1
|
Guo J, Bao G, Zhang X, Pan X, Zhao H, Fan C, Li G. Artemisinin and Ambrosia trifida extract aggravate the effects of short freeze-thaw stress in winter rye ( Secale cereale) seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:497-506. [PMID: 37105725 DOI: 10.1071/fp22271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/11/2023] [Indexed: 06/07/2023]
Abstract
The freeze-thaw and allelopathy from alien giant ragweed (Ambrosia trifida L.) and artemisinin have led to a serious stress to plants, influencing the agricultural quality and crop yield in north-east China. Yet, little is known how allelopathy affect plants under the freeze-thaw process. In this study, the characteristics in winter rye (Secale cereale L.) seedlings were investigated by laboratory simulation. The results showed that during the freezing process, application of artemisinin and A. trifida extract significantly increased the soluble protein content and accelerated lipid peroxidation, while they significantly inhibited antioxidant enzymes, photosynthesis and respiration (P <0.05). During the thawing process, the freezing pressure decreased, and activities of antioxidant enzymes were significantly improved to mitigate artemisinin and A. trifida extract induced stress (P <0.05). In addition, the sensitivity of the investigated metabolic processes in winter rye seedlings were highest to artemisinin and A. trifida extract in the freezing process. This study suggested that the stress response induced by artemisinin and A. trifida extract on winter rye seedlings in the freezing process was greater than that in the thawing process.
Collapse
Affiliation(s)
- Jiancai Guo
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University); Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University); Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xin Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China
| | - Xinyu Pan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University); Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Hongwei Zhao
- The Administration of Jingyu Water Conservation, Jingyu 135200, China
| | - Cunxin Fan
- The Administration of Jingyu Water Conservation, Jingyu 135200, China
| | - Guomei Li
- Yushu Forestry and Grassland Comprehensive Service Center, Yushu 815000, China
| |
Collapse
|
2
|
Zhang W, Bao G, Tang W, Dai G, Xiao J, Liu J, Wang Z, Xi J. Physiological response of barley seedlings to salinity and artemisinin combined stresses under freeze-thaw environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70552-70563. [PMID: 35588037 DOI: 10.1007/s11356-022-20800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In the Qinghai-Tibet Plateau, both the large daily temperature difference and soil salinization make plants susceptible to abiotic stresses such as freeze-thaw and salinity. Meanwhile, crops in this area can be affected by artemisinin, an antimalarial secondary metabolite produced in Artemisia. Under freeze-thaw and salinity stresses, artemisinin was induced as an allelopathy stress factor to explore the physiological response of highland barley, including the relative electrical conductivity (RC), soluble protein (SP) content, malondialdehyde (MDA) content, antioxidant enzyme activity, and water use efficiency (WUE). Compared with the control group, the contents of RC and MDA in seedling leaves under stress were significantly increased by 24.74-402.37% and 20.18-77.95%, indicating that cell membrane permeability was greatly damaged, and WUE was significantly decreased by 15.77-238.59%. The activity of enzymes increased under single stress and decreased under combined stress. Salinity, artemisinin, and freeze-thaw stress show a synergistic relationship; that is, compound stresses were more serious than single stress. In summary, the results of this study revealed the physiological and ecological responses of barley seedlings under different habitat stresses and the interactions among different stress factors.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| | - Wenyi Tang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Gejun Dai
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jing Xiao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jiapeng Liu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhao Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, 130062, China
| |
Collapse
|
3
|
In Vitro and In Vivo Anti-Inflammatory Effects of TEES-10®, a Mixture of Ethanol Extracts of Ligularia stenocephala Matsum. & Koidz. and Secale cereale L. Sprout, on Gingivitis and Periodontitis. Dent J (Basel) 2022; 10:dj10080143. [PMID: 36005241 PMCID: PMC9406350 DOI: 10.3390/dj10080143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Gingivitis and periodontitis are inflammatory disorders caused by dental plaque and calculus. These disorders often lead to tooth loss if not treated properly. Although antibiotics can be used, it is hard to treat them due to the difficulty in supplying effective doses of antibiotics to lesion areas and side effects associated with long-term use of antibiotics. In the present study, attempts were made to provide in vitro and in vivo evidence to support anti-inflammatory activities of TEES-10®, a mixture of ethanol extracts of Ligularia stenocephala (LSE) and Secale cereale L. sprout (SCSE) toward gingivitis and periodontitis by performing the following experiments. TEES-10® with a ratio of 6:4 (LSE:SCSE) showed the best effects in both stimulating the viability and inhibiting the cytotoxicity. In in vitro experiments, TEES-10® showed an ability to scavenge 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals and remove ROS generated in periodontal ligament cells treated with lipopolysaccharide. TEES-10® also enhanced the viability of stem cells from human exfoliated deciduous teeth and stimulated the osteogenic differentiation of deciduous teeth cells. In in vivo experiments using rats with induced periodontitis, TEES-10® significantly decreased inflammatory cell infiltration and the numbers of osteoclasts, increased alveolar process volume and the numbers of osteoblasts, decreased serum levels of IL-1β and TNF-α (pro-inflammatory cytokines), and increased serum levels of IL-10 and IL-13 (anti-inflammatory cytokines). These results strongly support the theory that TEES-10® has the potential to be developed as a health functional food that can treat and prevent gingival and periodontal diseases and improve dental health.
Collapse
|
4
|
Liu H, Bao G, Dou Z, Liu H, Bai J, Chen Y, Yuan Y, Zhang X, Xi J. Response characteristics of highland barley under freeze-thaw, drought and artemisinin stresses. BMC PLANT BIOLOGY 2022; 22:126. [PMID: 35300590 PMCID: PMC8932327 DOI: 10.1186/s12870-022-03520-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 05/08/2023]
Abstract
The freeze-thaw of early spring in China's Qinghai-Tibet Plateau is often accompanied by severe droughts. Artemisia annua, widely distributed in China, releases allelopathic substances, mainly artemisinin, to the environment and exerts a wide range of effects on crops. This paper studied the physiological effects of highland barley under freeze-thaw, drought, and artemisinin stress through indoor simulation experiments. The physiological response characteristics of superoxide dismutase (SOD) activity, catalase (POD) activity, net photosynthetic rate, relative water content (RWC), relative electrical conductivity, malondialdehyde (MDA) content, and soluble protein content in highland barley were analyzed. The results showed that artemisinin and drought contributed to the increase of SOD activity and the decrease of POD activity. Under the freeze-thaw stress, the SOD and POD activities both decreased firstly and then increased, but the effect of compound stress on POD was more complicated. Either artemisinin, drought, or low temperature could reduce the net photosynthetic rate of highland barley. Low temperature had more significant impacts on photosynthesis, and compound stress would show a single stress superimposed effect. Artemisinin, drought, and low temperature could reduce the RWC of highland barley, and increase the relative electrical conductivity and the concentration of soluble protein (except for low temperature stress above zero, which reduces the concentration of soluble protein). However, the effect of compound stress on soluble protein is more complex. The single stress of artemisinin and drought had no obvious effect on MDA content, while the MDA content was increased significantly under the freeze-thaw stress and the compound stress of artemisinin and drought, and the MDA content reached its peak at T1. The results are helpful to explore the effects of freeze-thaw, drought and artemisinin stress on the growth of highland barley under the background of the aridification of the Qinghai-Tibet Plateau, and provide ideas for rational agricultural management.
Collapse
Affiliation(s)
- Huichen Liu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guozhang Bao
- College of New Energy and Environment, Jilin University, Changchun, 130012, China.
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Changchun, China.
| | - Zihao Dou
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Haoyuan Liu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jingqi Bai
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yingyi Chen
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yifu Yuan
- College of Computer Science&Technology, Jilin University, Changchun, 130012, China
| | - Xin Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130012, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, 130062, China
| |
Collapse
|
5
|
Wang QY, Hu NW, Yu HW, Wang QR, Liu YX, Yue J, Hu B. Do freeze-thaw cycles affect the cadmium accumulation, subcellular distribution, and chemical forms in spinach (Spinacia oleracea L.)? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112952. [PMID: 34736033 DOI: 10.1016/j.ecoenv.2021.112952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
To date, although there are many studies investigating the toxicity of heavy metal to plant, little research exists in the seasonal freeze-thaw (FT) regions where FT cycles often happen during the plant growing process. To reveal the adaptive mechanisms of plants to the combination stresses of cadmium (Cd) and FT, the Cd accumulation, subcellular distribution, chemical forms, and antioxidant enzyme activity (peroxidase (POD)) were investigated in spinach (Spinacia oleracea L.) growing under different soil Cd levels (i.e., 0.10 mg Cd kg-1 soil (low), 1.21 mg Cd kg-1 soil (medium), and 2.57 mg Cd kg-1 soil (high)). Compared to the non-freeze-thaw (NFT) treatments, higher Cd concentrations in the root and lower translocation factors from root to leaf were found for the plants experiencing FT cycles. FT significantly decreased the Cd concentrations in the leaves under the low- and medium-Cd treatments, while similar values were found for the high-Cd treatments. Generally, FT could decrease the concentrations and proportions of Cd stored in the cell wall and soluble fractions and increase them in the organelle fractions for the medium- and high-Cd treatments, while opposite tendency was found for the low-Cd treatments. Moreover, larger Cd amounts in the inorganic and water-soluble forms were found for the low- and medium-Cd treated plants under FT, while lower values were found for the high-Cd treatments. Additionally, POD, which presented higher activities at the low- and medium-Cd treatments and lower activities at the high-Cd treatments under FT, were also significantly influenced by the Cd × FT interaction. This study indicated that FT could significantly change the accumulations of Cd in plant, and it provided a new insight into the Cd accumulation by plants in the seasonal FT region.
Collapse
Affiliation(s)
- Quan-Ying Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Nai-Wen Hu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong-Wen Yu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Qi-Rong Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Yu-Xin Liu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Yue
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Bo Hu
- Agricultural Technology and Extension Center of Jilin Province, Changchun 130033, China.
| |
Collapse
|
6
|
Kuzina E, Rafikova G, Vysotskaya L, Arkhipova T, Bakaeva M, Chetverikova D, Kudoyarova G, Korshunova T, Chetverikov S. Influence of Hydrocarbon-Oxidizing Bacteria on the Growth, Biochemical Characteristics, and Hormonal Status of Barley Plants and the Content of Petroleum Hydrocarbons in the Soil. PLANTS 2021; 10:plants10081745. [PMID: 34451788 PMCID: PMC8400625 DOI: 10.3390/plants10081745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022]
Abstract
Much attention is paid to the relationship between bacteria and plants in the process of the bioremediation of oil-contaminated soils, but the effect of petroleum degrading bacteria that synthesize phytohormones on the content and distribution of these compounds in plants is poorly studied. The goal of the present field experiment was to study the effects of hydrocarbon-oxidizing bacteria that produce auxins on the growth, biochemical characteristics, and hormonal status of barley plants in the presence of oil, as well as assessing the effect of bacteria and plants separately and in association with the content of oil hydrocarbons in the soil. The treatment of plants with strains of Enterobacter sp. UOM 3 and Pseudomonas hunanensis IB C7 led to an increase in the length and mass of roots and shoots and the leaf surface index, and an improvement in some parameters of the elements of the crop structure, which were suppressed by the pollutant. The most noticeable effect of bacteria on the plant hormonal system was a decrease in the accumulation of abscisic acid. The data obtained indicate that the introduction of microorganisms weakened the negative effects on plants under abiotic stress caused by the presence of oil. Plant-bacteria associations were more effective in reducing the content of hydrocarbons in the soil and increasing its microbiological activity than when either organism was used individually.
Collapse
|
7
|
Effect of Crude Oil on Growth, Oxidative Stress and Response of Antioxidative System of Two Rye ( Secale cereale L.) Varieties. PLANTS 2021; 10:plants10010157. [PMID: 33466945 PMCID: PMC7830248 DOI: 10.3390/plants10010157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/24/2023]
Abstract
Rye (Secale cereale L.) is one of the most important cereal crops in Eastern and Northern Europe, showing better tolerance to environmental stress factors compared to wheat and triticale. Plant response to the crude oil-polluted soil depends on plant species, oil concentration, time of exposure, etc. The current study is aimed at investigating the growth, oxidative stress and the response of antioxidative system of two rye varieties (Krona and Valdai) cultivated on crude oil-contaminated soils at different concentrations (1.5, 3.0, 6.0, and 12.0%). Inhibition of rye growth was observed at crude oil concentrations of above 3% for above-ground plant parts and of above 1.5% for roots. A decrease in content of chlorophyll a and total chlorophylls in Krona variety was detected at 1.5% oil concentration in soil and in Valdai variety at 3% oil concentration. Compared with the control, the content of malondialdehyde was significantly increased in the Krona variety at 3% oil concentration and in Valdai variety at 6% oil concentration. The crude oil-induced oxidative stress was minimized in rye plants by the enhanced contents of low-molecular antioxidants (proline, non-protein thiols, ascorbic acid, phenolic compounds) and activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase. The strongest positive correlation was detected between the content of malondialdehyde and contents of proline (r = 0.89–0.95, p ≤ 0.05) and phenolic compounds (r = 0.90–0.94, p ≤ 0.05) as well as superoxide dismutase activity (r = 0.81–0.90, p ≤ 0.05). Based on the results of a comprehensive analysis of growth and biochemical parameters and of the cluster analysis, Valdai variety proved to be more resistant to oil pollution. Due to this, Valdai variety is considered to be a promising rye variety for cultivation on moderately oil-polluted soils in order to decontaminate them. At the same time, it is necessary to conduct further studies aimed at investigating oil transformation processes in the soil-rye system, which would make it possible to determine the efficiency of using this cereal for soil remediation.
Collapse
|