1
|
Akbari A, Peighambardoust SJ, Kazemian H. Comparative study on the impact of physicochemical characteristics of the activated carbons derived from biochar/hydrochar on the adsorption performances. ENVIRONMENTAL RESEARCH 2025; 270:121022. [PMID: 39914715 DOI: 10.1016/j.envres.2025.121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
This research presents a comparative study on the characteristics of the activated carbon (AC) produced from biomass-derived hydrochar (HC) and biochar (BC) and how their physicochemical features affect their performance in organic pollutant remediation. Using a suite of characterization techniques, including BET, SEM, XRD, Raman Spectroscopy, elemental composition, and FTIR, it was determined that HC-derived AC (HAC) exhibited higher oxidation, greater porosity, and more pronounced amorphous structures compared to BC-derived AC (BAC). The HC, BC, HAC, and BAC were also assessed as their oxygenated functional groups (OFGs) and aromatic compounds using a semi-quantitative analysis technique. Notably, HC and HAC displayed higher reactivity, while BC and BAC showed greater aromaticity. Adsorption tests for methylene blue (MB) and ciprofloxacin (CIP) revealed that under optimal conditions (contact time: 170 min, MB and CIP concentrations: 400 mg/L, and temperature: 25 °C), HAC achieved superior adsorption capacities (1261.519 mg/g for MB at pH: 8.5 and 1132.86 mg/g for CIP at pH: 5) compared to BAC (1094.704 mg/g for MB at pH: 10 and 838.492 mg/g for CIP at pH: 5). The adsorption processes for MB and CIP were found endothermic and spontaneous, mainly driven by electrostatic attraction, H-bonding, hydrophobic, n-π, and π-π interactions. Furthermore, the reusability study demonstrated high pollutant removal efficiency for HAC and BAC even after 5 adsorption-desorption cycles. This research underscores the superiority of HC as feedstock for producing AC over BC, and it emphasizes the potential of HAC and BAC as cost-effective and reusable adsorbents for enhancing wastewater treatment efficacy.
Collapse
Affiliation(s)
- Ali Akbari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Hossein Kazemian
- Materials Technology & Environmental Research Lab (MATTER), University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environment and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC, V2N4Z9, Canada
| |
Collapse
|
2
|
Alom N, Roy T, Sarkar T, Rasel M, Hossain MS, Jamal M. Protocol for the removal of polyvinyl chloride microplastics from water using activated jute stick charcoal. STAR Protoc 2025; 6:103642. [PMID: 39982824 PMCID: PMC11889659 DOI: 10.1016/j.xpro.2025.103642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
We present a protocol to remove polyvinyl chloride-based microplastics (MPs) from aquatic environments using jute stick activated charcoal (JSAC) as an adsorbent. We describe steps for preparing JSAC by pyrolyzing jute sticks at high temperatures without oxygen, followed by chemical activation with HCl. We also detail the procedures for the post-functionalization of JSAC and for the collection, processing, and measurement of MPs. For complete details on the use and execution of this protocol, please refer to Alom et al.1.
Collapse
Affiliation(s)
- Nur Alom
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Limited, Incubation Centre, KUET Business Park, Khulna 9203, Bangladesh
| | - Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna 9203, Bangladesh; Microplastics Solution Limited, Incubation Centre, KUET Business Park, Khulna 9203, Bangladesh
| | - Tanny Sarkar
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Limited, Incubation Centre, KUET Business Park, Khulna 9203, Bangladesh
| | - Md Rasel
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Limited, Incubation Centre, KUET Business Park, Khulna 9203, Bangladesh
| | - Md Sanwar Hossain
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Limited, Incubation Centre, KUET Business Park, Khulna 9203, Bangladesh
| | - Mamun Jamal
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Limited, Incubation Centre, KUET Business Park, Khulna 9203, Bangladesh.
| |
Collapse
|
3
|
Alom N, Roy T, Sarkar T, Rasel M, Hossain MS, Jamal M. Removal of microplastics from aqueous media using activated jute stick charcoal. Heliyon 2024; 10:e37380. [PMID: 39309784 PMCID: PMC11414494 DOI: 10.1016/j.heliyon.2024.e37380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Microplastics (MPs), which are repositories of various pollutants, have significant effects on the people and the environment. Therefore, there is an urgent need for efficient and eco-friendly techniques to eliminate microplastics from water-based environments. This study introduces a new method for producing jute stick-activated charcoal (JSAC) by placing jute sticks on high-temperature pyrolysis without oxygen, followed by chemical activation with HCl. This process greatly enhances the adsorption capacity of JSAC for polyvinylchloride-based microplastics (PVC-MPs). JSAC was characterized using UV-Vis, FT-IR, XRD, and SEM studies both before and after adsorption. The study investigated the influence of pH, adsorbent quantity, and contact time on the optimization of the JSAC process. The PVC-MPs exhibited a maximum adsorption capacity of 94.12 % for the target MPs (5 g L-1) within 120 min when 10 g L-1 of JSAC was added at pH 7. This work also examined adsorption rate and various isotherm models. Adsorption kinetics analysis reveals electrostatic, hydrogen bond, π-π, and hydrophobic interactions are the combined forces responsible for MPs adsorption onto JSAC. However, the decrease in hydrophobicity in acidic or basic media led to a decrease in adsorption. The isotherm analysis was conducted using the Langmuir isotherm model, and predicted the maximum adsorption capacity of PVC-MPs to be 4.4668 mg/g. Furthermore, by employing density functional theory, the interaction energy after PVC-MP adsorption was calculated to be -269 kcal/mol, demonstrating robust adsorption and agreement with the experimental findings. Due to its large surface area and porous structure containing many functional groups, JSAC can potentially be used to treat MP contamination in water.
Collapse
Affiliation(s)
- Nur Alom
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tanny Sarkar
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Rasel
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Sanwar Hossain
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Mamun Jamal
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| |
Collapse
|
4
|
Shabi AH, Prima Hardianto Y, Shaheen Shah S, Omar Al-Qwairi F, Mohamed MM, Nasiruzzaman Shaikh M, Saeed Alzahrani A, Aziz MA. Advancements in Olive-derived Carbon: Preparation Methods and Sustainable Applications. Chem Asian J 2024; 19:e202400045. [PMID: 38375590 DOI: 10.1002/asia.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
In the realm of material science, carbon materials, especially olive-derived carbon (ODC), have become vital due to their sustainability and diverse properties. This review examines the sustainable extraction and use of ODC, a carbohydrate-rich by-product of olive biomass. We focus on innovative preparation techniques like pyrolysis, which are crucial forenhancing ODC's microstructure and surface properties. Variables such as activating agents, impregnation ratios, and pyrolysis conditions significantly influence these properties. ODC's high specific surface area renders it invaluable for applications in energy storage (batteries and supercapacitors) and environmental sectors (water purification, hydrogen storage). Its versatility and accessibility underscore its potential for broad industrial use, makingit as a key element in sustainable development. This review provides a detailed analysis of ODC preparation methodologies, its various applications, and its role in advancing sustainable energy solutions. We highlight the novelty of ODC research and its impact on future studies, establishing this review as a crucial resource for researchers and practitioners in sustainable carbon materials. As global focus shifts towards eco-friendly solutions, ODC emerges as a critical component in shaping a sustainable, innovation-driven future.
Collapse
Affiliation(s)
- A H Shabi
- Interdisciplinary Research Center for Hydrogen Technology and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Yuda Prima Hardianto
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Fatima Omar Al-Qwairi
- Interdisciplinary Research Center for Hydrogen Technology and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mostafa M Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technology and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technology and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Sebastian V. Adsorptive detoxification of Cd 2+ and Pb 2+ from wastewater using MWCNTs functionalized with -di-(2-ethyl hexyl phosphoric acid) and bis-(2,4,4-trimethyl pentyl) phosphonic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122979-122995. [PMID: 37980321 DOI: 10.1007/s11356-023-30808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/28/2023] [Indexed: 11/20/2023]
Abstract
Selective and rapid determination of procedure for Cd2+ and Pb2+ samples using MWCNT surfaces can be modified by loading ligands such as D2EHPA and Cyanex 272 which is described. The adsorbent was modified with D2EHPA and Cyanex 272. Effect of pH, amount of adsorbent, contact time for adsorption, and the optimum eluent for the quantitative recovery of Cd2+ and Pb2+ were investigated and the subsequent determination by FAAS. The adsorption was found to be mainly due to the chemical interactions between the metal ions and functional groups -COO- and -OH which were characterized by FT-IR. The adsorption of metal occurs at pH 4.5 with 500 mg of MWCNTs. The enrichment factor was 40 and 30. The detection limit was 0.03 and 0.05 μg L-1. The quantitative recovery of metal ion used 1 mol L-1 HNO3. The thermodynamic parameter of Langmuir and Freundlich adsorption isotherm revealed that the adsorption of free energy (ΔG) was spontaneous and the monolayer adsorption of Cd2+ and Pb2+ was mainly on the surfaces. The adsorbent performance of R2 in the range of 0.93-0.99 and also the identified adsorption efficiency of Cd2+ and Pb2+ are linear or non-linear curves respectively. The proposed method was applied to heavy metals from environmental samples.
Collapse
Affiliation(s)
- Vellaichamy Sebastian
- Department of Chemistry, College of Engineering, Guindy Campus, Anna University, Chennai, Tamil Nadu, 600 025, India.
- Department of Applied Sciences and Humanities, Madras Institute of Technology, Anna University, Chennai, Tamil Nadu, 600 044, India.
| |
Collapse
|
6
|
Ai S, Qin Y, Hong Y, Liu L, Yu W. Low-temperature aerobic carbonization and activation of cellulosic materials for Pb 2+ removal in water source. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120215. [PMID: 36150617 DOI: 10.1016/j.envpol.2022.120215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Targeting the removal of Pb2+ in wastewater, cellulosic materials were carbonized in an aerobic environment and activated via ion exchange. The maximum adsorption capacity reached 243.5 mg/g on an MCC-derived adsorbent activated with sodium acetate. The modified porous properties improved the adsorption capacity. The capacity could be completely recovered five times through elution with EDTA. Because of the negative effects of Ni, Mg, and Ca elements, the adsorption capacities of activated carbonized natural materials were lower than that of pure cellulose. N2 adsorption measurement showed that the adsorbent had a large specific surface area as well as abundant micropores and 4-nm-sized mesopores. FTIR and surface potential results proved that carboxyl group was generated in the aerobic carbonization, and was deprotonated during ion exchange. This adsorbent consisted of C-C bonds as the building blocks and hydrophilic groups on the surface. XPS results demonstrated that the Pb 4f binding energies were reduced by 0.7-0.8 eV due to the interaction between Pb2+ and the activated adsorbent, indicating that the carboxylate groups bonded with Pb2+ through coordination interactions. Pseudo-second-order and Elovich kinetic models were well fitted with the adsorption processes on the pristine and activated carbonized adsorbents, indicative of chemisorption on heterogeneous surfaces. The Freundlich expression agreed well with the data measured, and the pristine and activated adsorbents had weak and strong affinities for Pb2+, respectively. The Pb2+ adsorption process was exothermic and spontaneous, and heat release determined the spontaneity. The adsorption capacity is attributed to the carboxylate groups and pores generated in the aerobic oxidation and ion exchange procedures.
Collapse
Affiliation(s)
- Shuo Ai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China.
| | - Yue Qin
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| | - Yuxiang Hong
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| | - Linghui Liu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| | - Wanguo Yu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City, 545006, China
| |
Collapse
|
7
|
Fabrication of high-performance supercapacitor using date leaves-derived submicron/nanocarbon. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Chowdhury S, Koyappathody TMF, Karanfil T. Removal of halides from drinking water: technological achievements in the past ten years and research needs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55514-55527. [PMID: 35689777 DOI: 10.1007/s11356-022-21346-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Disinfection is an essential process for drinking water supplies resulting in the formation of unintended disinfection by-products (DBPs), many of which are potentially toxic and are known as the possible or probable human carcinogens. As of now, 100+ DBPs were characterized while about 600+ others can be formed in the supply water. To protect the human health, many regulatory agencies have set the guideline values for several DBPs. Removal of halide ions and natural organic matter prior to disinfection is an important step to reduce DBPs, and the associated exposure and risks. To date, many publications have reported various methods for halide removal from drinking water. The most review about halide removal technologies, associated challenges, and future research needs was published in 2012. Since then, a number of studies have been published on different methods of halide removal techniques. This paper aims to review the state of research on halide removal techniques focusing on the development during the past 10 years (2012-2021). The techniques were clustered into six major groups: adsorption, ion exchange, coagulation, advanced oxidation, membrane separation, and combined techniques. The progress on these groups of technologies, their advantages, and limitations were examined, and the future research directions to produce the safe drinking water were identified.
Collapse
Affiliation(s)
- Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Tariq M F Koyappathody
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
9
|
Rauf M, Shah SS, Shah SK, Shah SNA, Haq TU, Shah J, Ullah A, Ahmad T, Khan Y, Aziz MA, Hayat K. Facile hydrothermal synthesis of zinc sulfide nanowires for high-performance asymmetric supercapacitor. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Chowdhury IR, Chowdhury S, Mazumder MAJ, Al-Ahmed A. Removal of lead ions (Pb 2+) from water and wastewater: a review on the low-cost adsorbents. APPLIED WATER SCIENCE 2022; 12:185. [PMID: 35754932 PMCID: PMC9213643 DOI: 10.1007/s13201-022-01703-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/27/2022] [Indexed: 05/31/2023]
Abstract
The presence of lead compounds in the environment is an issue. In particular, supply water consumption has been reported to be a significant source of human exposure to lead compounds, which can pose an elevated risk to humans. Due to its toxicity, the International Agency for Research on Cancer and the US Environmental Protection Agency (USEPA) have classified lead (Pb) and its compounds as probable human carcinogens. The European Community Directive and World Health Organization have set the maximum acceptable lead limits in tap water as 10 µg/L. The USEPA has a guideline value of 15 µg/L in drinking water. Removal of lead ions from water and wastewater is of great importance from regulatory and health perspectives. To date, several hundred publications have been reported on the removal of lead ions from an aqueous solution. This study reviewed the research findings on the low-cost removal of lead ions using different types of adsorbents. The research achievements to date and the limitations were investigated. Different types of adsorbents were compared with respect to adsorption capacity, removal performances, sorbent dose, optimum pH, temperature, initial concentration, and contact time. The best adsorbents and the scopes of improvements were identified. The adsorption capacity of natural materials, industrial byproducts, agricultural waste, forest waste, and biotechnology-based adsorbents were in the ranges of 0.8-333.3 mg/g, 2.5-524.0 mg/g, 0.7-2079 mg/g, 0.4-769.2 mg/g, and 7.6-526.0 mg/g, respectively. The removal efficiency for these adsorbents was in the range of 13.6-100%. Future research to improve these adsorbents might assist in developing low-cost adsorbents for mass-scale applications.
Collapse
Affiliation(s)
- Imran Rahman Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
- Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Mohammad Abu Jafar Mazumder
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| |
Collapse
|
11
|
Shah SS, Yang H, Ashraf M, Qasem MAA, Hakeem AS, Aziz MA. Preparation of Highly Stable and Electrochemically Active Three-dimensional Interconnected Graphene Frameworks from Jute Sticks. Chem Asian J 2022; 17:e202200567. [PMID: 35726484 DOI: 10.1002/asia.202200567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Indexed: 11/09/2022]
Abstract
Over the past few years, the environmentally friendly synthesis of nanomaterials, including graphene using green chemistry, has attracted tremendous attention due to its easy handling, low cost, and biocompatibility. Here we demonstrate a facile and efficient green synthesis route for producing highly stable and electrochemically active three-dimensional interconnected graphene frameworks (3DIGF) from jute sticks. Initially, jute sticks derived three-dimensional amorphous activated carbon nanosheets (3DAACNs) were prepared at low temperatures (i.e., 850 °C) in an inert environment. The resultant 3DAACNs were then heat treated at a high temperature (i.e., 2700 °C) under an inert environment, resulting in 3DIGF. The prepared carbonaceous materials were fully characterized, and various experimental techniques confirmed the preparation of 3DIGF. The prepared 3DIGF shows a highly stable nature in thermal and chemical environments and demonstrates a highly dynamic nature for the electrooxidation of sulfide. This study could be considered a vital contribution towards the economic and simple approach for preparing 3DIGF from biomass.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- King Fahd University of Petroleum & Minerals, Physics Department, Building 6, 31261, Dhahran, SAUDI ARABIA
| | - Hsiharng Yang
- National Chung Hsing University, Graduate Institute of Precision Engineering and Innovation and Development Center of Sustainable Agriculture (IDCSA), TAIWAN
| | - Muhammad Ashraf
- King Fahd University of Petroleum & Minerals, Chemistry, 31261, Dhahran, SAUDI ARABIA
| | - Mohammed Ameen Ahmed Qasem
- King Fahd University of Petroleum & Minerals, Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), 31261, Dhahran, SAUDI ARABIA
| | - Abbas Saeed Hakeem
- King Fahd University of Petroleum & Minerals, Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), 31261, Dhahran, SAUDI ARABIA
| | - Md Abdul Aziz
- King Fahd University of Petroleum & Minerals, Center of Research excellence in Nanotechnology, KFUPM Box # 81, 31261, Dhahran, SAUDI ARABIA
| |
Collapse
|
12
|
Optimization of carbon nanotube growth via response surface methodology for Fischer-Tropsch synthesis over Fe/CNT catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Haq B, Aziz MA, Al Shehri D, Muhammed NS, Basha SI, Hakeem AS, Qasem MAA, Lardhi M, Iglauer S. Date-Leaf Carbon Particles for Green Enhanced Oil Recovery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1245. [PMID: 35457953 PMCID: PMC9029107 DOI: 10.3390/nano12081245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023]
Abstract
Green enhanced oil recovery (GEOR) is an environmentally friendly enhanced oil recovery (EOR) process involving the injection of green fluids to improve macroscopic and microscopic sweep efficiencies while boosting tertiary oil production. Carbon nanomaterials such as graphene, carbon nanotube (CNT), and carbon dots have gained interest for their superior ability to increase oil recovery. These particles have been successfully tested in EOR, although they are expensive and do not extend to GEOR. In addition, the application of carbon particles in the GEOR method is not well understood yet, requiring thorough documentation. The goals of this work are to develop carbon nanoparticles from biomass and explore their role in GEOR. The carbon nanoparticles were prepared from date leaves, which are inexpensive biomass, through pyrolysis and ball-milling methods. The synthesized carbon nanomaterials were characterized using the standard process. Three formulations of functionalized and non-functionalized date-leaf carbon nanoparticle (DLCNP) solutions were chosen for core floods based on phase behavior and interfacial tension (IFT) properties to examine their potential for smart water and green chemical flooding. The carboxylated DLCNP was mixed with distilled water in the first formulation to be tested for smart water flood in the sandstone core. After water flooding, this formulation recovered 9% incremental oil of the oil initially in place. In contrast, non-functionalized DLCNP formulated with (the biodegradable) surfactant alkyl polyglycoside and NaCl produced 18% more tertiary oil than the CNT. This work thus provides new green chemical agents and formulations for EOR applications so that oil can be produced more economically and sustainably.
Collapse
Affiliation(s)
- Bashirul Haq
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dhafer Al Shehri
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nasiru Salahu Muhammed
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Shaik Inayath Basha
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abbas Saeed Hakeem
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammed Ameen Ahmed Qasem
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammed Lardhi
- Department of Reservoir Geoscience and Engineering, IFP School, 69 Avenue Paul Doumer, 92500 Rueil-Malmaison, France
| | - Stefan Iglauer
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| |
Collapse
|
14
|
Chowdhury IR, Mazumder MAJ, Chowdhury S, Qasem MAA, Aziz MA. Model-based Application for Adsorption of Lead (II) from Aqueous
Solution using Low-cost Jute Stick Derived Activated Carbon. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201002093403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Removal of lead (II) ions from supply water using an inexpensive adsorbent is essential. It is
recommended that low-cost adsorbents are developed to effectively remove lead (II) ions from aqueous solutions. The aim
of the study is to develop and validate models for predicting the performance of carboxylated jute stick derived activated
carbon (JSAC-COOH) in removing lead (II) ions from aqueous solution, which can assist the water supply authorities in
supplying lead (II) free drinking water to the communities at a low-cost.
Methods:
Controlled laboratory experiments were conducted following the statistical “Design of Experiments” through
varying the factors affecting the performance of JSAC-COOH in removing lead (II) ions. The performance of JSACCOOH was investigated for different concentrations of lead (II) ions (range: 50 - 500 mg/L) at variable experimental
conditions (temperature: 15°C and 27°C; pH: 4.0 and 7.0) and time (1, 10, 30 and 60 min). Several models (Linear and
non-linear) were investigated and validated for predicting the concentrations of lead (II) ions in aqueous solution.
Results:
The prepared JSAC-COOH had a surface area of 615.3 m2
/g. In 60 min, up to 99.8% removal of lead (II) ions
was achieved. Few models showed very good to excellent predictive capabilities with coefficients of determination in the
range of 0.85–0.95. The model validation experiments showed the correlation coefficients in the range of 0.84 – 0.98.
Conclusion:
The models have the capabilities to reasonably predict the final concentrations of lead (II) ions, which can be
used in controlling the effluent lead (II) ion concentrations. The proposed adsorbent is likely to be low-cost as it was
developed using the commonly available agricultural byproduct.
Collapse
Affiliation(s)
- Imran Rahman Chowdhury
- Department of Civil & Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| | | | - Shakhawat Chowdhury
- Department of Civil & Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| | - Mohammed Ameen Ahmed Qasem
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| |
Collapse
|
15
|
Mandal S, Calderon J, Marpu SB, Omary MA, Shi SQ. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103869. [PMID: 34418820 DOI: 10.1016/j.jconhyd.2021.103869] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
In this study, an effective and green adsorbent was prepared by the self- activation of kenaf fiber and then the kenaf-based activated carbon (KAC) was applied for the removal of lead Pb(II), copper Cu(II), and Congo red (CR) dye from an aqueous solution by the process of adsorption. The surface morphology of mesoporous adsorbent was characterized. The KAC showed good capacity of adsorption of as Pb(II), Cu(II), and anionic dye CR in very short period of agitation. The adsorbent efficiency of metal ions and dye was estimated by varying the adsorbent dose, pH, contact time, initial metals and dye concentration, and temperature. Optimum adsorption of metal ions and CR dye was observed at pH 6, and at pH 4 at 120 min, respectively. The adsorption isotherm was described by the Langmuir and Freundlich isotherm equations. The green adsorbent followed the pseudo-second-order kinetic model with correlation coefficients R2 value >0.99. The increase in adsorption temperature enhanced the adsorption efficiency for both heavy metals and dye. The KAC showed no significant loss of the adsorption capacity after 3 cycles of reuse.
Collapse
Affiliation(s)
- Sujata Mandal
- Department of Mechanical Engineering, University of North Texas, TX, USA.
| | - Jose Calderon
- Department of Chemistry, University of North Texas, TX, USA
| | | | | | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, TX, USA.
| |
Collapse
|
16
|
Basha SI, Aziz MA, Maslehuddin M, Ahmad S. Preparation, Characterization, and Evaluation of the Anticorrosion Performance of Submicron/Nanocarbon from Jute Sticks. Chem Asian J 2021; 16:3914-3930. [PMID: 34529339 DOI: 10.1002/asia.202100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Indexed: 02/04/2023]
Abstract
Jute stick, one of the most commonly and abundantly available agricultural waste product, was converted to a value-added submicron/nano jute carbon by using pyrolysis and high-energy ball milling techniques. The submicron/nano jute carbon was characterized using FE-SEM, TEM, EDS, XRD, XPS and Raman spectroscopy. The anticorrosive performance of the submicron/nano jute carbon was investigated through electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and salt spray techniques, on mild steel plates coated with a mixture of epoxy resin and the submicron/nano jute carbon. The electrochemical impedance of the steel coated with the composite coating was two orders of magnitudes higher than that of the specimen coated with neat epoxy. Consequently, the corrosion rate of specimens coated with composite coating was 13-20 times higher than that of steel coated with neat epoxy coating. The salt spray results also indicate an improvement in the corrosion resistance performance of the composite coating compared to the neat epoxy. The uniform distribution of the submicron/nano jute carbon particles in the epoxy resin improved the denseness of the composite coating by acting as a barrier against the diffusion of chloride, moisture, and oxygen, thus, improving the corrosion resistance of the developed coating.
Collapse
Affiliation(s)
- Shaik Inayath Basha
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Maslehuddin
- Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shamsad Ahmad
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
17
|
High-sensitive sensor for the simultaneous determination of phenolics based on multi-walled carbon nanotube/NiCoAl hydrotalcite electrode material. Mikrochim Acta 2021; 188:308. [PMID: 34453216 DOI: 10.1007/s00604-021-04948-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The ternary NiCoAl hydrotalcite (NiCoAl-LDH) was combined with carboxylic multi-walled carbon nanotube (MWCNT) to fabricate a novel electrochemical sensor for simultaneously determining the co-existing trace phenolic substances. The morphology, structure, and electrochemical behavior of the as-prepared materials were characterized by various techniques. Benefitting from the great conductivity of MWCNT and high electrocatalytic activity of NiCoAl-LDH for phenolic substances, the advanced MWCNT/NiCoAl-LDH sensor presented a fast response, high sensitivity, excellent stability, and satisfactory replicability. The sensor offered good linear responses in the ranges1.50~600 μM to hydroquinone (HQ), 5.00~1.03 × 103 μM to catechol (CC), and 6.00 × 10-2~250 μM to bisphenol A (BPA). The detection limits of HQ, CC, and BPA were 0.4, 0.8, and 6. × 10-3 μM (S/N = 3), respectively. In environmental water, the sensor achieved satisfactory recoveries for the simultaneous detection of HQ (98.6~101%), CC (98.0~101%), and BPA (97.5~101%), with relative standard deviations less than 4.4%.
Collapse
|
18
|
Akanda MR, Bibi A, Aziz MA. Recent Advances in the Use of Biomass‐Derived Activated Carbon as an Electrode Material for Electroanalysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202101010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Aisha Bibi
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahad University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
19
|
Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present Status and Future Prospects of Jute in Nanotechnology: A Review. CHEM REC 2021; 21:1631-1665. [PMID: 34132038 DOI: 10.1002/tcr.202100135] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | | | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
20
|
Evaluation of the impact of activated carbon-based filtration system on the concentration of aflatoxins and selected heavy metals in roasted coffee. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Velusamy S, Roy A, Sundaram S, Kumar Mallick T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. CHEM REC 2021; 21:1570-1610. [PMID: 33539046 DOI: 10.1002/tcr.202000153] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/09/2022]
Abstract
Textile wastewater heavy metal pollution has become a severe environmental problem worldwide. Metal ion inclusion in a dye molecule exhibits a bathochromic shift producing deeper but duller shades, which provides excellent colouration. The ejection of a massive volume of wastewater containing heavy metal ions such as Cr (VI), Pb (II), Cd (II) and Zn (II) and metal-containing dyes are an unavoidable consequence because the textile industry consumes large quantities of water and all these chemicals cannot be combined entirely with fibres during the dyeing process. These high concentrations of chemicals in effluents interfere with the natural water resources, cause severe toxicological implications on the environment with a dramatic impact on human health. This article reviewed the various metal-containing dye types and their heavy metal ions pollution from entryway to the wastewater, which then briefly explored the effects on human health and the environment. Graphene-based absorbers, specially graphene oxide (GO) benefits from an ordered structured, high specific surface area, and flexible surface functionalization options, which are indispensable to realize a high performance of heavy metal ion removal. These exceptional adsorption properties of graphene-based materials support a position of ubiquity in our everyday lives. The collective representation of the textile wastewater's effective remediation methods is discussed and focused on the GO-based adsorption methods. Understanding the critical impact regarding the GO-based materials established adsorption portfolio for heavy metal ions removal are also discussed. Various heavy-metal ions and their pollutant effect, ways to remove such heavy metal ions and role of graphene-based adsorbent including their demand, perspective, limitation, and relative scopes are discussed elaborately in the review.
Collapse
Affiliation(s)
- Sasireka Velusamy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Tapas Kumar Mallick
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| |
Collapse
|
22
|
Basha SI, Aziz A, Maslehuddin M, Ahmad S, Hakeem AS, Rahman MM. Characterization, Processing, and Application of Heavy Fuel Oil Ash, an Industrial Waste Material – A Review. CHEM REC 2020; 20:1568-1595. [DOI: 10.1002/tcr.202000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Shaik Inayath Basha
- Department of Civil and Environmental Engineering King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT) King Fahd University of Petroleum and Minerals (KFUPM) KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | - M. Maslehuddin
- Center for Engineering Research King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Shamsad Ahmad
- Department of Civil and Environmental Engineering King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abbas Saeed Hakeem
- Center of Research Excellence in Nanotechnology (CENT) King Fahd University of Petroleum and Minerals (KFUPM) KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | - Mohammad Mizanur Rahman
- Center of Research Excellence in Corrosion King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
23
|
Aziz A, Shah SS, Kashem A. Preparation and Utilization of Jute-Derived Carbon: A Short Review. CHEM REC 2020; 20:1074-1098. [PMID: 32794376 DOI: 10.1002/tcr.202000071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
This article summarizes the preparation and applications of carbon derived from jute sticks and fibers that are low-cost, widely available, renewable, and environmentally friendly. Both the fibers and sticks are considered ideal candidates of carbon preparation because they are composed of cellulose, hemicelluloses, and lignin, and contain negligible ash content. Various carbon preparation methods including simple pyrolysis, pyrolysis with chemical and physical activations are discussed. The impacts of several parameters including types of activating agents, impregnation ratio, and temperature on their morphology, surface area, pore size, crystallinity, and surface functional groups are also emphasized. Various treatments to endow functionalization for increasing the practical applicability, such as chemical, physical, and physico-chemical methods, are discussed. In addition, applications of jute-derived carbon in various practical areas, including energy storage, water treatment, and sensors, are also highlighted in this report. Due to the porous fine structure and a large specific surface area, the jute-derived carbon could be considered as a powerful candidate material for various industrial applications. Finally, possible future prospects of jute-derived carbon for various applications are pointed out.
Collapse
Affiliation(s)
- Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Abul Kashem
- Mizushori System Co., 61-1 Ikehanacho, Kitaku, Nagoya, Japan
| |
Collapse
|