, and by scanning electron microscopy to analyze the role of ZS microbial inoculum composting. Consequently, reinoculation compost strains improves agricultural waste composting efficiency and enhances product quality.
Collapse
Affiliation(s)
- Peng Xu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luolin Shu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sunil Kumar
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Priyanka Tripathi
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Sita Mishra
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Chun Qiu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjun Wu
- School of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenchao Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Jiao M, Ren X, He Y, Wang J, Hu C, Zhang Z. Humification improvement by optimizing particle size of bulking agent and relevant mechanisms during swine manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128191. [PMID: 36374714 DOI: 10.1016/j.biortech.2022.128191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
For purpose of clarifying the impact on particle size of bulking agents on humification and relevant mechanisms, different length (<2 cm, 2 cm, 5 cm, 10 cm) of branch and straw were blended with swine manure individually for 100 days aerobic composting. Results demonstrated that, 2 cm and 5 cm of branch and straw promoted the highest degradation of DOC by 41.49 % and 58.42 %, and increased the humic substances by 23.81 % and 55.82 % in maturity stage, respectively, compared with other treatments. As shown in microbial consequence, the maximum relative abundance of humus funguses increased by 99.55 % and 99.92 % at phylum, and 98.95 % and 99.24 % at genus in 2 cm and 5 cm of branch and straw treatment, thus verifying the result in variation of humus content. In a word, particle size could result in obvious impact on humification, and the optimized size were about 2 cm and 5 cm of branch and straw.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
3
|
Cai R, Cui X, Zhang S, Xu C. Effects of Regular Water Replenishment on Enzyme Activities and Fungal Metabolic Function of Sheep Manure Composting on the Qinghai-Tibet Plateau. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12143. [PMID: 36231444 PMCID: PMC9566448 DOI: 10.3390/ijerph191912143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The dry climate characteristics of the Qinghai-Tibet Plateau will seriously affect microbial metabolism during composting. In this study, we aimed to investigate the effects of regular water supplementation on the fungal and enzymatic activities of sheep manure composting in the Qinghai-Tibet Plateau. The experiment set up the treatments of water replenishment once every 7 days(T2) and 3.5 days (T3) days, and no water supplementation was used as the control (T1). The results showed that regular water supplementation increased the activities of various enzymes during composting, and the activities of protease, cellulase, peroxidase and polyphenol oxidase in T3 were higher than those in T2. Regular water supplementation increased the relative abundance of Remersonia and Mycothermus, which were significantly positively correlated with the germination index, and degradation of organic components. Regular water supplementation could enrich fungi carbohydrate, protein, and nucleotide metabolisms, and T3 had a better effect. A redundancy analysis showed that environmental factors could significantly affect the fungal community; among them, moisture content (76.9%, p = 0.002) was the greatest contributor. In conclusion, regular water supplementation can improve the key enzyme activities and fungal metabolic function of sheep manure composting, and water replenishment once every 3.5 days had the best effect.
Collapse
|
4
|
Shaaban M, Khalid MS, Hu R, Zhou M. Effects of water regimes on soil N 2O, CH 4 and CO 2 emissions following addition of dicyandiamide and N fertilizer. ENVIRONMENTAL RESEARCH 2022; 212:113544. [PMID: 35643309 DOI: 10.1016/j.envres.2022.113544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Water regimes strongly impact soil C and N cycling and the associated greenhouse gases (GHGs, i.e., CO2, CH4 and N2O). Therefore, a study was conducted to examine the impacts of flooding-drying of soil along with application of nitrogen (N) fertilizer and nitrification inhibitor dicyandiamide (DCD) on GHGs emissions. This study comprised four experimental treatments, including (i) control (CK), (ii) dicyandiamide, 20 mg kg-1 (DCD), (iii) nitrogen fertilizer, 300 mg kg-1 (N) and (iv) DCD + N. All experimental treatments were kept under flooded condition at the onset of the experiment, and then converted to 60% water filled pore space (WFPS). At flooding stage, N2O emissions were lower as compared to 60% WFPS. The highest cumulative N2O emission was 0.98 mg N2O-N kg-1 in N treated soil due to high substrates of mineral N contents, but lowest (0.009 mg N2O-N kg-1) in the DCD treatment. The highest cumulative CH4 emissions (80.54 mg CH4-C kg-1) were observed in the N treatment, while uptake of CH4 was observed in the DCD treatment. As flooded condition converted to 60% WFPS, CO2 emissions gradually increased in all experimental treatments, but the maximum cumulative CO2 emission was 477.44 mg kg-1 in the DCD + N treatment. The maximum dissolved organic carbon (DOC) contents were observed in N and DCD + N treatments with the values of 57.12 and 58.92 mg kg-1, respectively. Microbial biomass carbon (MBC) contents were higher at flooding while lower at transition phase, and increased at the initiation of 60% WFPS stage. However, MBC contents declined at the later stage of 60% WFPS. The maximum MBC contents were 202.12 and 192.41 mg kg-1 in N and DCD + N treatments, respectively. Results demonstrated that water regimes exerted a dramatic impact on C and N dynamics, subsequently GHGs, which were highly controlled by DCD at both flooding and 60% WFPS conditions.
Collapse
Affiliation(s)
- Muhammad Shaaban
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041, Chengdu, China
| | | | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Minghua Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041, Chengdu, China.
| |
Collapse
|
5
|
Wang X, He X, Liang J. Succession of Microbial Community during the Co-Composting of Food Waste Digestate and Garden Waste. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9945. [PMID: 36011580 PMCID: PMC9407818 DOI: 10.3390/ijerph19169945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are of critical importance during the composting process. The aim of this study was to reveal the bacterial and fungal compositions of a composting pile of food waste digestate and garden waste, where the succession of the microbial communities was monitored using Illumina MiSeq sequencing. We explored the efficiency of composting of different microorganisms to judge whether the composting system was running successfully. The results showed that the composting process significantly changed the bacterial and fungal structure. Firmicutes, Proteobacteria, and Bacteroidota were the dominant phyla of the bacterial communities, while Ascomycota was the dominant phylum of the fungal communities. Moreover, the highest bacterial and fungal biodiversity occurred in the thermophilic stage. The physical and chemical properties of the final compost products conformed to the national standards of fertilizers. The efficient composting functional microbes, including Cladosporium, Bacillus and Saccharomonospora, emerged to be an important sign of a successfully operating composting system.
Collapse
Affiliation(s)
- Xiaohan Wang
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China
| | - Xiaoli He
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China
| | - Jing Liang
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China
| |
Collapse
|
6
|
Jiang J, Wang Y, Yu D, Hou R, Ma X, Liu J, Cao Z, Cheng K, Yan G, Zhang C, Li Y. Combined addition of biochar and garbage enzyme improving the humification and succession of fungal community during sewage sludge composting. BIORESOURCE TECHNOLOGY 2022; 346:126344. [PMID: 34780901 DOI: 10.1016/j.biortech.2021.126344] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The influences of combination of garbage enzyme and biochar on total organic carbon (TOC) degradation, humification and the fungal succession during sewage sludge (SS) composting were established. Results showed that the GE and BC + GE treatments significantly increased the enzyme activity of fluorescein diacetate hydrolase (FDA) and increased the TOC degradation rate by 9.8% and 21.9% relative to control. The excitation-emission matrix (EEM) combined with the percentage fluorescence response (Pi, n) also proved that the combination of BC and GE promoted fulvic acid-like and humic-like substances production, and thus increased humification. Furthermore, the combination of BC and GE effectively decreased the relative abundance of Unclassified_k_Fugni, while increased the abundance of Ascomycota and Basidiomycota compared with control. The four genera, Pseudeurotium, Talaromyces, Trichoderma, and Penicillium, were the main fungi for the humification. Comparatively, the combined of BC and GE showed the optimal performance for TOC degradation and humification during SS composting.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dou Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Rui Hou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaonan Ma
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jiaqi Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Ke Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Chunyan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
7
|
Ge M, Shen Y, Ding J, Meng H, Zhou H, Zhou J, Cheng H, Zhang X, Wang J, Wang H, Cheng Q, Li R, Liu J. New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. BIORESOURCE TECHNOLOGY 2022; 344:126236. [PMID: 34737163 DOI: 10.1016/j.biortech.2021.126236] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Composting is an effective way to treat agricultural waste, whereas inappropriate initial conditions could cause lower maturity and system instability. In this study, the dissolved organic matter dynamics and microbial community succession of cattle-manure composting were investigated under different initial moisture content (MC) and pH of raw material. The results indicated that the extended duration of thermophilic phase and the highest GI (germination index) value of final product were observed at matrix 60% MC and pH 8.5 (AT2 treatment). Microbial analysis showed that the succession of bacterial and fungal community was significantly influenced by total carbon (TN), pH and MC (P < 0.05). The relationship between microbial community and fluorescence regional integration (FRI) parameters demonstrated that Thermobifida (bacterial genus), Mycothermus and Thermomyces (fungal genera) were positively correlated with PV, n (the integral aera of Region V). This study could provide a potential strategy for large-scale industrial application of compost.
Collapse
Affiliation(s)
- Mianshen Ge
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jingtao Ding
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haibo Meng
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haibin Zhou
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Hongsheng Cheng
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xi Zhang
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jian Wang
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huihui Wang
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qiongyi Cheng
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Ran Li
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Juan Liu
- Academy of Agricultural Planning and Engineering, No. 41, Maizidian Street, Chaoyang District, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
8
|
Jiang J, Wang Y, Yu D, Zhu G, Cao Z, Yan G, Li Y. Comparative evaluation of biochar, pelelith, and garbage enzyme on nitrogenase and nitrogen-fixing bacteria during the composting of sewage sludge. BIORESOURCE TECHNOLOGY 2021; 333:125165. [PMID: 33894451 DOI: 10.1016/j.biortech.2021.125165] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of garbage enzyme (GE), pelelith (PL), and biochar (BC) on nitrogen (N) conservation, nitrogenase (Nase) and N-fixing bacteria during the composting of sewage sludge. Results showed that the addition of GE, PL, and BC reduced NH3 emissions by 40.9%, 29.3%, and 67.4%, and increased the NO3-N contents of the end compost by 161.4, 88.2, and 105.8% relative to control, respectively, thus increasing the TN content. Three additives improved Nase, cellulase, and fluorescein diacetate hydrolase (FDA) activities and the abundances of nifH gene, and the largest increase was BC, followed by PL and GE. In addition, the additives also markedly influenced the succession of N-fixing bacteria, and significantly increased the abundance of Proteobacteria during the whole process. The BC and PL additions strengthened the sensitivity of N-fixing bacteria to environmental variables, and FDA, TN, moisture content, and NO3-N significantly affected the N-fixing bacteria at genus level.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dou Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
9
|
Lu XL, Wu H, Song SL, Bai HY, Tang MJ, Xu FJ, Ma Y, Dai CC, Jia Y. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27998-28013. [PMID: 33523381 DOI: 10.1007/s11356-021-12569-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Composting has become the most important way to recycle medicinal herbal residues (MHRs). The traditional composting method, adding a microbial agent at one time, has been greatly limited due to its low composting efficiency, mutual influence of microbial agents, and unstable compost products. This study was conducted to assess the effect of multi-phase inoculation on the lignocellulose degradation, enzyme activities, and fungal community during MHRs composting. The results showed that multi-phase inoculation treatment had the highest thermophilic temperature (68.2 °C) and germination index (102.68%), significantly improved available phosphorus content, humic acid, and humic substances concentration, accelerated the degradation of cellulose and lignin, and increased the activities of cellulase in the mature phase, xylanase, manganese peroxidase, and utilization of phenolic compounds. Furthermore, the non-metric multi-dimensional scaling showed that the composting process and inoculation significantly influenced fungal community composition. In multi-phase inoculation treatment, Thermomyces in mesophilic, thermophilic, and mature phase, unclassified_Sordariales, and Coprinopsis in mature phase were the dominant genus that might be the main functional groups to degrade lignocellulose and improve the MHRs composting process.
Collapse
Affiliation(s)
- Xiao-Lin Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hong-Yan Bai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Ma
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Studying Microbial Communities through Co-Occurrence Network Analyses during Processes of Waste Treatment and in Organically Amended Soils: A Review. Microorganisms 2021; 9:microorganisms9061165. [PMID: 34071426 PMCID: PMC8227910 DOI: 10.3390/microorganisms9061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Organic wastes have the potential to be used as soil organic amendments after undergoing a process of stabilization such as composting or as a resource of renewable energy by anaerobic digestion (AD). Both composting and AD are well-known, eco-friendly approaches to eliminate and recycle massive amounts of wastes. Likewise, the application of compost amendments and digestate (the by-product resulting from AD) has been proposed as an effective way of improving soil fertility. The study of microbial communities involved in these waste treatment processes, as well as in organically amended soils, is key in promoting waste resource efficiency and deciphering the features that characterize microbial communities under improved soil fertility conditions. To move beyond the classical analyses of metataxonomic data, the application of co-occurrence network approaches has shown to be useful to gain insights into the interactions among the members of a microbial community, to identify its keystone members and modelling the environmental factors that drive microbial network patterns. Here, we provide an overview of essential concepts for the interpretation and construction of co-occurrence networks and review the features of microbial co-occurrence networks during the processes of composting and AD and following the application of the respective end products (compost and digestate) into soil.
Collapse
|
11
|
Awasthi SK, Duan Y, Liu T, Zhou Y, Qin S, Liu H, Varjani S, Awasthi MK, Zhang Z, Pandey A, Taherzadeh MJ. Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process. JOURNAL OF CLEANER PRODUCTION 2021; 291:125947. [DOI: 10.1016/j.jclepro.2021.125947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
12
|
Lei L, Gu J, Wang X, Song Z, Wang J, Yu J, Hu T, Dai X, Xie J, Zhao W. Microbial succession and molecular ecological networks response to the addition of superphosphate and phosphogypsum during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111560. [PMID: 33172706 DOI: 10.1016/j.jenvman.2020.111560] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
This study assessed the effects of superphosphate (SPP) and phosphogypsum (PPG) on the bacterial and fungal community succession and molecular ecological networks during composting. Adding SPP and PPG had positive effects on the bacterial richness and diversity, negative effects on the fungal richness and diversity. The microbial diversity and richness were higher in PPG than SPP. Non-metric multidimensional scaling analysis clearly separated SPP and PPG from the control treatment with no additives. The dominant genera comprised Turicibacter, Bacillus, norank_o_SBR1031, Thermobifida, norank_f_Limnochordaceae, Truepera, Thermopolyspora, Mycothermus, Dipodascus, Thermomyces, and unclassified_p_Ascomycota. In all treatments, the major bacterial species differed clearly in the later thermophilic, cooling, and maturation composting stages, whereas the main fungal species varied significantly in the thermophilic stage. The changes in the dominant microorganisms in SPP and PPG may have inhibited or promoted the degradation of organic matter during various composting stages. Adding SPP and PPG led to more complex bacterial networks and less complex fungal networks, where SPP had more adverse effects on the fungal networks than PPG. SPP and PPG could potentially alter the co-occurrence patterns of the bacterial and fungal communities by changing the most influential species. SPP and PPG changed the composition and succession of the microbial community by influencing different physiochemical properties during various composting stages where the pH was the main explanatory factor. Overall, this study provides new insights into the effects of SPP and PPG on the microbial community and its interactions during composting.
Collapse
Affiliation(s)
- Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Lei L, Gu J, Wang X, Song Z, Yu J, Wang J, Dai X, Zhao W. Effects of phosphogypsum and medical stone on nitrogen transformation, nitrogen functional genes, and bacterial community during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141746. [PMID: 33207482 DOI: 10.1016/j.scitotenv.2020.141746] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
This study explored the effects of adding phosphogypsum (PPG), medical stone (MS), and both (PPM) during composting on nitrogen transformation, nitrogen functional genes, the bacterial community, and their relationships with NH3 and N2O emissions. Adding MS and PPM reduced NH3 emissions by 25.78-68.37% and N2O emissions by 19.00-42.86%. PPG reduced NH3 emissions by 59.74% but slightly increased N2O emissions by 8.15%. MS was strongly correlated with the amoA-dominated nitrification process. PPG and PPM had strong correlations with nirS- and nirK-dominated, and nosZ-dominated denitrification processes, respectively. PPM promoted nitrification and denitrification processes more than PPG and MS. Different functional bacteria had key roles in nitrification and denitrification during different composting stages. Firmicutes probably contributed to the conversion and release of nitrogen in the thermophilic period, whereas Proteobacteria, Chloroflexi, Bacteroidetes, and other phyla might have played important roles in the cooling and maturation periods. PPM obtained the greatest reductions in NH3 and N2O release via the regulation of environmental variables, nitrogen functional genes, and the bacterial community. Overall, these results provide insights at a molecular level into the effects of PPG and MS on nitrogen transformation and NH3 and N2O emissions during composting.
Collapse
Affiliation(s)
- Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Jiang J, Wang Y, Yu D, Li J, Han J, Cui H, Cheng R, Yao X, Yan G, Li Y, Zhu G. Effects of urease inhibitors on enzymatic activities and fungal communities during the biosolids composting. RSC Adv 2021; 11:37667-37676. [PMID: 35498097 PMCID: PMC9043792 DOI: 10.1039/d1ra07628k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
This study evaluated the influences of urease inhibitors (UIs) on nitrogen conversion, enzyme activities, and fungal communities during aerobic composting. Results showed that UI addition reduced NH3 emissions by 22.2% and 21.5% and increased the total nitrogen (TN) content by 9.7% and 14.3% for the U1 (0.5% UI of the dry weight of the mixture) and U2 (1% UI of the dry weight of the mixture) treatments, respectively. The addition of UI inhibited the enzyme activity during thermophilic stage while increased enzyme activity during the cool and maturity stages. Ascomycota, Basidiomycota and unclassified fungi were the main phyla, and Ascomycota increased significantly during the maturity period. Network analysis showed that Aspergillus, Penicillium, Trichoderma, Talaromyces, Peseudeurotium, and Exophiala were the main “connecting” genera. The redundancy analysis (RDA) showed that the fungal community was mainly influenced by temperature, DOC, pH, and urease. The results suggested that UI was an effective additive for nitrogen conservation and the increase of enzyme activity reduce nitrogen loss and promote enzyme activity during biosolids composting. Adding UI was effective for nitrogen conservation and the increase of enzyme activity during biosolid composting.![]()
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yang Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Dou Yu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jingyu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jin Han
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Huilin Cui
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Ronghui Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Xing Yao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| |
Collapse
|
15
|
Abdellah YAY, Li T, Chen X, Cheng Y, Sun S, Wang Y, Jiang C, Zang H, Li C. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions. BIORESOURCE TECHNOLOGY 2021; 320:124402. [PMID: 33212385 DOI: 10.1016/j.biortech.2020.124402] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
This study investigatedthe effects of applying psychrotrophic cellulose-degrading fungion cellulase production, fungal community structure, and maturity of pig manure (PM) compost under low-temperature conditions. Three psychrotrophic fungal strains were isolated and identified, and after the cold-active cellulase production conditions were optimized, they were inoculated into PM compost. While the control (CK) compost temperature failed to reachthe thermophilic stage, the inoculated compost temperature reached it within 3 days and was maintained for up to 17 days. Fungal inoculants improved fungal community structure at the end of composting, as suggested by network analysis. Principal component analysis revealed that the germination index (GI), total phosphorus (TP), total potassium (TK), and total nitrogen (TN) were the most influential physicochemical parameters affecting compost maturity. The results of the compost products reflected the suitability of the compost as a fertilizer. This study indicated that newly identified strains positively impacted composting at low temperatures.
Collapse
Affiliation(s)
| | - Tianzhu Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xi Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yi Cheng
- College of Science, China Agricultural University, Beijing 100083, PR China
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Cheng Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
16
|
Jiang J, Yu D, Wang Y, Zhang X, Dong W, Zhang X, Guo F, Li Y, Zhang C, Yan G. Use of additives in composting informed by experience from agriculture: Effects of nitrogen fertilizer synergists on gaseous nitrogen emissions and corresponding genes (amoA and nirS). BIORESOURCE TECHNOLOGY 2021; 319:124127. [PMID: 32971331 DOI: 10.1016/j.biortech.2020.124127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
The effects of two nitrogen fertilizer synergists (urease inhibitor, UI; nitrification inhibitor, NI) on NH3 and N2O emissions and the successions of the amoA and nirS genes during composting were assessed. Results showed that the UI and UI + NI treatments reduced NH3 emissions by 26.3% and 24.3%, respectively, and N2O emissions were reduced by 63.9% for UI + NI treatment but were not reduced by UI. The addition of UI and NI significantly reduced the abundance of the nirS gene during thermophilic stage, while significantly increased that of the amoA gene during maturation stage. Crenarchaeota was the principal nitrifying archaeal phylum and was significantly affected by pH. Proteobacteria was the main denitrifying bacterial phylum, whose relative abundance was higher for UI + NI treatment than the other treatments. PICRUSt analysis showed that the addition of UI and NI inhibited enzymatic activity related to N transformation during thermophilic stage while enriching enzymatic activity during maturation phase.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Dou Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xindan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Wei Dong
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaofang Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Fengqi Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Chunyan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
17
|
Jiang J, Wang Y, Guo F, Zhang X, Dong W, Zhang X, Zhang X, Zhang C, Cheng K, Li Y, Zhu G. Composting pig manure and sawdust with urease inhibitor: succession of nitrogen functional genes and bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36160-36171. [PMID: 32556988 DOI: 10.1007/s11356-020-09696-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding the relationship between nitrogen (N) cycle and N transformation-related functional genes is crucial to reduce N loss during composting process. Urease inhibitor (UI) is widely used to reduce N loss in agriculture. However, the effects of UI on N transformation and related N functional genes during composting have not been well investigated. The goal of this study was to investigate the effects of a urease inhibitor (UI) on N functional genes and bacterial community succession during pig manure composting. Results showed that the addition of UI decreased the ammonium N content during the thermophilic stage and notably increased the total N and nitrite N contents of the final compost. The UI significantly decreased the abundances of amoA, nirS, nirK, and nosZ during the initial composting stage, while the opposite trend was observed at the maturation stage. Bacterial community richness and diversity were increased after the UI amendment, but the relative abundance of the phyla Firmicutes and Proteobacteria significantly decreased compared with control during the thermophilic stage. Redundancy analysis indicated that the evaluated environmental factors and bacterial community showed a cumulative 94.7% contribution to the total variation in N functional genes. In summary, UI addition is a recommended method for N conservation during composting, but the added forms of UI, such as delayed addition, combined with adsorbing materials, or microorganism inoculant, should be further evaluated.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Fengqi Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiaofang Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Wei Dong
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xindan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xin Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Chunyan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Ke Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| |
Collapse
|
18
|
Chen Z, Wu Y, Wen Q, Ni H, Chai C. Effects of multiple antibiotics on greenhouse gas and ammonia emissions during swine manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7289-7298. [PMID: 31884542 DOI: 10.1007/s11356-019-07269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are commonly used in intensive farming, leading to multiple antibiotic residue in livestock waste. However, the effects of multiple antibiotics on the emissions of greenhouse gas and ammonia remain indistinct. This paper selects sulfamethoxazole and norfloxacin to represent two different types of antibiotics to explore their effects on gaseous emissions. Four treatments including CK (control), SMZ (spiked with 5 mg kg-1 DW sulfamethoxazole), NOR (spiked with 5 mg kg-1 DW norfloxacin), and SN (spiked with 5 mg kg-1 DW sulfamethoxazole and 5 mg kg-1 DW norfloxacin) were composted for 65 days. Coexistence of sulfamethoxazole and norfloxacin facilitated the biodegradation of organic carbon, and significantly (p < 0.05) increased the cumulative CO2 emission by 31.9%. The cumulative CH4 emissions were decreased by 6.19%, 23.7%, and 27.6% for SMZ, NOR, and SN, respectively. The total NH3 volatilization in SMZ and NOR rose to 1020 and 1190 mg kg-1 DW, respectively. The individual existence of sulfamethoxazole significantly (p < 0.05) ascended the N2O emission rate in the first 7 days due to the increase of NO2--N content. In addition, coexistence of sulfamethoxazole and norfloxacin notably dropped the total greenhouse gas emission (subtracting CO2) by 15.5%.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Hongwei Ni
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| | - Chunrong Chai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
19
|
Hu T, Wang X, Zhen L, Gu J, Zhang K, Wang Q, Ma J, Peng H, Lei L, Zhao W. Effects of inoculating with lignocellulose-degrading consortium on cellulose-degrading genes and fungal community during co-composting of spent mushroom substrate with swine manure. BIORESOURCE TECHNOLOGY 2019; 291:121876. [PMID: 31377509 DOI: 10.1016/j.biortech.2019.121876] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Composting is used widely for recycling spent mushroom substrate (SMS). This study investigated the effects of inoculating a lignocellulose-degrading consortium at two levels comprising 0% (control: CK) and 10% (T) on the fungal community and cellulose-degrading genes during SMS co-composting with swine manure. Lignocellulose degradation rate in T was 8.77-34.45% higher compared with CK. Inoculation affected the distribution of the fungal community, increased the community diversity, and inhibited pathogens. Network analysis showed that inoculation changed the co-occurrence patterns of the fungal communities and made the co-composting system more stable. The relative abundances of glycoside hydrolase genes GH3E (fungal GH3), GH6, and GH7 were 0.45, 0.09, and 0.39 logs higher in T, respectively, than CK. Partial least-squares path modeling suggested that the variations in cellulose-degrading genes were driven mainly by changes in the fungal community during co-composting. Therefore, the lignocellulose-degrading consortium accelerated the transformation of lignocellulose to facilitate safer composting.
Collapse
Affiliation(s)
- Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Province Institute of Microbiology, Xian, Shaanxi 710043, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Zhen
- Shaanxi Province Institute of Microbiology, Xian, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianzhi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|