1
|
Maged A, Elgarahy AM, Hlawitschka MW, Haneklaus NH, Gupta AK, Bhatnagar A. Synergistic mechanisms for the superior sorptive removal of aquatic pollutants via functionalized biochar-clay composite. BIORESOURCE TECHNOLOGY 2023; 387:129593. [PMID: 37558100 DOI: 10.1016/j.biortech.2023.129593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
This study investigated the successful synthesis of functionalized algal biochar-clay composite (FBKC). Subsequently, the sorption performance of FBKC towards norfloxacin (NFX) antibiotic and crystal violet dye (CVD) from water was extensively assessed in both batch and continuous flow systems. A series of characterization techniques were carried out for FBKC and the utilized precursors, indicating that the surface area of FBKC was increased thirty-fold with a well-developed pore structure compared to the original precursors. FBKC demonstrated a maximum sorption capacity of 192.80 and 281.24 mg/g for NFX and CVD, respectively. The suited fitting of the experimental data to Freundlich and Clark models suggested multi-layer sorption of NFX/CVD molecules. The mechanistic studies of NFX/CVD sorption onto FBKC unveiled multiple mechanisms, including π-π interaction, hydrogen bonding, electrostatic attraction, and surface/pore filling effect. The estimated cost of 5.72 €/kg and superior sorption capacity makes FBKC an efficient low-cost sorbent for emergent water pollutants.
Collapse
Affiliation(s)
- Ali Maged
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland; Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt.
| | - Mark W Hlawitschka
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Nils H Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
2
|
Maged A, Elgarahy AM, Haneklaus NH, Gupta AK, Show PL, Bhatnagar A. Sustainable functionalized smectitic clay-based nano hydrated zirconium oxides for enhanced levofloxacin sorption from aqueous medium. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131325. [PMID: 37058839 DOI: 10.1016/j.jhazmat.2023.131325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
In this study, the functionalized smectitic clay (SC)-based nanoscale hydrated zirconium oxide (ZrO-SC) was successfully synthesized and utilized for the adsorptive removal of levofloxacin (LVN) from an aqueous medium. The synthesized ZrO-SC and its precursors (SC and hydrated zirconium oxide (ZrO(OH)2)) were extensively characterized using various analytical methods to get insight into their physicochemical properties. The results of stability investigation confirmed that ZrO-SC composite is chemically stable in strongly acidic medium. The surface measurements revealed that ZrO impregnation to SC resulted in an increased surface area (six-fold higher than SC). The maximum sorption capacity of ZrO-SC for LVN was 356.98 and 68.87 mg g-1 during batch and continuous flow mode studies, respectively. The mechanistic studies of LVN sorption onto ZrO-SC revealed that various sorption mechanisms, such as interlayer complexation, π-π interaction, electrostatic interaction, and surface complexation were involved. The kinetic studies of ZrO-SC in the continuous-flow mode indicated the better applicability of Thomas model. However, the good fitting of Clark model suggested the multi-layer sorption of LVN. The cost estimation of the studied sorbents was also assessed. The obtained results indicate that ZrO-SC is capable of removing LVN and other emergent pollutants from water at a reasonable cost.
Collapse
Affiliation(s)
- Ali Maged
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland; Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam, Suez Governorate, Egypt.
| | - Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt; Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Nils H Haneklaus
- Institute of Chemical Technology, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Pau-Loke Show
- Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St, Zone 1, Abu Dhabi, United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, 602105 Chennai, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
3
|
Hamidi F, Baghani AN, Kasraee M, Salari M, Mehdinejad MH. Modeling, optimization and efficient use of MMT K 10 nanoclay for Pb (II) removal using RSM, ANN and GA. Sci Rep 2023; 13:8434. [PMID: 37225791 DOI: 10.1038/s41598-023-35709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
Regarding the long-term toxic effects of Pb (II) ions on human health and its bioaccumulation property, taking measures for its reduction in the environment is necessary. The MMT-K10 (montmorillonite-k10) nanoclay was characterized by XRD, XRF, BET, FESEM, and FTIR. The effects of pH, initial concentrations, reaction time, and adsorbent dosage were studied. The experimental design study was carried out with RSM-BBD method. Results prediction and optimization were investigated with RSM and artificial neural network (ANN)-genetic algorithm (GA) respectively. The RSM results showed that the experimental data followed the quadratic model with the highest regression coefficient value (R2 = 0.9903) and insignificant lack of fit (0.2426) showing the validity of the Quadratic model. The optimal adsorption conditions were obtained at pH 5.44, adsorbent = 0.98 g/l, concentration of Pb (II) ions = 25 mg/L, and reaction time = 68 min. Similar optimization results were observed by RSM and artificial neural network-genetic algorithm methods. The experimental data revealed that the process followed the Langmuir isotherm and the maximum adsorption capacity was 40.86 mg/g. Besides, the kinetic data indicated that the results fitted with the pseudo-second-order model. Hence, the MMT-K10 nanoclay can be a suitable adsorbent due to having a natural source, simple and inexpensive preparation, and high adsorption capacity.
Collapse
Affiliation(s)
- Farshad Hamidi
- Department of Environmental Health Engineering, School of Public Health, Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Kasraee
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salari
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Hadi Mehdinejad
- Department of Environmental Health Engineering, School of Public Health, Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
4
|
Maged A, El-Fattah HA, Kamel RM, Kharbish S, Elgarahy AM. A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: circular economy and future outlook. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:693. [PMID: 37204517 DOI: 10.1007/s10661-023-11303-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
In the present era of significant industrial development, the presence and dispersal of countless water contaminants in water bodies worldwide have rendered them unsuitable for various forms of life. Recently, the awareness of environmental sustainability for wastewater treatment has increased rapidly in quest of meeting the global water demand. Despite numerous conventional adsorbents on deck, exploring low-cost and efficient adsorbents is interesting. Clays and clays-based geopolymers are intensively used as natural, alternative, and promising adsorbents to meet the goals for combating climate change and providing low carbon, heat, and power. In this narrative work, the present review highlights the persistence of some inorganic/organic water pollutants in aquatic bodies. Moreover, it comprehensively summarizes the advancement in the strategies associated with synthesizing clays and their based geopolymers, characterization techniques, and applications in water treatment. Furthermore, the critical challenges, opportunities, and future prospective regarding the circular economy are additionally outlined. This review expounded on the ongoing research studies for leveraging these eco-friendly materials to address water decontamination. The adsorption mechanisms of clays-based geopolymers are successfully presented. Therefore, the present review is believed to deepen insights into wastewater treatment using clays and clays-based geopolymers as a groundbreaking aspect in accord with the waste-to-wealth concept toward broader sustainable development goals.
Collapse
Affiliation(s)
- Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Hadeer Abd El-Fattah
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Rasha M Kamel
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Sherif Kharbish
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
5
|
Maged A, Abu El-Magd SA, Radwan AE, Kharbish S, Zamzam S. Evaluation insight into Abu Zenima clay deposits as a prospective raw material source for ceramics industry: Remote Sensing and Characterization. Sci Rep 2023; 13:58. [PMID: 36593265 PMCID: PMC9807103 DOI: 10.1038/s41598-022-26484-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023] Open
Abstract
The rapid development and mutations have heightened ceramic industrialization to supply the countries' requirements worldwide. Therefore, the continuous exploration for new reserves of possible ceramic-raw materials is needed to overwhelm the increased demand for ceramic industries. In this study, the suitability assessment of potential applications for Upper Cretaceous (Santonian) clay deposits at Abu Zenima area, as raw materials in ceramic industries, was extensively performed. Remote sensing data were employed to map the Kaolinite-bearing formation as well as determine the additional occurrences of clay reserves in the studied area. In this context, ten representative clayey materials from the Matulla Formation were sampled and examined for their mineralogical, geochemical, morphological, physical, thermal, and plasticity characteristics. The mineralogical and chemical compositions of starting clay materials were examined. The physicochemical surface properties of the studied clay were studied utilizing SEM-EDX and TEM. The particle-size analysis confirmed the adequate characteristics of samples for white ceramic stoneware and ceramic tiles manufacturing. The technological and suitability properties of investigated clay deposits proved the industrial appropriateness of Abu Zenima clay as a potential ceramic raw material for various ceramic products. The existence of high kaolin reserves in the studied area with reasonable quality and quantity has regional significance. It would significantly help reduce the manufacturing cost and overwhelm the high consumption rate. The ceramic manufacturers in the investigated areas are expected to bring steady producers into the industry in the long term to gain the advantage of low-cost raw materials, labor, and factory construction.
Collapse
Affiliation(s)
- Ali Maged
- grid.430657.30000 0004 4699 3087Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate Egypt
| | - Sherif Ahmed Abu El-Magd
- grid.430657.30000 0004 4699 3087Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate Egypt
| | - Ahmed E. Radwan
- grid.5522.00000 0001 2162 9631Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
| | - Sherif Kharbish
- grid.430657.30000 0004 4699 3087Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate Egypt
| | - Sara Zamzam
- grid.31451.320000 0001 2158 2757Geology Department, Faculty of Science, Zagazig University, Zagazig City, 44519 Sharkia Governorate Egypt
| |
Collapse
|
6
|
Elgarahy AM, Maged A, Elwakeel KZ, El-Gohary F, El-Qelish M. Tuning cationic/anionic dyes sorption from aqueous solution onto green algal biomass for biohydrogen production. ENVIRONMENTAL RESEARCH 2023; 216:114522. [PMID: 36243056 DOI: 10.1016/j.envres.2022.114522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Global water security and energy demands associated with uncontrollable population growth and rapid industrial progress are one of the utmost serious needs dangerously confronting humanity. On account of waste as a wealth strategy; a multifunctional eco-friendly sorbent (MGAP) from green alga was prepared successfully for remediation of cationic/anionic organic dyes and biohydrogen production. The structural and morphological properties of sorbent were systematically scrutinized by a variety of spectral analyses. The loading capacity of MGAP towards rhodamine B (RhB) and methyl orange (MO) dyes was inclusivity inspected under variable experimental conditions. The adsorption kinetics of both dyes onto MGAP was in good agreement with pseudo-second-order theory, whereas adsorption isotherms could fit well with the Langmuir model, with satisfactory loading capacities of 144.92 and 196.04 mg g-1 for RhB and MO molecules, respectively. Moreover, ultra-sonication treatment admirably decreased the sorption equilibrium time from 180.0 min to 30.0 min. Furthermore, spent sorbent was managed particularly for biohydrogen production with a measured yield of 112.89, 116.59, and 128.17 mL-H2/gVS for MGAP, MGAP-MO, and MGAP-RhB, respectively. Overall, the produced MGAP can potentially be offered up as a promising dye scavenger for wastewater remediation and biohydrogen production, thereby fulfilling waste management and circular economy.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt; Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Fatma El-Gohary
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| |
Collapse
|
7
|
Zhou Z, Dong Y, Zhu L, Xia X, Li S, Wang G, Shi K. Effective and stable adsorptive removal of Cadmium(II) and Lead(II) using selenium nanoparticles modified by microbial SmtA metallothionein. CHEMOSPHERE 2022; 307:135818. [PMID: 35944684 DOI: 10.1016/j.chemosphere.2022.135818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Metallothionein SmtA-modified selenium nanoparticles (SmtA-SeNPs), efficient adsorbents for Cd(II) and Pb(II), were synthesized in the present work. The ligand, microbial SmtA protein, was synthesized using an engineered strain Escherichia coli, posing the benefits of simplicity, safety, and high production. SmtA-SeNPs were spheres with diameters between 68.1 and 122.4 nm, containing amino, hydroxyl, and sulfhydryl functional groups with negatively charged (pH > 5). SmtA-SeNPs displayed better adsorption performance than dissociative SmtA and SeNPs. The adsorption of Cd(II) and Pb(II) mainly depends on the electrostatic attractions and the metal chelation of abundant functional groups. The maximum adsorption capacity was 506.3 mg/g for Cd(II) and 346.7 mg/g for Pb(II), which were higher than the values of most nanoparticles. In addition, SmtA-SeNPs were immobilized with a membrane filter to produce a SmtA-SeNPs filter, and the percentage removal of Cd(II) and Pb(II) increased from 26.75% to 98.13% for Cd(II) and from 9.95% to 99.20% compared with the blank filter. Moreover, the SmtA-SeNPs filter was regenerated using subacid deionized water, and the filter exhibited a stable removal ratio of Cd(II) and Pb(II) in ten continuous cycles of Cd(II)- or Pb(II)-containing wastewater treatment. The residual amounts of Cd and Pb met national standard levels of wastewater discharge.
Collapse
Affiliation(s)
- Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yixuan Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, PR China
| | - Sikui Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
8
|
Raj S, Sinha U, Singh H, Bhattacharya J. Novel GO/Fe-Mn hybrid for the adsorptive removal of Pb(II) ions from aqueous solution and the spent adsorbent disposability in cement mix: compressive properties and leachability study for circular economy benefits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63898-63916. [PMID: 35467183 DOI: 10.1007/s11356-022-20303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
GO/Fe-Mn hybrids were prepared by a single-pot chemical precipitation method and were characterized using FTIR, XRD, Raman, zeta potential, and FESEM, which confirmed the impregnation of Fe/Mn onto GO sheets. The synthesized hybrids were successively applied in removing the Pb(II) ions from aqueous solution and later utilizing the spent adsorbent to increase the properties of cement. The adsorption capability of the synthesized hybrid was seen in a set of batch studies to find out that about 15 min of contact time was required to remove 99% of the contaminant at a pH of 5 ± 0.2 and a dose of 0.83 g/L. The mechanism of the adsorption process for the synthesized hybrid was well described by Elovich kinetic model with an R2 of 0.99 and Langmuir isotherm model, also with an R2 of 0.99. The desorption studies conducted using 0.1 M HCl solution showed significant stability of the hybrid with a drop of 12% in the removal efficiency of Pb after up to five adsorption-desorption cycles. This points to an efficient adsorbent having potential for economical use. Later, the spent adsorbent was mixed with cement at ratios of 0.05%, 0.1%, and 0.5%, and compressive strength tests were performed, which showed an increase in the strength by 7.62%, 16.11%, and 26.82% at 28 days of curing time. The TCLP and SPLP tests performed on the hybrid and cement-spent adsorbent mix showed all the leaching parameters were well within the permissible limits. This development shows the potential for the use of spent adsorbent in a circular economy model.
Collapse
Affiliation(s)
- Sankalp Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Uday Sinha
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hemant Singh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayanta Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
- Zelence Industries Pvt. Ltd, Kharagpur, India.
| |
Collapse
|
9
|
Abdelbasir SM, Khalek MAA. From waste to waste: iron blast furnace slag for heavy metal ions removal from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57964-57979. [PMID: 35355191 PMCID: PMC9395503 DOI: 10.1007/s11356-022-19834-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Inordinate levels of heavy metals in water sources have long been a matter of concern, posing serious environmental and public health risks. Adsorption, on the other hand, is a viable technique for removing heavy metals from water due to its high efficiency, low cost, and ease of operation. Blast furnace slag (BFS) is considered a cheap sorbent for the get rid of Co2+ and Pb2+ ions from aqueous media. The nonmodified slag is characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), N2 adsorption-desorption isotherms, energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), and zeta potential. The removal of Co2+ and Pb2+ ions was carried out using batch adsorption experiments from an aqueous medium. The influence of several variables as pH, contact time, adsorbent dose, temperature, and initial ions concentration was considered. The isotherm, kinetic, thermodynamic, and recyclability were also conducted. The maximum uptake capacity for Co2+ and Pb2+ was 43.8 and 30.2 mg g-1 achieved at pH 6 after 60 min contact time. The adsorption kinetics and isotherms of BFS for Co2+ and Pb2+ fitted well to Avrami and Freundlich models, respectively. The main adsorption mechanism between BFS and the metal ions was ion exchange. The regeneration of the used slag was studied for reuse many cycles. In terms of economics and scalability, nonmodified BFS treatment has great potential as a cost-effective adsorbent that could be used in water pollution treatment.
Collapse
Affiliation(s)
- Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11421, Cairo, Egypt.
| | - Mohamed A Abdel Khalek
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11421, Cairo, Egypt
| |
Collapse
|
10
|
Wang B, Wang C, Hu Y. Sorption behavior of Pb(II) onto polyvinyl chloride microplastics affects the formation and ecological functions of microbial biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155026. [PMID: 35390363 DOI: 10.1016/j.scitotenv.2022.155026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are regarded as transport media for heavy metals in aquatic systems, whereas the effects of the heavy metal-enriched MPs on microbial biofilms are still unclear. In this study, Pb(II) sorption onto polyvinyl chloride (PVC) MPs and its effects on the formation and ecological functions of microbial biofilms were investigated. The results showed that the interaction between Pb(II) and PVC MPs was dominated by physisorption. The maximum sorption amount reached 1.25 mg/g. Afterward, microbial biofilms were exposed to the Pb(II)-enriched PVC particles. It is suggested that Pb(II)-enriched PVC exposure reduced productivities of polysaccharides and proteins in extracellular polymeric substances, which restricted the formation of microbial biofilms. Meanwhile, microbial community structure was reassembled accompanying the decline of capacities for nitrate and phosphate removal. Therefore, this study examines the ecological risk associated with the heavy metal-enriched MPs that can adversely affect microbial biofilms.
Collapse
Affiliation(s)
- Binliang Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Chufan Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Yiwei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| |
Collapse
|
11
|
Mangla D, Sharma A, Ikram S. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127946. [PMID: 34891019 DOI: 10.1016/j.jhazmat.2021.127946] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 05/27/2023]
Abstract
This review gives a proper dedicated understanding of the contamination level, sources, and biological dangers related with different classes of antibiotics in consumable water. The literature on the adsorption of antibiotics is relatively uncommon and developments are still under progression, especially for adsorbents other than activated carbon. Also, adsorption technique has already been applied vastly for water treatment. Notwithstanding significant progressions, designed natural wastewater treatment frameworks are just bearably effective (48-77%) in the expulsion of antibiotics. Hence, the compilation of available literature especially for antibiotic adsorption was much needed. Moreover, the conventional adsorbents have some limitations of their own. In this study, the main focus was laid on unconventional adsorbents such as Biochar, Biopolymers, Carbon Nanotubes, Clays, Metal-Organic Frameworks, Microalgae and some miscellaneous adsorbents. The mechanism of adsorption by the unconventional adsorbents includes electrostatic interactions, π-π bonding, weak Van der Waal forces, H-bonding and surface complexation, which was similar to that of conventional adsorbents and hence these unconventional adsorbents can easily replace the costlier conventional adsorbents with even better adsorption efficiency. This paper also briefly discussed the thermodynamics, adsorption equilibrium; isotherm and kinetics of adsorption. This review paper seizes the critical advances of adsorption phenomenon at various interfaces and lays the foundation for current scenario associated with further progress. Besides, this study would help in understanding the antibiotic adsorption, cost estimation and future goals that will attract the young the researchers of this field.
Collapse
Affiliation(s)
- Divyanshi Mangla
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Atul Sharma
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
12
|
Futalan CM, Wan MW. Fixed-Bed Adsorption of Lead from Aqueous Solution Using Chitosan-Coated Bentonite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2597. [PMID: 35270289 PMCID: PMC8910106 DOI: 10.3390/ijerph19052597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023]
Abstract
In this study, fixed-bed adsorption of Pb(II) from an aqueous solution using chitosan-coated bentonite (CCB) was investigated. Characterization of CCB was performed using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of varying bed height (1.3 to 4.3 cm), flow rate (0.20 to 0.60 mL/min), and initial concentration (500 to 1500 mg/L) on the length of mass transfer zone (Zm) and adsorption capacity at breakthrough (qb) and exhaustion (qe) were examined. Low flow rate and high bed height were determined to cause a longer time to reach breakthrough and exhaustion. Meanwhile, the fixed-bed system was observed to quickly attain breakthrough and exhaustion under high initial concentrations. Kinetic column models such as the Thomas, Yoon-Nelson, and Clark models were used to predict the breakthrough curves. High R2 values (0.9758 ≤ R2 ≤ 0.8087) were attained for the Thomas model, which indicates that there is good agreement between experimental data and linear plots generated by the Thomas model. Moreover, the Thomas model is best in describing the breakthrough curves of Pb(II) removal under a fixed-bed system.
Collapse
Affiliation(s)
- Cybelle Morales Futalan
- Department of Community and Environmental Resource Planning, University of the Philippines, Los Banos 4031, Philippines;
| | - Meng-Wei Wan
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
13
|
Bac BH, Nguyen H, Thao NTT, Duyen LT, Hanh VT, Dung NT, Khang LQ, An DM. Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm. CHEMOSPHERE 2021; 282:131012. [PMID: 34118630 DOI: 10.1016/j.chemosphere.2021.131012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The efforts of this study aimed to evaluate the feasibility of the nanotubular halloysites in weathered pegmatites (NaHWP) for removing heavy metals (i.e., Cd2+, Pb2+) from water. Furthermore, two novel intelligent models, such as teaching-learning-based optimization (TLBO)-artificial neural network (ANN), and TLBO-support vector regression (SVR), named as TLBO-ANN and TLBO-SVR models, respectively, were proposed to predict the Cd2+ and Pb2+ absorption efficiencies from water using the NaHWP absorbent. Databases used, including 53 experiments for Pb2+ absorption and 56 experiments for Cd2+ absorption from water, under the catalysis of different conditions, such as initial concentration of Pb2+ and Cd2+, solution pH, adsorbent weight, and contact time. Subsequently, the TLBO-ANN and TLBO-SVR models were developed and applied to predict the efficiencies of Cd2+ and Pb2+ absorption from water, aiming to evaluate the role as well as the effects of different conditions on the absorption efficiencies using the NaHWP absorbent. The standalone ANN and SVM models were also taken into consideration and compared with the proposed hybrid models (i.e., TLBO-ANN and TLBO-SVR). The results showed that the NaHWP detected in a Kaolin mine (Vietnam) with 70% nanotubular halloysites is a potential adsorbent for water treatment to eliminate heavy metals from water. The two novel hybrid models proposed, i.e., TLBO-ANN and TLBO-SVR, also yielded the dominant performances and accuracies in predicting the Cd2+ and Pb2+ absorption efficiencies from water, i.e., RMSE = 1.190 and 1.102, R2 = 0.951 and 0.957, VAF = 94.436 and 95.028 for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Pb2+ absorption efficiency from water; RMSE = 3.084 and 3.442, R2 = 0.971 and 0.965, VAF = 96.499 and 96.415 for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Cd2+ absorption efficiency from water. Furthermore, the validation results also demonstrated these findings in practice through 23 experiments with the accuracies of 98.3% and 98.37% for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Pb2+ absorption efficiency from water; the accuracies of 98.3% and 97.46% for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Cd2+ absorption efficiency from water. Besides, solution pH was evaluated as the most critical parameter that can be adjusted to enhance the performance of the absorption of the heavy metals in this study. By using the NaHWP absorbent and the novel proposed intelligent models developed, heavy metals can be eliminated entirely from water, providing pure water/clean freshwater without any risk of adverse health effects for the short term or long term.
Collapse
Affiliation(s)
- Bui Hoang Bac
- Department of Exploration Geology, Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam; Centre for Excellence in Analysis and Experiment, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam.
| | - Hoang Nguyen
- Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam; Centre for Mining, Electro-Mechanical Research, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam.
| | - Nguyen Thi Thanh Thao
- Department of Exploration Geology, Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam
| | - Le Thi Duyen
- Centre for Excellence in Analysis and Experiment, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam; Department of Chemistry, Faculty of Basic Science, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam
| | - Vo Thi Hanh
- Centre for Excellence in Analysis and Experiment, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam; Department of Chemistry, Faculty of Basic Science, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam
| | - Nguyen Tien Dung
- Department of Exploration Geology, Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam
| | - Luong Quang Khang
- Department of Exploration Geology, Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam
| | - Do Manh An
- Department of Exploration Geology, Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam
| |
Collapse
|
14
|
Maged A, Dissanayake PD, Yang X, Pathirannahalage C, Bhatnagar A, Ok YS. New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar. ENVIRONMENTAL RESEARCH 2021; 202:111693. [PMID: 34270992 DOI: 10.1016/j.envres.2021.111693] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 05/22/2023]
Abstract
The presence of emerging pollutants especially hazardous chemicals and pharmaceuticals in aquatic environments is a matter of grave concern to human health and the environment. In this study, coffee bean waste (CBW) was utilized to synthesize pristine (CBW550) and activated (CBW550HPO) biochars for the elimination of diclofenac (DF) and levofloxacin (LEV) from water. A facile two-step approach was used to synthesize CBW550HPO using chemical pretreatment and pyrolysis under N2 purging. BET results of CBW550HPO revealed that chemical pretreatment increased surface area by approximately 160 times compared to CBW550. The calculated ID/IG ratio from Raman spectra confirmed that CBW550HPO had a high functionalized surface. Different operational parameters such as contact time, pH, adsorbent dose, ionic strength, and adsorbate concentration were studied and optimized. Maximum Langmuir adsorption capacity of CBW550HPO was found to be 61.17 and 110.70 mg/g for DF and LVX, respectively. Experimental results demonstrated that presence of NaCl in solution enhanced DF removal efficiency due to the salting-out effect. Electrostatic attraction, π-π bonding, and hydrophobic interaction were prominently responsible mechanisms for the adsorption of DF and LVX. Furthermore, continuous-flow mode studies confirmed that CBW550HPO can be successfully utilized in large-scale treatment applications.
Collapse
Affiliation(s)
- Ali Maged
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Geology Department, Faculty of Science, Suez University, El Salam City, P.O. Box 43518, Suez Governorate, Egypt.
| | - Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Soils and Plant Nutrition Division, Coconut Research Institute, Lunuwila, 61150, Sri Lanka
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Charitha Pathirannahalage
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Li G, Zhang J, Liu J, Luo T, Xi Y. Investigation of the transport characteristics of Pb(II) in sand-bone char columns. Sci Prog 2021; 104:368504211023665. [PMID: 34092130 PMCID: PMC10455031 DOI: 10.1177/00368504211023665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pb(II) leakage from batteries, dyes, construction materials, and gasoline threaten human health and environmental safety, and suitable adsorption materials are vitally important for Pb(II) removal. Bone char is an outstanding adsorbent material for water treatment, and the effectiveness in Pb(II) removing need to be verified. In this paper, the transport characteristics of Pb(II) in columns filled with a sand and bone char mixture were studied at the laboratory scale, and the influences of the initial concentration, column height, inlet flow rate, and competing ion Cu(II) on Pb(II) adsorption and transport were analyzed. The Thomas and Dose-Response models were used to predict the test results, and the mechanisms of Pb(II) adsorption on bone char were investigated. The results showed that the adsorption capacity of the bone char increased with increasing column height and decreased with increasing initial Pb(II) concentration, flow rate, and Cu(II) concentration. The maximum adsorption capacity reached 38.466 mg/g and the saturation rate was 95.8% at an initial Pb(II) concentration of 200 mg/L, inlet flow rate of 4 mL/min, and column height of 30 cm. In the competitive binary system, the higher the Cu(II) concentration was, the greater the decreases in the breakthrough and termination times, and the faster the decrease in the Pb(II) adsorption capacity of the bone char. The predicted results of the Dose-Response model agreed well with the experimental results and were significantly better than those of the Thomas model. The main mechanisms of Pb(II) adsorption on bone char include a surface complexation reaction and the decomposition-replacement-precipitation of calcium hydroxyapatite (CaHA). Based on selectivity, sensitivity, and cost analyses, it can be concluded that bone char is a potential adsorbent for Pb(II)-containing wastewater treatment.
Collapse
Affiliation(s)
- Gang Li
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an, China
| | - Jinli Zhang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China
| | - Jia Liu
- School of Geological Engineering and Geomatics, Chang’an University, Xi’an, China
| | - Tao Luo
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an, China
| | - Yu Xi
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an, China
| |
Collapse
|
16
|
Barakan S, Aghazadeh V. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2572-2599. [PMID: 33113058 DOI: 10.1007/s11356-020-10985-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
This review discusses the recent trends in the research over the last 30 years to use clay minerals in natural and modified forms for removing different toxic organic/inorganic pollutants. The natural and modified forms of clay minerals have an exceptional ability to remove different contaminants. However, the modification methods can improve the clay mineral adsorption properties that consequently increase more adsorption sites and functional groups to adsorb different environmental pollutants. This review shows the importance of modification methods and more extension of novel clay preparation based on nanotechnology which could raise the control of pollution. The syntheses of functionalized clays such as pillared clays and porous clay heterostructures introduce the new class of heterostructure materials with high adsorption capacity, capability, and selectivity. Due to the acceptable properties of heterostructure materials including high specific surface area, thermal and mechanical stability, and the existence of multifunctional groups to selective adsorption, this review collects more literature of research related to environmental protection issues. However, it is expected much attention to get a better understanding of the adsorption mechanism, regeneration, and recovery process of these materials.
Collapse
Affiliation(s)
- Shima Barakan
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran
| | - Valeh Aghazadeh
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|
17
|
Maged A, Kharbish S, Ismael IS, Bhatnagar A. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32980-32997. [PMID: 32524402 PMCID: PMC7417422 DOI: 10.1007/s11356-020-09267-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Abstract
The presence of emerging pollutants such as hazardous chemicals, pharmaceuticals, pesticides, and endocrine-disrupting chemicals in water sources is a serious concern to the environment and human health. Thus, this study focused on exploring the interaction mechanisms between ciprofloxacin (CIP) (antibiotic) and clay (a low-cost adsorbent) during sorption process. Acid activation technique was opted for modifying natural bentonite (NB) to enhance the adsorptive removal of CIP from water. The BET surface area analysis revealed that acid-activated bentonite (AAB) possessed more than two fold higher surface area as compared to NB. Combining pHzpc measurements, effect of solution pH and CIP speciation revealed that CIP sorption onto bentonite is highly dependent on solution pH. Kinetic studies confirmed that CIP sorption mechanism was chemisorption which included ion-exchange and surface complexation mechanisms. The mechanism of CIP sorption onto AAB was successfully explored with the assistance of characterization techniques. Maximal monolayer sorption capacity of AAB was found to be 305.20 mg/g, compared to 126.56 mg/g for NB. Reusability studies demonstrated that AAB could be reused successfully up to 5 cycles. Furthermore, column studies showed satisfactory results confirming that AAB can be successfully used in continuous mode for practical applications.
Collapse
Affiliation(s)
- Ali Maged
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Geology Department, Faculty of Science, Suez University, El Salam City, Suez Governorate, 43518, Egypt.
| | - Sherif Kharbish
- Geology Department, Faculty of Science, Suez University, El Salam City, Suez Governorate, 43518, Egypt
| | - Ismael Sayed Ismael
- Geology Department, Faculty of Science, Suez University, El Salam City, Suez Governorate, 43518, Egypt
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|