1
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
2
|
Zhang X, Li Z. Investigating industrial PAH air pollution in relation to population exposure in major countries: A scoring approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117801. [PMID: 36996564 DOI: 10.1016/j.jenvman.2023.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common air pollutants worldwide, associated with industrial processes. In the general population, both modeling and field studies revealed a positive correlation between air PAH concentrations and urinary PAH metabolite levels. Many countries lack population urinary data that correspond to local PAH air concentrations. Thus, we proposed a scoring-based approximate approach to investigating that correlation in selected countries, hypothesizing that PAH air concentrations in selected regions could represent the national air quality influenced by industrial emission and further correlate to PAH internal exposure in the general population. This research compiled 85 peer-reviewed journal articles and 9 official monitoring datasets/reports covering 34 countries, 16 of which with both atmospheric PAH data and human biomonitoring data. For the air pollution score (AirS), Egypt had the highest AirS at 0.94 and Pakistan was at the bottom of the score ranking at -1.95, as well as the median in the UK (AirS: 0.50). For the population exposure score (ExpS), China gained the top ExpS at 0.44 and Spain was with the lowest ExpS of -1.52, with the median value in Italy (ExpS: 0.43). Through the correlation analysis, atmospheric PAHs and their corresponding urinary metabolites provided a positive relationship to a diverse extent, indicating that the related urinary metabolites could reflect the population's exposure to specific atmospheric PAHs. The findings also revealed that in the 16 selected countries, AirS indexes were positively correlated with ExpS indexes, implying that higher PAH levels in the air may lead to elevated metabolite urinary levels in general populations. Furthermore, lowering PAH air concentrations could reduce population internal PAH exposure, implying that strict PAH air regulation or emission would reduce health risks for general populations. Notably, this study was an ideal theoretical research based on proposed assumptions to some extent. Further research should focus on understanding exposure pathways, protecting vulnerable populations, and improving the PAH database to optimize PAH pollution control.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Aslam R, Sharif F, Baqar M, Nizami AS. Association of human cohorts exposed to blood and urinary biomarkers of PAHs with adult asthma in a South Asian metropolitan city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35945-35957. [PMID: 36538227 DOI: 10.1007/s11356-022-24445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are a major global problem that causes the greatest impact on urban settings and have been linked to bronchial asthma in both children and adults in Pakistan. The association between exposure of polycyclic aromatic hydrocarbons (PAHs) and asthma in the adult population is less clear. The current study aimed to assess the clinico-chemical parameters and blood levels of naphthalene phenanthrene, pyrene, and 1,2-benzanthracene and urinary levels of 1-OH pyrene and 1-OH phenanthrene as well as asthma-related biomarkers immunoglobulin E (IgE), resistin, and superoxide dismutase (SOD) of oxidative stress and other hematologic parameters in adults and their relationship with bronchial asthma. The GC/MS analysis showed higher mean concentrations of blood PAHs in asthma respondents (4.48 ± 1.34, 3.46 ± 1.04, 0.10 ± 0.03, and 0.29 ± 0.09) (ng/mL) as compared to controls (3.07 ± 0.92, 1.71 ± 0.51, 0.06 ± 0.02, and 0.11 ± 0.03) (ng/mL), with p = .006, p = .001, p = .050, and p = .001. Similarly, urinary levels of 1-OHpyr and 1-OHphe were significantly increased in adults with bronchial asthma (0.54 ± 0.16; 0.13 ± 0.04) (μmol/mol-Cr) than in controls (0.30 ± 0.09; 0.05 ± 0.02) (μmol/mol-Cr), with p = .002 and p = .0001, respectively, with a significant positive correlation to asthma severity. The asthma-related biomarkers IgE, resistin, and SOD were significantly higher (p 0.0001, 0.0001, and 0.0001) in people with asthma than in control persons. The findings showed that higher blood and urine PAHs levels were linked to higher asthma risk in adults and significant interaction with participants who smoked, had allergies, had a family history of asthma, and were exposed to dust. The current study's findings will be useful to local regulatory agencies in Lahore in terms of managing exposure and advocating efforts to minimize PAH pollution and manage health.
Collapse
Affiliation(s)
- Rabia Aslam
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan.
| | - Faiza Sharif
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan.
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre (SDSC), Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
León-Arce M, Flores-Ramírez R, Paz-Tovar C, Palacios-Ramírez A, Pérez-Vázquez FJ, Ramírez-Landeros LM, Van Brussel E, Díaz-Barriga F. [CRCP units: a strategy to assess health risks in children in contaminated communitiesUnidades RISC: uma estratégia para avaliar os riscos de saúde na população infantil de comunidades contaminadas]. Rev Panam Salud Publica 2023; 47:e29. [PMID: 36909806 PMCID: PMC9976273 DOI: 10.26633/rpsp.2023.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/25/2022] [Indexed: 03/05/2023] Open
Abstract
Humanitarian crises can occur in places affected by chemical, physical, biological, and social threats, especially when these threats interact with each other and cause a syndemic. In order to avoid crises in these places, it is necessary to introduce mitigation measures that we have framed as "humanitarian scenarios". Due to their nature, implementation of these interventions requires the creation of multidisciplinary operational groups with a work strategy that integrates them into the affected community. In the case of the child population, the operational group was called the 'childhood risks in contaminated places' (CRCP) unit; contaminated places meaning localities impacted by chemical, physical, or biological threats. The strategy has six phases: (i) planning the survey and site visit; (ii) community involvement in identifying threats, vulnerabilities, and routes of exposure (the path of pollutants from their source to the receiving population), and in preparing joint work for the subsequent phases; iii) prioritization of risks identified through environmental monitoring and use of biomarkers of exposure and effects; iv) risk prevention through the creation of various 'capacities and alternatives for the prevention of syndemic threats'; (v) advocacy to implement these capacities and alternatives through risk communication and local training; and (vi) protection through measures that include telehealth, social progress, and innovation to improve health coverage. The strategy has been implemented in different contexts, and in some of them it has been enriched by analysis of respect for human rights.
Collapse
Affiliation(s)
- Mauricio León-Arce
- Facultad de Medicina Universidad Autónoma de San Luis Potosí México Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México
| | - Rogelio Flores-Ramírez
- Facultad de Medicina Universidad Autónoma de San Luis Potosí México Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México
| | - Claudia Paz-Tovar
- Departamento de Estudios Experimentales y Rurales Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán México Departamento de Estudios Experimentales y Rurales, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Andrés Palacios-Ramírez
- Facultad de Psicología Universidad Autónoma de San Luis Potosí México Facultad de Psicología, Universidad Autónoma de San Luis Potosí, México
| | - Francisco J Pérez-Vázquez
- Facultad de Medicina Universidad Autónoma de San Luis Potosí México Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México
| | - Laura M Ramírez-Landeros
- Facultad de Medicina Universidad Autónoma de San Luis Potosí México Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México
| | - Evelyn Van Brussel
- Facultad de Medicina Universidad Autónoma de San Luis Potosí México Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México
| | - Fernando Díaz-Barriga
- Facultad de Medicina Universidad Autónoma de San Luis Potosí México Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México
| |
Collapse
|
5
|
Ravanbakhsh M, Yousefi H, Lak E, Ansari MJ, Suksatan W, Qasim QA, Asban P, Kianizadeh M, Mohammadi MJ. Effect of Polycyclic Aromatic Hydrocarbons (PAHs) on Respiratory Diseases and the Risk Factors Related to Cancer. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Majid Ravanbakhsh
- Department of Physiotherapy, School of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Homayon Yousefi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elena Lak
- Department of Internal Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Parisa Asban
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Kianizadeh
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Galeano-Páez C, Ricardo-Caldera D, Jiménez-Vidal L, Peñata-Taborda A, Coneo-Pretelt A, Rumié-Mendoza M, Humanez Álvarez A, Salcedo-Arteaga S, Arteaga-Arroyo G, Pastor-Sierra K, Espitia-Pérez P, Avilés-Vergara PA, Tovar-Acero C, Soto-De León S, Brango H, Bru-Cordero OE, Jiménez-Narváez M, Stashenko EE, Gamboa-Delgado EM, Idrovo AJ, Espitia-Pérez L. Genetic Instability among Hitnü People Living in Colombian Crude-Oil Exploitation Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11189. [PMID: 36141477 PMCID: PMC9517229 DOI: 10.3390/ijerph191811189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Oil exploitation, drilling, transportation, and processing in refineries produces a complex mixture of chemical compounds, including polycyclic aromatic hydrocarbons (PAHs), which may affect the health of populations living in the zone of influence of mining activities (PZOI). Thus, to better understand the effects of oil exploitation activities on cytogenetic endpoint frequency, we conducted a biomonitoring study in the Hitnü indigenous populations from eastern Colombia by using the cytokinesis micronucleus cytome assay (CBMN-cyt). PAH exposure was also measured by determine urine 1-hydroxypyrene (1-OHP) using HPLC. We also evaluated the relationship between DNA damage and 1-OHP levels in the oil exploitation area, as well as the modulating effects of community health factors, such as Chagas infection; nutritional status; and consumption of traditional hallucinogens, tobacco, and wine from traditional palms. The frequencies of the CBMN-cyt assay parameters were comparable between PZOI and Hitnü populations outside the zone of influence of mining activities (POZOI); however, a non-significant incremental trend among individuals from the PZOI for most of the DNA damage parameters was also observed. In agreement with these observations, levels of 1-OHP were also identified as a risk factor for increased MN frequency (PR = 1.20) compared to POZOI (PR = 0.7). Proximity to oil exploitation areas also constituted a risk factor for elevated frequencies of nucleoplasmic bridges (NPBs) and APOP-type cell death. Our results suggest that genetic instability and its potential effects among Hitnü individuals from PZOI and POZOI could be modulated by the combination of multiple factors, including the levels of 1-OHP in urine, malnutrition, and some traditional consumption practices.
Collapse
Affiliation(s)
- Claudia Galeano-Páez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Ana Peñata-Taborda
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Margarita Rumié-Mendoza
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Alicia Humanez Álvarez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Shirley Salcedo-Arteaga
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Paula A. Avilés-Vergara
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Catalina Tovar-Acero
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Sara Soto-De León
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 080001, Colombia
| | | | | | - Elena E. Stashenko
- Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Edna M. Gamboa-Delgado
- Escuela de Nutrición y Dietética, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Alvaro J. Idrovo
- Public Health Department, School of Medicine, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| |
Collapse
|
7
|
Díaz de León-Martínez L, Ortega-Romero MS, Barbier OC, Pérez-Herrera N, May-Euan F, Perera-Ríos J, Rodríguez-Aguilar M, Flores-Ramírez R. Evaluation of hydroxylated metabolites of polycyclic aromatic hydrocarbons and biomarkers of early kidney damage in indigenous children from Ticul, Yucatán, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52001-52013. [PMID: 33997934 DOI: 10.1007/s11356-021-14460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental persistent chemicals, produced by the incomplete combustion of solid fuels, found in smoke. PAHs are considered carcinogenic, teratogenic, and genotoxic. Children are susceptible to environmental pollutants, particularly those living in high-exposure settings. Therefore, the main objective of this study was to evaluate the exposure to PAHs through hydroxylated metabolites of PAHs (OH-PAHs), 1-hydroxynaphtalene (1-OH-NAP), and 2-hydroxynaphtalene (2-OH-NAP); 2-,3-, and 9-hydroxyfluorene (2-OH-FLU, 3-OH-FLU, 9-OH-FLU); 1-,2-,3-, and 4-hydroxyphenanthrene (1-OH-PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE); and 1-hydroxypyrene (1-OH-PYR), as well as kidney health through biomarkers of early kidney damage (osteopontin (OPN), neutrophil gelatinase-associated lipocalin (NGAL), α1-microglobulin (α1-MG), and cystatin C (Cys-C)) in children from an indigenous community dedicated to footwear manufacturing and pottery in Ticul, Yucatán, Mexico. The results show a high exposure to PAHs from the found concentrations of OH-PAHs in urine in 80.5% of the children in median concentrations of 18.4 (5.1-71.0) μg/L of total OH-PAHs, as well as concentrations of kidney damage proteins in 100% of the study population in concentrations of 4.8 (3-12.2) and 7.9 (6.5-13.7) μg/g creatinine of NGAL and Cys-C respectively, and 97.5% of the population with concentrations of OPN and α1-MG at mean concentrations of 207.3 (119.8-399.8) and 92.2 (68.5-165.5) μg/g creatinine. The information provided should be considered and addressed by the health authorities to establish continuous biomonitoring and programs to reduce para-occupational exposure in the vulnerable population, particularly children, based on their fundamental human right to health.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo S Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Olivier C Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | | | - Fernando May-Euan
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Javier Perera-Ríos
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maribel Rodríguez-Aguilar
- Department of Pharmacy, Health Sciences Division, Universidad de Quintana Roo, Av. Erick Paolo Martínez, Chetumal, Quintana Roo, Mexico.
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
8
|
Nwaozuzu CC, Partick-Iwuanyanwu KC, Abah SO. Systematic Review of Exposure to Polycyclic Aromatic Hydrocarbons and Obstructive Lung Disease. J Health Pollut 2021; 11:210903. [PMID: 34434595 PMCID: PMC8383797 DOI: 10.5696/2156-9614-11.31.210903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND There is fast-growing epidemiologic evidence of the effects of environmental chemicals on respiratory health. Polycyclic aromatic hydrocarbons (PAHs) have been linked with airway obstruction common in asthma and/or asthma exacerbation, and chronic bronchitis and emphysema. OBJECTIVES A systematic review of the association between exposure to PAHs and obstructive lung diseases is not yet available. The present systematic review aims to evaluate the evidence available in epidemiological studies that have associated PAHs with obstructive lung diseases such as asthma, chronic bronchitis, emphysema. METHODS We performed a systematic literature search on PubMed, Google Scholar, and Scopus databases using relevant keywords and guided by predesigned eligibility criteria. RESULTS From the total of 30 articles reviewed, 16 articles examined the link between PAHs and lung function in both adults and children. Twelve articles investigated the association between PAHs and asthma, asthma biomarkers, and/or asthma symptoms in children. Two articles studied the relationship between PAHs and fractional exhaled nitric oxide (FeNO), a biomarker of airway inflammation and the relationship between PAHs and obstructive lung diseases and infections, respectively. One study assessed exposure to daily ambient PAHs and cough occurrence. DISCUSSION Twenty-seven studies found an association between PAHs and asthma and reduced lung function. In children it is reinforced by studies on prenatal and postnatal exposure, whereas in adults, reductions in lung function tests marked by low forced expiratory volume in 1 second, (FEV1), forced vital capacity (FVC), and forced expiratory flow (FEF25-75%) were the major health outcomes. Some studies recorded contrasting results: insignificant and/or no association between the two variables of interest. The studies reviewed had limitations ranging from small sample size, to the use of cross-sectional rather than longitudinal study design. CONCLUSIONS The literature reviewed in the present study largely suggest positive correlations between PAHs and obstructive lung diseases marked mainly by asthma and reduced respiratory function. This review was registered with PROSPERO (Registration no: CRD42020212894). COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Chinemerem C. Nwaozuzu
- Africa Center of Excellence in Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
| | - Kingsley C. Partick-Iwuanyanwu
- Africa Center of Excellence in Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
- Department of Biochemistry, University of Port Harcourt, Port Harcourt, Nigeria
| | - Stephen O. Abah
- Department of Community Medicine, Ambrose Ali University, Ekpoma, Edo State, Nigeria
| |
Collapse
|
9
|
Flores-Ramírez R, Berumen-Rodríguez AA, Martínez-Castillo MA, Alcántara-Quintana LE, Díaz-Barriga F, Díaz de León-Martínez L. A review of Environmental risks and vulnerability factors of indigenous populations from Latin America and the Caribbean in the face of the COVID-19. Glob Public Health 2021; 16:975-999. [PMID: 33966608 DOI: 10.1080/17441692.2021.1923777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Latin America and the Caribbean (LAC) was declared a new epicentre of the coronavirus pandemic by the World Health Organization (WHO) on 22 May 2020. As of 13 January 2021, the numbers of deaths and cases caused by COVID-19 in LAC reported are 552,000 and 17'485,000 respectively. LAC concentrates the largest percentage of indigenous populations throughout the world. In this region, poverty is persistent and particularly rural indigenous peoples hold the steepest barriers to health services and experience profound discrimination based on ethnicity, poverty, and language, compared to their non-indigenous counterparts. The information regarding the health of indigenous populations, in general, is scarce, and this problem is aggravated in the face of the COVID-19 pandemic. Therefore, the main objective of this work is to address the overall scenario of indigenous peoples in the Latin American and Caribbean region from March 2020 to January 2021, in this manner gathering information regarding health problems, economic, social, cultural and environmental factors that make indigenous populations in LAC particularly vulnerable to serious health effects from the COVID-19 pandemic, as well as compiling the mitigation strategies implemented in indigenous communities.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), San Luis Potosí, México
| | | | | | - Luz Eugenia Alcántara-Quintana
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), San Luis Potosí, México
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), San Luis Potosí, México
| | | |
Collapse
|
10
|
Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA, Díaz de León-Martínez L. Exposure to polycyclic aromatic hydrocarbon mixtures and early kidney damage in Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23060-23072. [PMID: 33432415 DOI: 10.1007/s11356-021-12388-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The traditions and habits of indigenous communities in México include the use of wood and biomass burning to cook their food, which generates large amounts of smoke and therefore pollution inside the households. This smoke is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) which at high levels of exposure cause carcinogenic, genotoxic effects and some chronic pulmonary and cardiovascular diseases; however, few studies relate kidney health with exposure to PAHs. Thus, the aim of this study was the evaluation of 10 hydroxylated metabolites of PAHs (OH-PAHs), and their correlation with biomarkers of early kidney damage renal (cystatin-C (Cys-C)), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL) in the indigenous population of the Huasteca Potosina in Mexico. The results demonstrate the presence of the OH-PAHs and kidney damage biomarkers in 100% of the study population. The OH-PAHs were shown in the following order of frequency, 1-OH-PYR > 4-OH-PHE > 2-OH-NAP > 1-OH-NAP > 9-OH-FLU > 3-OH-FLU > 2-OH-FLU > 3-OH-PHE and with the following percentages of detection 97.6, 87.8, 78, 73.2, 68.3, 31.7, 14.6, and 12.2%, respectively. NGAL and RBP-4 were present in above 85% of the population, with mean concentrations of 78.5 ± 143.9 and 139.4 ± 131.7 ng/g creatinine, respectively, OPN (64%) with a mean concentration of 642.6 ± 723.3 ng/g g creatinine, and Cys-C with a mean concentration of 33.72 ± 44.96 ng/g creatinine. Correlations were found between 1-OH-NAP, 2-OH-NAP, 9-OH-FLU, and 4-OH-PHE and the four biomarkers of early kidney damage. 3-OH-FLU with OPN and 1-OH-PYR correlated significantly with NGAL, OPN, and RPB-4.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Olivier Christophe-Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Jessica Guadalupe Meléndez-Marmolejo
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | | | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autonoma de San Luis Potosí, km. 14.5 Carr. San Luis Potosí-Matehuala, 78321, San Luis Potosí, SLP, Mexico
| | - Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
11
|
Díaz de León-Martínez L, Flores-Ramírez R, Rodriguez-Aguilar M, Berumen-Rodríguez A, Pérez-Vázquez FJ, Díaz-Barriga F. Analysis of urinary metabolites of polycyclic aromatic hydrocarbons in precarious workers of highly exposed occupational scenarios in Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23087-23098. [PMID: 33442806 PMCID: PMC7806253 DOI: 10.1007/s11356-021-12413-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 05/02/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is a risk factor for human health. Workers are a vulnerable group due to their high exposure and therefore require special attention to mitigation measurements; however, some groups of workers are especially vulnerable, precarious workers. The objective of this research was to evaluate mixtures of hydroxylated PAHs (OH-PAHs) in precarious workers in Mexico. The following activities were evaluated: (i) brickmakers (TER), stonemasons (ESC), indigenous workers (TOC) and mercury miners (CAM). Ten OH-PAHS were analyzed: 1-hydroxynaphtalene and 2-hydroxynaphtalene; 2-,3- and 9-hydroxyfluorene; 1-,2-,3- and 4-hydroxyphenanthrene; and 1-hydroxypyrene in urine by GC-MS, chemical fingerprints of the sites were established by multivariate analysis. One hundred forty-nine precarious workers participated in the study. The populations presented total OH-PAHs concentrations of 9.20 (6.65-97.57), 14.8 (9.32-18.85), 15.7 (6.92-195.0), and 101.2 (8.02-134.4) μg/L for CAM, ESC, TER, and TOC, respectively (median (IQR)). The results of the multivariate analysis indicate that the indigenous population presented a different fingerprint compared to the three scenarios. The chemical fingerprints among the brickmakers and mercury mining population were similar. The results of the concentrations were similar and in some metabolites higher than workers in occupations classified as carcinogenic by the IARC; therefore, the control of exposure in these occupations acquires great importance and surveillance through biological monitoring of OH-PAHs should be applied to better estimate exposure in these working populations.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, CP 78210, SLP, México
| | - Rogelio Flores-Ramírez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, CP 78210, SLP, México.
| | | | - Alejandra Berumen-Rodríguez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, CP 78210, SLP, México
| | - Francisco J Pérez-Vázquez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, CP 78210, SLP, México
| | - Fernando Díaz-Barriga
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, CP 78210, SLP, México
| |
Collapse
|
12
|
González-Gómez X, Simal-Gándara J, Fidalgo Alvarez LE, López-Beceiro AM, Pérez-López M, Martínez-Carballo E. Non-invasive biomonitoring of organic pollutants using feather samples in feral pigeons (Columba livia domestica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115672. [PMID: 33254606 DOI: 10.1016/j.envpol.2020.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
A large portion of organic pollutants (OPs) represent a potential hazard to humans and living beings due to their toxic properties. For several years, birds have been used as biomonitor species of environmental pollution. Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated biphenyl ethers (PBDEs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and pyrethroids (PYRs) were assessed in body feather samples of 71 feral pigeons (Columba livia domestica) collected from Asturias and Galicia (NW Spain). The percentage of detection for all chemical groups were above 90% in studied birds. The general pattern was dominated by PAHs (mean value ± standard deviation (SD) 32 ± 15 ng/g) followed by OCPs (3.8 ± 1.1 ng/g), PYRs (3.4 ± 3.8 ng/g), PCBs (1.6 ± 1.0 ng/g), OPPs (1.3 ± 0.70 ng/g) and PBDEs (0.80 ± 0.30 ng/g). Significant differences were observed between age, location and gender suggesting different sources of exposure and accumulation pathways.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, 32004, Ourense, Spain.
| | - Jesús Simal-Gándara
- Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, 32004, Ourense, Spain.
| | - Luis Eusebio Fidalgo Alvarez
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, 27003, Spain.
| | - Ana María López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, 27003, Spain.
| | - Marcos Pérez-López
- Toxicology Area, Faculty of Veterinary Medicine (UEX), Caceres, 10003, Spain.
| | - Elena Martínez-Carballo
- Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, 32004, Ourense, Spain.
| |
Collapse
|
13
|
Du J, Pan B, Cao X, Li J, Yang J, Nie J. Urinary polycyclic aromatic hydrocarbon metabolites, peripheral blood mitochondrial DNA copy number, and neurobehavioral function in coke oven workers. CHEMOSPHERE 2020; 261:127628. [PMID: 32731016 DOI: 10.1016/j.chemosphere.2020.127628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are the risk factors for workers' neurological performance, which were widely exist in the occupational environment. OBJECTIVE We aimed to investigate the dose-response relationship between various PAH metabolites and workers' neurobehavioral changes and to explore whether mitochondrial DNA copy number (mtDNAcn) can be used as a potential biomarker to reflect changes in neurobehavioral behavior. METHOD A total of 697 workers were recruited from a coke oven plant. The concentrations of eleven PAHs metabolites were determined by HPLC-MS/MS. Peripheral blood mtDNAcn was measured using QPCR. Neurobehavioral function was measured by NCTB questionnaire. The dose-response relationships were evaluated using restricted cubic spline models. Mediation analysis was also carried out. RESULTS We found dose-response relationships between urinary 2-hydroxynaphthalene (2-OH Nap), sum of PAH metabolites (Ʃ -OH PAHs) and total digit span (DSP), backward digit span (DSPB), forward digit span (DSPF) and mtDNAcn. Each one-unit increase in ln-transformed of 2-OH Nap or Ʃ -OH PAHs was associated with a 2.64 or 3.22 decrease in DSP, a 1.20 or 1.58 decrease in DSPF, a 1.44 or 1.62 decrease in DSPB and a 0.13 or 0.12 decrease in mtDNAcn. However, we did not find a significant mediation effect of mtDNAcn between PAHs metabolites and DSP, DSPF, or DSPB. CONCLUSION Our data indicated that workers urinary 2-hydroxynaphthalene and sum of PAH metabolites levels were inversely associated with mtDNAcn and neurobehavior, especially their auditory memory. However, there was no significant mediation effect of mtDNAcn between urinary PAHs metabolites and neurobehavior.
Collapse
Affiliation(s)
- Juanjuan Du
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd., China
| | - Xiaomin Cao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jinyu Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
14
|
Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir Res 2020; 21:299. [PMID: 33187512 PMCID: PMC7666487 DOI: 10.1186/s12931-020-01563-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have found strong associations between air pollution and respiratory effects including development and/or exacerbation of asthma and chronic obstructive pulmonary disease (COPD) as well as increased occurrence of respiratory infections and lung cancer. It has become increasingly clear that also polycyclic aromatic hydrocarbons (PAHs) may affect processes linked to non-malignant diseases in the airways. The aim of the present paper was to review epidemiological studies on associations between gas phase and particle-bound PAHs in ambient air and non-malignant respiratory diseases or closely related physiological processes, to assess whether PAH-exposure may explain some of the effects associated with air pollution. Based on experimental in vivo and in vitro studies, we also explore possible mechanisms for how different PAHs may contribute to such events. Epidemiological studies show strongest evidence for an association between PAHs and asthma development and respiratory function in children. This is supported by studies on prenatal and postnatal exposure. Exposure to PAHs in adults seems to be linked to respiratory functions, exacerbation of asthma and increased morbidity/mortality of obstructive lung diseases. However, available studies are few and weak. Notably, the PAHs measured in plasma/urine also represent other exposure routes than inhalation. Furthermore, the role of PAHs measured in air is difficult to disentangle from that of other air pollution components originating from combustion processes. Experimental studies show that PAHs may trigger various processes linked to non-malignant respiratory diseases. Physiological- and pathological responses include redox imbalance, oxidative stress, inflammation both from the innate and adaptive immune systems, smooth muscle constriction, epithelial- and endothelial dysfunction and dysregulated lung development. Such biological responses may at the molecular level be initiated by PAH-binding to the aryl hydrocarbon receptor (AhR), but possibly also through interactions with beta-adrenergic receptors. In addition, reactive PAH metabolites or reactive oxygen species (ROS) may interfere directly with ion transporters and enzymes involved in signal transduction. Overall, the reviewed literature shows that respiratory effects of PAH-exposure in ambient air may extend beyond lung cancer. The relative importance of the specific PAHs ability to induce disease may differ between the biological endpoint in question.
Collapse
|
15
|
Díaz de León-Martínez L, Ortega-Romero M, Grimaldo-Galeana JM, Barbier O, Vargas-Berrones K, García-Arreola ME, Rodriguez-Aguilar M, Flores-Ramírez R. Assessment of kidney health and exposure to mixture pollutants in the Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34557-34566. [PMID: 32557022 DOI: 10.1007/s11356-020-09619-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 05/18/2023]
Abstract
The indigenous population is one of the most vulnerable to suffer from contaminated environments. One of the target organs to suffer early deterioration from exposure to toxins is the kidney. The objective of this article was to evaluate biomarkers of exposure to organic and inorganic toxins and biomarkers of early kidney damage in urine from an indigenous Tenek population in Mexico. The biomarkers of exposure were Li, Be, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Sn, Ba, and Pb evaluated by ICP-MS and hippuric acid for toluene exposure evaluated by UV-coupled with liquid chromatography; the biomarkers of kidney damage were cystatin C (Cys-C), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL). Thirty-one urine samples were obtained from indigenous people; 16, 42, 45.1, and 45.2% of the population exceeded the reference values for Pb, Zn, As, and hippuric acid respectively. Our results demonstrate significant correlations between the metals tested and the proteins associated with renal damage; Cys-C, OPN, and RPB4 showed a significant correlation with Li, B, and Mo, as well as hippuric acid in the case of Cys-C and Zn in OPN and RPB-4; NGAL did not present significant correlations with any of the pollutants of the study. This pilot study contributes to the evidence of great inequity in health associated to environmental pollution matters faced by indigenous people and addresses the need of initiatives for mitigation under the perspective that health is a fundamental human right.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - José Moisés Grimaldo-Galeana
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - Karla Vargas-Berrones
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - María Elena García-Arreola
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Maribel Rodriguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México.
| |
Collapse
|
16
|
Zhang H, Han Y, Qiu X, Wang Y, Li W, Liu J, Chen X, Li R, Xu F, Chen W, Yang Q, Fang Y, Fan Y, Wang J, Zhang H, Zhu T. Association of internal exposure to polycyclic aromatic hydrocarbons with inflammation and oxidative stress in prediabetic and healthy individuals. CHEMOSPHERE 2020; 253:126748. [PMID: 32464779 DOI: 10.1016/j.chemosphere.2020.126748] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are key air pollutants that may contribute to the risk of numerous diseases by inducing inflammation and oxidative stress. Individuals with metabolic disorders may be more susceptible to PAH-induced inflammation and oxidative stress. To test this hypothesis, we designed a panel study involving 60 patients with pre-type 2 diabetes (pre-T2D) and 60 reference participants, and conducted up to seven repeated clinical examinations. Urinary metabolites of PAHs (i.e., OH-PAHs), measured as indicators of total PAH exposure, showed significant associations with markers of respiratory and systemic inflammation, including exhaled nitric oxide, interleukin (IL)-6 in exhaled breath condensate, and blood IL-2 and IL-8 levels and leucocyte count. The most significant effect was on urinary malondiadehyde (MDA), a marker of lipid peroxidation; a onefold increase of OH-PAHs was associated with 9.2-46.0% elevation in MDA in pre-T2D participants and 9.8-31.2% increase in healthy references. Pre-T2D participants showed greater increase in MDA, suggesting that metabolic disorder enhanced the oxidative damage induced by PAH exposure. This study revealed the association between PAH exposure and markers of inflammation and oxidative stress, and the enhanced responses of pre-T2D patients suggested that individuals with metabolic disorders were more susceptible to the adverse health effects of PAH exposure.
Collapse
Affiliation(s)
- Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yiqun Han
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China.
| | - Yanwen Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Ran Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Qiaoyun Yang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yanhua Fang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yunfei Fan
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Junxia Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Hongyin Zhang
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| |
Collapse
|
17
|
Coronel Vargas G, Au WW, Izzotti A. Public health issues from crude-oil production in the Ecuadorian Amazon territories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134647. [PMID: 31837875 DOI: 10.1016/j.scitotenv.2019.134647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Crude oil production (COP) is a high-pollution industry but the vast Amazon rainforest has been an active COP zone for South America. Although COP has been associated with a variety of health effects among workers around the world, such effects have not been adequately investigated in the Amazon region, especially at the community level. Therefore, this review was conducted to provide a report about COP in the Amazon of Ecuador and about its association with health status of indigenous human populations. Some epidemiological surveys in the Amazonian Territories indicate that COP has been associated with health problems in the surrounding populations, e.g. cancers in the stomach, rectum, skin, soft tissue, kidney and cervix in adults, and leukemia in children. In addition, some biomarkers and mechanistic studies show exposure effects. However, due to limitations from these studies, contradictory associations have been reported. Our review indicates that COP in the Amazonian territories of northern Ecuador was characterised by contamination which could have affected the indigenous and non-indigenous populations. However, there have not been dedicated investigations to provide relationships between the contamination and the subsequent exposure-health effects. Since indigenous populations have different lifestyle and cultures from regular city dwellers, systematic studies on their potential health hazards need to be conducted. Due to the remote locations and sparse populations, these new studies may involve the use of novel and genomic-based biomarkers as well as using high technology in the remote regions.
Collapse
Affiliation(s)
| | - William W Au
- University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, Via L.B. Albertis 2, Genoa, Italy; Policlinic Hospital San Martino, Genoa, Italy.
| |
Collapse
|
18
|
de León-Martínez LD, Solis-Mercado J, Rodríguez-Aguilar M, Díaz-Barriga F, Ortíz DG, Flores-Ramírez R. Assessment of aflatoxin B1-lysine adduct in serum of infant population of the Huasteca Potosina, México – a pilot study. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2019.2457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxins are mycotoxins considered to be highly toxic and produce adverse effects on human health. These compounds, mainly aflatoxin B1 (AFB1), have been classified as human carcinogens, due to its association with the development of hepatocellular carcinoma. In Mexico, the study of aflatoxins has been focused on the evaluation of products of the basic basket, particularly on maize, which is the basis of the Mexican diet. On the other hand, most of these studies have been conducted in urban areas. Indigenous populations may be exposed to a higher risk than urban ones due to the high consumption of tortillas, the harvest and the storage conditions of their food; hence, AFB1 is frequently found contaminating maize, which is the main food source for Mexicans. There is scarce evidence of exposure in vulnerable populations, such as children. Therefore, the main objective of this research was to conduct a pilot study for the evaluation of exposure to AFB1 through the AFB1-lys adduct in 31 serum samples of children from indigenous communities in Mexico. AFB1-lys was measured by High Pressure Liquid Chromatography with fluorescence detector (HPLC-FLD), with limits of detection and quantification of 3.5 and 4.7 pg/ml, respectively. Results from this pilot study revealed that 13% of children were of short stature, 9.7% presented overweight and 6.5% obesity. 45% of the children presented detectable concentrations of AFB1-lys adduct, with a median (minimum-maximum) of 5.6 (4.8-6.5) pg of AFB1-lys adduct/mg of albumin. The AFB1-lysine exposure biomarker is an important tool for the surveillance of aflatoxins and their effects on health, so, following this intervention, it would be necessary to monitor the exposure of vulnerable populations to aflatoxins, especially in rural areas where foods are more contaminated.
Collapse
Affiliation(s)
- L. Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - J. Solis-Mercado
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - M. Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - F. Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - D. Guzmán Ortíz
- Departamento de Biotecnología y Bioquímica Centro de Investigación de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Campus Guanajuato, Irapuato, México
| | - R. Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, México
| |
Collapse
|
19
|
Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, Gómez-Gómez A, Van-Brussel E, Díaz-Barriga F, Medellín-Garibay S, Flores-Ramírez R. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed Chromatogr 2019; 33:e4684. [PMID: 31423612 DOI: 10.1002/bmc.4684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.
Collapse
Affiliation(s)
- Maribel Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Sofía Ramírez-García
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Cesar Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Alejandro Gómez-Gómez
- Pulmonology Service, Hospital Central "Dr. Ignacio Morones Prieto" San Luis Potosí, San Luis Potosí, Mexico
| | - Evelyn Van-Brussel
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Susanna Medellín-Garibay
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.,Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|