1
|
Naidu D, Althaf Umar KP, Muhsina K, Augustine S, Jeengar MK, S K K. Zingiberaceae in Cardiovascular Health: A review of adipokine modulation and endothelial protection via adipocyte-endothelial crosstalk mechanism. Curr Nutr Rep 2025; 14:66. [PMID: 40366476 DOI: 10.1007/s13668-025-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF THE REVIEW Although adipose tissue controls metabolism and protects vital organs, its importance to general health is being highlighted by the rise in type 2 diabetes and cardiovascular disease. Adipokines produced by adipose cells are essential regulators of metabolism, glucose homeostasis, and inflammatory response. It also protects vascular endothelial cells for its potential implications for cardiovascular protection. Understanding its intricate involvement in adipose tissue-endothelial communication is critical in developing targeted therapeutics to treat cardiovascular conditions linked with obesity and metabolic dysregulation. Spices from the Zingiberaceae family, such as cardamom, turmeric, and ginger, have anti-inflammatory and anti-oxidant properties that help reduce oxidative stress, vascular dysfunction, and adipocyte-endothelial crosstalk which are all linked to the etiology of CVD. Comprehensive molecular insights into how they modulate adipokine signalling, inflammatory pathways, and ROS-induced adipocyte-vascular interactions remain unexplored, demanding additional translational and clinical validation. With an emphasis on patients with obesity and metabolic dysregulation, the investigation aims to elucidate the mechanisms by which the spice as whole/bioactive constituents of the Zingiberaceae family may provide protection against CVD by integrating previous studies. RECENT FINDINGS Current research continues to support the use of spices from the Zingiberaceae family, such as ginger, turmeric, cardamom, and pepper, as potential therapeutic agents for addressing metabolic complications like obesity, type II diabetes, and CVDs. These natural remedies may modulate adipocyte-endothelial crosstalk and inflammation by modulating important signalling pathways such as AMPK, AKT, PPAR, and NF-κB.. CONCLUSION This review provides a complete summary of existing knowledge, opening the way for future research and prospective therapeutic applications of Zingiberaceae spices in cardiovascular health management.
Collapse
Affiliation(s)
- Disha Naidu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K P Althaf Umar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K Muhsina
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sanu Augustine
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Kanthlal S K
- Department of Pharmacology, Sree Krishna College of Pharmacy and Research Centre, Parassala, Thiruvananthapuram, Kerala, 695502, India.
| |
Collapse
|
2
|
Zhao XL, Cao ZJ, Li KD, Tang F, Xu LY, Zhang JN, Liu D, Peng C, Ao H. Gallic acid: a dietary metabolite's therapeutic potential in the management of atherosclerotic cardiovascular disease. Front Pharmacol 2025; 15:1515172. [PMID: 39840111 PMCID: PMC11747375 DOI: 10.3389/fphar.2024.1515172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality globally. Most of the chemicals specifically target certain pathways and minimally impact other diseases associated with ASCVD. Moreover, interactions of these drugs can cause toxic reactions. Consequently, the exploration of multi-targeted and safe medications for treating and preventing ASCVD has become an increasingly popular trend. Gallic acid (GA), a natural secondary metabolite found in various fruits, plants, and nuts, has demonstrated potentials in preventing and treating ASCVD, in addition to its known antioxidant and anti-inflammatory effects. It alleviates the entire process of atherosclerosis (AS) by reducing oxidative stress, improving endothelial dysfunction, and inhibiting platelet activation and aggregation. Additionally, GA can treat ASCVD-related diseases, such as coronary heart disease (CHD) and cerebral ischemia. However, the pharmacological actions of GA in the prevention and treatment of ASCVD have not been comprehensively reviewed, which limits its clinical development. This review primarily summarizes the in vitro and in vivo pharmacological actions of GA on the related risk factors of ASCVD, AS, and ASCVD. Additionally, it provides a comprehensive overview of the toxicity, extraction, synthesis, pharmacokinetics, and pharmaceutics of GA,aimed to enhance understanding of its clinical applications and further research and development.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Shi Y, Liu C, Xiong S, Yang L, Yang C, Qiao W, Liu Y, Liu S, Liu J, Dong G. Ling-Gui-Qi-Hua formula alleviates left ventricular myocardial fibrosis in rats with heart failure with preserved ejection fraction by blocking the transforming growth factor-β1 /Smads signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116849. [PMID: 37385575 DOI: 10.1016/j.jep.2023.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ling-Qui-Qi-Hua (LGQH) decoction, composed of Poria cocos (Schw.) Wolf, Cinnamomum cassia (L.) J. Presl, Paeonia veitchii Lynch, and Atractylodes macrocephala Koidz., is a compound formula derived from Ling-Gui-Zhu-Gan decoction recorded in the Treatise on Febrile and Miscellaneous. It has shown cardioprotective effects on patients or rats with heart failure with preserved ejection fraction (HFpEF). Nevertheless, the active ingredients of LGQH and its anti-fibrotic mechanism remain unknown. AIM OF THE STUDY To determine the active ingredients in LGQH decoction and verify that LGQH decoction may inhibit left ventricular (LV) myocardial fibrosis in HFpEF rats by blocking the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway from the perspective of animal experiments. MATERIALS AND METHODS First, liquid chromatography-mass spectrometry (LC-MS) technology was used to identify active components in the LGQH decoction. Secondly, a rat model of the metabolic syndrome-associated HFpEF phenotype was established and subsequently received LGQH intervention. The mRNA and protein expression of targets in the TGF-β1/Smads pathway were detected by quantitative real-time polymerase chain reaction and western blot analysis. Finally, molecular docking was conducted to examine the interactions between the active ingredients in the LGQH decoction and key proteins of the TGF-β1/Smads pathways. RESULTS According to LC-MS analysis, the LGQH decoction contained 13 active ingredients. In animal experiments, LGQH attenuated LV hypertrophy, enlargement, and diastolic function in HEpEF rats. Mechanically, LGQH not only down-regulated TGF-β1, Smad2, Smad3, Smad4, α-SMA, Coll I, and Coll III mRNA expressions and TGF-β1, Smad2, Smad3, P-Smad2/Smad3, Smad4, α-SMA, and Coll I protein expressions, but also up-regulated Smad7 mRNA and protein expressions, which ultimately led to myocardial fibrosis. Furthermore, molecular docking confirmed that 13 active ingredients in the LGQH decoction have excellent binding activities to the critical targets of the TGF-β1/Smads pathway. CONCLUSION LGQH is a modified herbal formulation with multiple active ingredients. It might alleviate LV remodeling and diastolic dysfunction and inhibit LV myocardial fibrosis by blocking TGF-β1/Smads pathways in HFpEF rats.
Collapse
Affiliation(s)
- Yujiao Shi
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Chunqiu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Shuang Xiong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Ling Yang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Chenguang Yang
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Wenbo Qiao
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Yongcheng Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Siyu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Jiangang Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China.
| | - Guoju Dong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China.
| |
Collapse
|
4
|
Bayo Jimenez MT, Hahad O, Kuntic M, Daiber A, Münzel T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur Cardiol 2023; 18:e09. [PMID: 37377448 PMCID: PMC10291605 DOI: 10.15420/ecr.2022.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 06/29/2023] Open
Abstract
During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
- Leibniz Institute for Resilience Research (LIR)Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| |
Collapse
|
5
|
Salimi A, Shabani M, Bayrami D, Saray A, Farshbaf Moghimi N. Gallic acid and sesame oil exert cardioprotection via mitochondrial protection and antioxidant properties on Ketamine-Induced cardiotoxicity model in rats. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Armin Saray
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Grewal J, Kumar V, Gandhi Y, Rawat H, Singh R, Singh A, Narasimhaji CV, Acharya R, Mishra SK. Current Perspective and Mechanistic Insights on Bioactive Plant Secondary Metabolites for the Prevention and Treatment of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2023; 23:157-176. [PMID: 37921163 DOI: 10.2174/011871529x262371231009132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the most prevalent medical conditions of modern era and are one of the primary causes of adult mortality in both developing and developed countries. Conventional medications such as use of aspirin, beta-blockers, statins and angiotensin- converting enzyme inhibitors involve use of drugs with many antagonistic effects. Hence, alternative therapies which are safe, effective, and relatively cheap are increasingly being investigated for the treatment and prevention of CVDs. The secondary metabolites of medicinal plants contain several bioactive compounds which have emerged as alternatives to toxic modern medicines. The detrimental effects of CVDs can be mitigated via the use of various bioactive phytochemicals such as catechin, isoflavones, quercetin etc. present in medicinal plants. Current review intends to accumulate previously published data over the years using online databases concerning herbal plant based secondary metabolites that can help in inhibition and treatment of CVDs. An in-depth review of various phytochemical constituents with therapeutic actions such as antioxidant, anti-inflammatory, vasorelaxant, anti-hypertensive and cardioprotective properties has been delineated. An attempt has been made to provide a probable mechanistic overview for the pertinent phytoconstituent which will help in achieving a better prognosis and effective treatment for CVDs.
Collapse
Affiliation(s)
- Jyotika Grewal
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Yashika Gandhi
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ch V Narasimhaji
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| |
Collapse
|
7
|
Bai J, Lin QY, An X, Liu S, Wang Y, Xie Y, Liao J. Low-Dose Gallic Acid Administration Does Not Improve Diet-Induced Metabolic Disorders and Atherosclerosis in Apoe Knockout Mice. J Immunol Res 2022; 2022:7909971. [PMID: 35652108 PMCID: PMC9150997 DOI: 10.1155/2022/7909971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023] Open
Abstract
Diets rich in polyphenols are known to be beneficial for cardiovascular health. Gallic acid (GA) is a plant-derived triphenolic chemical with multiple cardio-protective properties, such as antiobesity, anti-inflammation, and antioxidation. However, whether GA could protect against atherosclerotic cardiovascular diseases is still not defined. Here, we investigated the effects of low-dose GA administration on diet-induced metabolic disorders and atherosclerosis in the atherosclerosis-prone apolipoprotein E (Apoe) knockout mice fed on a high-fat Western-type diet (WTD) for 8 weeks. Our data showed that GA administration by oral gavage at a daily dosage of 20 mg/kg body weight did not significantly ameliorate WTD-induced hyperlipidemia, hepatosteatosis, adipogenesis, or insulin resistance; furthermore, GA administration did not significantly ameliorate WTD-induced atherosclerosis. In conclusion, our data demonstrate that low-dose GA administration does not elicit significant health effect on diet-induced metabolic disorders or atherosclerosis in the Apoe knockout mice. Whether GA could be beneficial for atherosclerotic cardiovascular diseases therefore needs further exploration.
Collapse
Affiliation(s)
- Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
8
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
9
|
Hua F, Shi L, Zhou P. Phenols and terpenoids: natural products as inhibitors of NLRP3 inflammasome in cardiovascular diseases. Inflammopharmacology 2022; 30:137-147. [PMID: 35039992 DOI: 10.1007/s10787-021-00918-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
Inflammatory infiltration has been implicated in the pathogenesis of cardiovascular diseases (CVDs). The NLRP3 inflammasome is involved in the development of several types of CVDs, including myocardial infarction, myocardial ischemia-reperfusion damage, heart failure, atrial fibrillation, and hypertension. Inhibiting the activity of NLRP3 inflammasome can inhibit the progress of CVDs. However, there is no NLRP3 inflammasome inhibitor in clinic, and it is very important to find a safe and effective NLRP3 inhibitor. Phenols and terpenoids are naturally natural products that have many anti-inflammatory effects in CVDs by modulating the NLRP3 inflammatory pathway. Thus, 20 natural products from phenols and terpenoids for the treatment of cardiovascular disease based on the inhibition of NLRP3 inflammasome were summarized and screened. Docking results showed salvianolic acid B and ellagic acid in phenols, and oridonin and triptolide in terpenoids had a better binding activity with NLRP3, which can provide theoretical support for finding novel NLRP3 inflammasome inhibitors or lead compounds in the future.
Collapse
Affiliation(s)
- Fang Hua
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China
| | - Lingli Shi
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Zhang Y, Zhang Z, Yu W, Li A, Gao X, Lv D, Zheng H, Kou X, Xue Z. Toxicology of respiratory system: Profiling chemicals in PM 10 for molecular targets and adverse outcomes. ENVIRONMENT INTERNATIONAL 2022; 159:107040. [PMID: 34922181 DOI: 10.1016/j.envint.2021.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/13/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that the increasing trend of respiratory diseases have been closely associated with the endogenous toxic chemicals (polycyclic aromatic hydrocarbons, heavy metal ions, etc.) in PM10. In the present study, we aim to determine the strong correlations between the chemicals in PM10 and the adverse consequences. We used the ChemView DB, the ToxRef DB and a comprehensive literature analysis to collect, identify, and evaluate the chemicals in PM10 and their adverse effects on respiratory system, and then used the ToxCast DB to analyze their bioactivity and key targets through 1192 molecular targets and cell characteristic endpoints. Meanwhile, the bioinformatics analysis were carried out on the molecular targets to screen out prevention and treatment targets. A total of 310 chemicals related to the respiratory system were identified. An unsupervised two-directional heatmap was constructed based on hierarchical clustering of 227 chemicals by their effect scores. A subset of 253 chemicals with respiratory system toxicity had in vitro bioactivity on 318 molecular targets that could be described, clustered and annotated in the heatmap and bipartite network, which were analyzed based on the protein information in UniProt KB database and the software of GO, STRING, and KEGG. These results showed that the chemicals in PM10 have strong correlation with different types of respiratory system injury. The main pathways of respiratory system injury caused by PM10 are the Calcium signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway, and the core proteins in which are likely to be the molecular targets for the prevention and treatment of damage caused by PM10.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Danyu Lv
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Huaize Zheng
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
11
|
Abayalath N, Malshani I, Ariyaratne R, Zhao S, Zhong G, Zhang G, Manipura A, Siribaddana A, Karunaratne P, Kodithuwakku SP. Characterization of airborne PAHs and metals associated with PM10 fractions collected from an urban area of Sri Lanka and the impact on airway epithelial cells. CHEMOSPHERE 2022; 286:131741. [PMID: 34358888 DOI: 10.1016/j.chemosphere.2021.131741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are significant contributors leading to many human health issues. Thus, this study was designed to perform chemical analysis and biological impact of airborne particulate matter 10 (PM10) in the World heritage City of Kandy City in Sri Lanka. 12 priority PAHs and 34 metals, including 10 highly toxic HMs were quantified. The biological effects of organic extracts were assayed using an in vitro primary porcine airway epithelial cell culture model. Cytotoxicity, DNA damage, and gene expressions of selected inflammatory and cancer-related genes were also assessed. Results showed that the total PAHs ranged from 3.062 to 36.887 ng/m3. The metals were dominated by Na > Ca > Mg > Al > K > Fe > Ti, while a few toxic HMs were much higher in the air than the existing ambient air quality standards. In the bioassays, a significant cytotoxicity (p < 0.05) was observed at 300 μg/mL treatment, and significant (p < 0.05) DNA damages were noted in all treatment groups. All genes assessed were found to be significantly up-regulated (p < 0.05) after 24 h of exposure and after 48 h, only TGF-β1 and p53 did not significantly up-regulate (p < 0.05). These findings confirm that the Kandy city air contains potential carcinogenic and mutagenic compounds and thus, exposure to Kandy air may increase the health risks and respiratory tract-related anomalies.
Collapse
Affiliation(s)
- Nirodha Abayalath
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Indeepa Malshani
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, 80000, Sri Lanka
| | - Rajitha Ariyaratne
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry (SKLOG), Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences (CAS), Guangzhou, 510640, PR China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry (SKLOG), Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences (CAS), Guangzhou, 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry (SKLOG), Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences (CAS), Guangzhou, 510640, PR China
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | | | - Parakrama Karunaratne
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Suranga P Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
12
|
Ho CC, Hung SC, Ho WC. Effects of short- and long-term exposure to atmospheric pollution on COVID-19 risk and fatality: analysis of the first epidemic wave in northern Italy. ENVIRONMENTAL RESEARCH 2021; 199:111293. [PMID: 34004167 PMCID: PMC8123517 DOI: 10.1016/j.envres.2021.111293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 05/19/2023]
Abstract
The effects of exposure to atmospheric pollution on the incidence and mortality due to COVID-19 have been studied but not for sulfur dioxide (SO2) in most studies. However, most studies failed to consider important cofounding factors in the estimation of health effects of air pollution. The objective of the study was to assess the short- and long-term effects of air pollution on the COVID-19 risk and fatality in Lombardy and Veneto. Air pollutants were studied based on monitoring station information in Lombardy and Veneto from January 2013 to May 2020. The daily number of cases and deaths of COVID-19 were collected from the reports of the Italian Ministry of Health in Italy. A generalized linear model with the generalized estimating equation method was used to evaluate the effects of short- and long-term exposure to air pollution on the COVID-19 outbreak in Lombardy and Veneto. After adjusting for other covariates, we found that short-term exposure to PM2.5 and PM10 had a tendency to increase the incidence and mortality of COVID-19 than long-term exposure, while for other air pollutants, including SO2 and NO2, long-term exposure was more significant than short-term exposure. Both short- and long-term exposure of SO2 resulted in increased health effects on COVID-19 pandemic. Our findings suggest that exposure to atmospheric pollution has a significant impact on COVID-19 pandemic and call for further researches to deeply investigate this topic.
Collapse
Affiliation(s)
- Chi-Chang Ho
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 404, Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 404, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung, 404, Taiwan.
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Zhu C, Maharajan K, Liu K, Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. ENVIRONMENTAL RESEARCH 2021; 198:111281. [PMID: 33961825 PMCID: PMC8096764 DOI: 10.1016/j.envres.2021.111281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.
Collapse
Affiliation(s)
- Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
14
|
Kotsiou OS, Saharidis GKD, Kalantzis G, Fradelos EC, Gourgoulianis KI. The Impact of the Lockdown Caused by the COVID-19 Pandemic on the Fine Particulate Matter (PM 2.5) Air Pollution: The Greek Paradigm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136748. [PMID: 34201596 PMCID: PMC8269165 DOI: 10.3390/ijerph18136748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Introduction: Responding to the coronavirus pandemic, Greece implemented the largest quarantine in its history. No data exist regarding its impact on PM2.5 pollution. We aimed to assess PM2.5 levels before, during, and after lockdown (7 March 2020–16 May 2020) in Volos, one of Greece’s most polluted industrialized cities, and compare PM2.5 levels with those obtained during the same period last year. Meteorological conditions were examined as confounders. Methods: The study period was discriminated into three phases (pre-lockdown: 7 March–9 March, lockdown: 10 March–4 May, and post-lockdown period: 5 May–16 May). A wireless sensors network was used to collect PM2.5, temperature, relative humidity, rainfall, and wind speed data every 2 s. Results: The lockdown resulted in a significant drop of PM2.5 by 37.4% in 2020, compared to 2019 levels. The mean daily concentrations of PM2.5 exceeded the WHO’s guideline value for 24-h mean levels of PM2.5 35% of the study period. During the strictest lockdown (23 March to 4 May), the mean daily PM2.5 levels exceeded the standard 41% of the time. The transition from the pre-lockdown period into lockdown or post-lockdown periods was associated with lower PM2.5 concentrations. Conclusions: A reduction in the mean daily PM2.5 concentration was found compared to 2019. Lockdown was not enough to avoid severe exceedances of air pollution in Volos.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece;
- Department of Nursing, Faculty of Nursing, University of Thessaly, GAIOPOLIS, 41110 Larissa, Greece;
- Correspondence: ; Tel.: +30-2413-502-812
| | - Georgios K. D. Saharidis
- Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, Pedion Areos, 38334 Volos, Greece; (G.K.D.S.); (G.K.)
| | - Georgios Kalantzis
- Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, Pedion Areos, 38334 Volos, Greece; (G.K.D.S.); (G.K.)
| | - Evangelos C. Fradelos
- Department of Nursing, Faculty of Nursing, University of Thessaly, GAIOPOLIS, 41110 Larissa, Greece;
| | | |
Collapse
|
15
|
Kotsiou OS, Kotsios VS, Lampropoulos I, Zidros T, Zarogiannis SG, Gourgoulianis KI. PM 2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5088. [PMID: 34064956 PMCID: PMC8151137 DOI: 10.3390/ijerph18105088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The coronavirus disease in 2019 (COVID-19) heavily hit Italy, one of Europe's most polluted countries. The extent to which PM pollution contributed to COVID-19 diffusion is needing further clarification. We aimed to investigate the particular matter (PM) pollution and its correlation with COVID-19 incidence across four Italian cities: Milan, Rome, Naples, and Salerno, during the pre-lockdown and lockdown periods. METHODS We performed a comparative analysis followed by correlation and regression analyses of the daily average PM10, PM2.5 concentrations, and COVID-19 incidence across four cities from 1 January 2020 to 8 April 2020, adjusting for several factors, taking a two-week time lag into account. RESULTS Milan had significantly higher average daily PM10 and PM2.5 levels than Rome, Naples, and Salerno. Rome, Naples, and Salerno maintained safe PM10 levels. The daily PM2.5 levels exceeded the legislative standards in all cities during the entire period. PM2.5 pollution was related to COVID-19 incidence. The PM2.5 levels and sampling rate were strong predictors of COVID-19 incidence during the pre-lockdown period. The PM2.5 levels, population's age, and density strongly predicted COVID-19 incidence during lockdown. CONCLUSIONS Italy serves as a noteworthy paradigm illustrating that PM2.5 pollution impacts COVID-19 spread. Even in lockdown, PM2.5 levels negatively impacted COVID-19 incidence.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Faculty of Nursing, University of Thessaly, GAIOPOLIS, 41110 Larissa, Thessaly, Greece
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Thessaly, Greece; (I.L.); (K.I.G.)
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Thessaly, Greece;
| | - Vaios S. Kotsios
- Metsovion Interdisciplinary Research Center, National Technical University of Athens, 44200 Attica, Athens, Greece;
| | - Ioannis Lampropoulos
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Thessaly, Greece; (I.L.); (K.I.G.)
- Department of Business Administration, University of Patras, 26504 Patras, Peloponnesus, Greece
| | - Thomas Zidros
- Department of Automation Engineering, Alexander Technological Educational Institute of Thessaloniki, 57400 Thessaloniki, Athens, Greece;
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Thessaly, Greece;
| | - Konstantinos I. Gourgoulianis
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Thessaly, Greece; (I.L.); (K.I.G.)
| |
Collapse
|
16
|
Mehmood K, Saifullah, Iqbal M, Abrar MM. Can exposure to PM 2.5 particles increase the incidence of coronavirus disease 2019 (COVID-19)? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140441. [PMID: 32599406 PMCID: PMC7308784 DOI: 10.1016/j.scitotenv.2020.140441] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 08/10/2023]
Affiliation(s)
- Khalid Mehmood
- Research Center for Air Pollution and Health and the MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Saifullah
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Iqbal
- Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi 110062, India
| | - Muhammad Mohsin Abrar
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Sohrabi F, Dianat M, Badavi M, Radan M, Mard SA. Does gallic acid improve cardiac function by attenuation of oxidative stress and inflammation in an elastase-induced lung injury? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1130-1138. [PMID: 32963734 PMCID: PMC7491503 DOI: 10.22038/ijbms.2020.46427.10721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Cardiovascular disease has an important role in mortality caused by lung injury. Emphysema is associated with impaired pulmonary gas exchange efficiency and airflow limitation associated with small airway inflammation. The aim was to evaluate the interactions between lung injury, inflammation, and cardiovascular disease. Since gallic acid has antioxidant and anti-inflammatory effects, we hypothesized that gallic acid protects the lung and the related heart dysfunction in elastase-induced lung injury. Materials and Methods: Forty-eight Sprague-Dawley male rats were randomly divided into six groups: Control, Porcine pancreatic elastase (PPE) , PPE+GA, and 3 groups for different doses of gallic acid (GA 7.5, GA 15, GA 30 mg/kg). PPE was injected intra-tracheally on days 1 and 10 of the test. In each group, electrocardiography, hemodynamic parameters, oxidative stress, and bronchoalveolar lavage fluid were examined. Results: PPE administration showed a decrease in HR and QRS voltage of electrocardiogram parameters, as well as in hemodynamic parameters (P<0.05, P<0.01, and P<0.001) and superoxide dismutase (SOD) (P<0.05). Tumor Necrosis Factor α (TNF-α) (P<0.001), interleukin 6 (IL-6) (P<0.001), interleukin 6 (MDA) (P<0.001), and the total number of white blood cells (P<0.001) showed an increase in PPE groups. Gallic acid preserved the values of hemodynamic properties, oxidative stress, inflammation, and electrocardiogram parameters in comparison to the PPE group. Conclusion: Briefly, this study showed the valuable effect of gallic acid in cardiac dysfunction related to elastase-induced lung injury. These findings suggested that gallic acid, as a natural antioxidant, has a potential therapeutic effect on preventing oxidative stress, inflammation, and subsequent cardiovascular disease.
Collapse
Affiliation(s)
- Farzaneh Sohrabi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Liang Z, Xu C, Ji AL, Liang S, Kan HD, Chen RJ, Lei J, Li YF, Liang ZQ, Cai TJ. Effects of short-term ambient air pollution exposure on HPV infections: A five-year hospital-based study. CHEMOSPHERE 2020; 252:126615. [PMID: 32443276 DOI: 10.1016/j.chemosphere.2020.126615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Human papillomavirus (HPV) infections are common sexually-transmitted diseases among reproductive-aged women with increasing concern. Until now, there are no prior study about the association between HPV infections and ambient air pollution. This study aimed to explore the relationship between short-term exposure to ambient pollutants and daily outpatient visits for HPV infections in China. Data of daily outpatient visits for HPV infections were obtained from January 1, 2014 to December 31, 2018 (1826 days). Over-dispersed Poisson generalized additive models were applied by adjusting weather conditions and day of the week. We identified a total of 39,746 cases for HPV infections. A 10 μg/m3 increase of PM10, PM2.5, SO2, and NO2 or a 0.1 mg/m3 rise of CO in concurrent day (lag 0) concentrations was related to an elevation of 0.822% (95% Cl: 0.282%, 1.36%), 1.05% (95% Cl: 0.280%, 1.81%), 5.72% (95% Cl: 1.79%, 9.65%), 5.02% (95% Cl: 3.45%, 6.60%), and 2.40% (95% Cl: 1.43%, 3.37%) in daily outpatient-visits for HPV infections, respectively. The association was more significant in those women aged 41 or over. As for 10 μg/m3 increase of O3, a -1.33% (95% Cl: -2.13%, -0.530%) change was observed on the lag 03 and such effects appeared to be more obvious in the aged 18-40 group. Our results provided the first evidence that short-term exposure to ambient pollutants was related to, which may be indirectly, the increased risk of HPV infections while O3 may act as a "protective" factor.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Troop 94498 of PLA, Nanyang, 474350, China
| | - Ai-Ling Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Shi Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Brigham Young University Provo, UT 84602, 801-422-4636, USA
| | - Hai-Dong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ren-Jie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jie Lei
- Department of Internal Medicine, Hui Long-Ba Town Hospital, Chongqing, 401335, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhi-Qing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tong-Jian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
19
|
Wang X, Yao Y, An C, Li X, Xiang F, Dong Y, Li M. Simultaneous determination of 20 bioactive components in Chuanxiong Rhizoma from different production origins in Sichuan province by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry combined with multivariate statistical analysis. Electrophoresis 2020; 41:1606-1616. [PMID: 32557720 DOI: 10.1002/elps.202000082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Chuanxiong Rhizoma is a commonly used in traditional Chinese medicine. Chuanxiong Rhizoma is widely distributed in Sichuan province, China, including the cities of Dujiangyan, Pengzhou, Meishan, Qionglai, and Shifang. However, reports on the comparisons of quality of Chuanxiong Rhizoma of different production origins are limited. Therefore, an ultra-HPLC with triple quadrupole MS method was developed for the determination of 20 bioactive components (12 aromatic acids and eight phthalides) in 36 samples from different production origins and further assessed its quality. The contents of these 20 constituents of samples were analyzed by hierarchical cluster analysis and orthogonal partial least squares discrimination analysis; the result indicated that Chuanxiong Rhizoma of different production origins had some differences. Thirteen constituents of quality difference markers were acquired by variable importance for the project. Furthermore, the sum of the contents of these quality difference markers was different from various production origins of Chuanxiong Rhizoma. Meanwhile, Z-ligustilide and senkyunolide A as main constituents of quality difference markers, the rate of various production origins of Chuanxiong Rhizoma was different. This study provides a foundation for the quality assessment of Chuanxiong Rhizoma.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Deyang Food and Drug Safety Inspection and Testing Center, Deyang, P. R. China
| | - Yixin Yao
- Kangmei Pharmaceutical Co., Ltd., Shenzhen, P. R. China
| | - Chang An
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Xi Li
- Sichuan Institute for Food and Drug Control, Chengdu, P. R. China
| | - Fangtao Xiang
- Affiliated Hospital, Leshan Normal University, Leshan, P. R. China
| | - Yangli Dong
- Deyang Food and Drug Safety Inspection and Testing Center, Deyang, P. R. China
| | - Maosen Li
- Deyang Food and Drug Safety Inspection and Testing Center, Deyang, P. R. China
| |
Collapse
|
20
|
Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114465. [PMID: 32268945 PMCID: PMC7128509 DOI: 10.1016/j.envpol.2020.114465] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 05/10/2023]
Abstract
This paper investigates the correlation between the high level of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) lethality and the atmospheric pollution in Northern Italy. Indeed, Lombardy and Emilia Romagna are Italian regions with both the highest level of virus lethality in the world and one of Europe's most polluted area. Based on this correlation, this paper analyzes the possible link between pollution and the development of acute respiratory distress syndrome and eventually death. We provide evidence that people living in an area with high levels of pollutant are more prone to develop chronic respiratory conditions and suitable to any infective agent. Moreover, a prolonged exposure to air pollution leads to a chronic inflammatory stimulus, even in young and healthy subjects. We conclude that the high level of pollution in Northern Italy should be considered an additional co-factor of the high level of lethality recorded in that area.
Collapse
Affiliation(s)
- Edoardo Conticini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, viale Mario Bracci 1, Siena, Italy
| | - Bruno Frediani
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, viale Mario Bracci 1, Siena, Italy
| | - Dario Caro
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark.
| |
Collapse
|