1
|
Habibullah-Al-Mamun M, Sakib S, Das R, Faruque MH, El-Gendy AH, Almansour MI, Alfarraj S. Bioaccumulation variability and human health risk assessment of organochlorine pesticides in edible fish and shellfish from the Northeast Bay of Bengal. MARINE POLLUTION BULLETIN 2025; 215:117856. [PMID: 40120358 DOI: 10.1016/j.marpolbul.2025.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
This study investigates the accumulation of organochlorine pesticides (OCPs) in edible fish and shellfish species from the northeast Bay of Bengal, emphasizing species variability, potential contamination sources, and associated human health risks. Samples of three finfish species (Tenualosa ilisha, Pampus argenteus, and Harpadon nehereus) and two shellfish species (Penaeus indicus and Scylla serrata) were collected from Cox's Bazar and Chattogram, key fishing zones in the Bay of Bengal coast of Bangladesh. Sixteen OCP compounds, including DDTs (p,p'-DDT, o,p'-DDT, p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD), Hexachlorocyclohexanes (HCHs; α-HCH, β-HCH, γ-HCH and δ-HCH), Heptachlors (HPTs; heptachlor, cis- and trans-heptachlor epoxide), DRNs (Aldrin, Dieldrin and Endrine) were analyzed using gas chromatography-tandem mass spectrometry (GC-MS/MS), with total concentrations ranging from 19.28 ± 9.56 to 246.77 ± 113.02 ng g-1 wet weight. Samples exhibited significantly higher concentrations in Chattogram due to increased industrial activities. Results showed that DDTs were the predominant OCPs, followed by HCHs. Risk assessment indicated that the estimated daily intake of OCPs was below acceptable thresholds, suggesting no immediate risk; however, the levels of aldrin (S. serrata, 1.89E-04), dieldrin (T. ilisha, 1.90E-04; S. serrata, 2.72E-04), and heptachlor exceeded carcinogenic risk thresholds, raising long-term health concerns. Variability in contamination levels was influenced by species-specific lipid content and habitat, with S. serrata (246.77 ± 113.02 ng g-1) and T. ilisha (153.75 ± 50.84 ng g-1) showing the highest OCP concentrations. The findings highlight the need for strict regulatory measures, regular monitoring, and public awareness to mitigate risks and promote seafood safety practices in the region.
Collapse
Affiliation(s)
- Md Habibullah-Al-Mamun
- Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh; Water Quality and Fisheries Management Laboratory, Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Sadman Sakib
- Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rupesh Das
- Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Hasan Faruque
- Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh; Water Quality and Fisheries Management Laboratory, Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh
| | - Amel H El-Gendy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria Governorate 5424041, Egypt
| | | | - Saleh Alfarraj
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Shobier AH, Shabaka SH, El-Sayed AAM, Shreadah MA, Abdel Ghani SA. Assessment of persistent and emerging pollutants levels in marine bivalves in the Gulf of Suez, Egypt. MARINE POLLUTION BULLETIN 2024; 208:117000. [PMID: 39332337 DOI: 10.1016/j.marpolbul.2024.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Bivalves possess important ecological and economic values. They have been extensively used as bioindicators for both emerging and classical pollutants in the aquatic environment. This study investigates the levels of trace metals, polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs), alongside microplastic (MPs), in Tridacna maxima, Paphia textile, and Paratapes undulatus, collected from the Gulf of Suez. This work represents the first investigation of MPs in marine bivalves from the Gulf of Suez. MPs were detected in 72% of the specimens examined and four types of MPs were identified. The metal pollution index indicated that bivalves may have long-term toxic effects on human consumers. The results showed minimal hydrocarbon pollution. Diagnostic ratios indicated a combination of pyrolytic and petrogenic sources, with a notable influence from pyrolytic origins. The risk assessment reflected that the levels of certain trace metals, PAHs, and OCP contaminants could present a low risk to human health.
Collapse
Affiliation(s)
- Aida H Shobier
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Soha H Shabaka
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | | | | |
Collapse
|
3
|
Ducrocq T, Merel S, Miège C. Review on analytical methods and occurrence of organic contaminants in continental water sediments. CHEMOSPHERE 2024; 365:143275. [PMID: 39277038 DOI: 10.1016/j.chemosphere.2024.143275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Various industries produce a myriad of synthetic molecules used to satisfy our needs, but all these molecules are likely to reach aquatic environments. The number of organic contaminants found in rivers and lakes continues to rise, and part of this contamination gets transferred into sediments. Analytical methods to detect problematic substances in the environment often use mass spectrometry coupled with chromatography. Here we reviewed a set of 163 articles and compiled the relevant information into a comprehensive database for analysing organic contaminants in continental sediments including suspended particulate matter and surface and bottom sediments in lakes, rivers and estuaries. We found 1204 compounds detected at least once in sediments, and classified them into 11 categories, i.e. hydrocarbons, flame retardants, polychlorinated biphenyls (PCB), plasticizers, per- and poly-fluoroalkyl substances (PFAS), organochlorines (OCP) and other pesticides, pharmaceuticals, hormones, personal care products (PCP), and other contaminants. Concentrations of these compounds varied from a few ng to several mg/kg of dry sediment. Even hydrophilic compounds were detected in high concentrations. Well-known hydrophobic and persistent contaminants tend to be analysed with mass spectrometry coupled to gas chromatography (GC-MS) whereas contaminants of emerging concern (CEC) are usually analysed with liquid chromatography- mass spectrometry (LC-MS). Suspect screening and non-target analysis (NTA), which use high-resolution mass spectrometry, are still scarcely used on sediment but hold promise for gaining deeper knowledge of organic contamination in aquatic environments.
Collapse
Affiliation(s)
- Tom Ducrocq
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France
| | - Sylvain Merel
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France
| | - Cécile Miège
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France.
| |
Collapse
|
4
|
Rex KR, Vinod PG, Praveen KS, Chakraborty P. Sediment-water exchange and risk assessment of pesticidal persistent organic pollutants in Bharathappuzha and Periyar Riverine region along the Arabian Sea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:144. [PMID: 38538830 DOI: 10.1007/s10653-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/11/2024] [Indexed: 04/12/2024]
Abstract
Considering the extensive agricultural practices along the perennial rivers, viz. Periyar and Bharathappuzha of Kerala in the southwest coast of India, the first comprehensive surveillance of new and legacy organochlorine pesticides (OCPs) in surface sediment was conducted. Further, the sediment-water exchange fluxes have been elucidated. Mean concentrations of total HCH, DDT and endosulfan were 0.84 ng/g, 0.42 ng/g and 0.30 ng/g for Bharathappuzha Riverine sediment (BRS) and 1.08 ng/g, 0.39 ng/g and 0.35 ng/g for Periyar Riverine sediment (PRS). The dominance α-HCH and β-HCH isomers in PRS and BRS reflect the ongoing use of technical HCH in Kerala. The calculated KSW in both rivers was very low in comparison with other Indian rivers. The average log K'OC for all the detected OCPs in both the rivers was lower than the predicted log KOC in equilibrium indicating the higher adherence of OCPs to sediment. Furthermore, fugacity fraction (fs/fw) was < 1.0 for all OCPs confirming the net deposition of OCPs into the sediment. Sediment concentrations for each of the OCPs in PRS and BRS did not surpass the threshold effect level and probable effect level as stipulated by the Canadian Council of Ministry of the Environment Guidelines. In addition, all the sites of both rivers had sediment quality guideline quotient (SQGQ) values below 0.1 indicating the absence of significant biological and ecological risks.
Collapse
Affiliation(s)
- K Ronnie Rex
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - P G Vinod
- GeoVin Solutions Pvt. Ltd, Thiruvananthapuram, Kerala, India
- Neuvo Chakra (OPC) Pvt. Ltd., Vasai, India
| | - K S Praveen
- Liquid Waste Management Division, Suchitwa Mission, Government of Kerala, Thiruvananthapuram, Kerala, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, The University of Lodz, Lodz, Poland.
| |
Collapse
|
5
|
Son JY, Khuman SN, Park MK, Lee HY, Kim CS, Lee IS, Choi SD. Distributions of PCDD/Fs, PCBs, and PCNs in coastal sediments collected from major industrial bays in South Korea. MARINE POLLUTION BULLETIN 2024; 200:116160. [PMID: 38377865 DOI: 10.1016/j.marpolbul.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) were assessed in coastal sediments from industrial bays in South Korea to evaluate the pollution levels and their environmental impact. The mean sediment concentrations of Σ17 PCDD/Fs, Σ18 PCBs, and Σ15 PCNs were 198 ± 140, 3427 ± 7037, and 85 ± 336 pg/g dw, respectively. Generally, pollutant concentrations in the inner bay were higher than those in the outer bay, indicating the influence of industrial emissions and harbor activities. The primary sources were identified as steel manufacturing and wastewater treatment plants for PCDD/Fs, harbor and shipbuilding activities for PCBs, and combustion-related sources for PCNs. Notably, PCDD/F concentrations exceeded sediment guideline values. The combined effects of PCDD/Fs and PCBs demonstrated adverse impacts on aquatic organisms. Hence, the release of toxic pollutants into the marine environment could have potential biological effects due to the combined impact of these various compounds.
Collapse
Affiliation(s)
- Ji-Young Son
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sanjenbam Nirmala Khuman
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chul-Su Kim
- UNIST Environmental Analysis Center (UEAC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Seok Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Tongyeong 53085, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; UNIST Environmental Analysis Center (UEAC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
7
|
Gandla V, Chiluka M, Gupta H, Sinha SN, Chakraborty P. Sediment-water partitioning and risk assessment of organochlorine pesticides along the urban, peri-urban and rural transects of Krishna River Basin, Peninsular India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162360. [PMID: 36822433 DOI: 10.1016/j.scitotenv.2023.162360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) were widely used in the past for pest control in agricultural lands and vector control programs in India. Due to their persistence and toxic impacts, we have quantified twenty OCPs in surface water, groundwater, and surface sediment samples along the Krishna River Basin (KRB), flowing through Peninsular India. Samples were collected along the urban, peri-urban, and rural transects of the KRB to understand the relation between the occurrence of pesticidal organochlorine pollutants based on the land use and land cover (LULC) and asses potential risk. Diagnostic ratios revealed ongoing Lindane usage in rural and peri-urban transects. On the contrary, the urban transect of the Musi River (MR) showed fresh inputs of technical HCH. The ratios of (p,p'-DDE+ p,p'-DDD)/ΣDDT >0.5 and α/β-Endosulfan < 2.33 for most of the sites across the three transects for surface water, groundwater, and sediment indicate past DDT and Endosulfan usage across KRB. Excluding p,p'-DDE, and heptachlor in most of the sites, the logKOC' was higher than logKOC for other OCPs in the urban transect. However, for all the OCPs, the logKOC' was lower than logKOC in the peri-urban and rural transects of KRB thereby indicating that riverine sediment is acting as a sink for OCPs. The Krishna River annually transport about 0.24 tons HCH, 0.11 tons of DDT and 0.1 tons of Endosulfan. Despite having low water discharge, the compound-specific fluxes of the Wyra river are higher than the other two tributaries. Ecotoxicological risk assessment based on the Hazard Quotient suggested DDT pose higher risks to scud (zooplankton) and dinoflagellate and diatom (phytoplankton) whereas Endosulfan poses a threat to Bluegill (fish).
Collapse
Affiliation(s)
| | - Mounika Chiluka
- Department of Applied Geochemistry, Osmania University, Hyderabad, India
| | - Harish Gupta
- Department of Civil Engineering, Osmania University, Hyderabad, India
| | | | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur, India.
| |
Collapse
|
8
|
Mohasin P, Chakraborty P, Anand N, Ray S. Risk assessment of persistent pesticide pollution: Development of an indicator integrating site-specific characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160555. [PMID: 36460110 DOI: 10.1016/j.scitotenv.2022.160555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Detection of high pesticide concentrations in sediments and water often leads to prioritizing a site as being 'at risk'. However, the risk does not depend on pesticide concentration alone, but on other site-specific characteristics also. We developed an indicator that identifies the 'Level of Concern' by integrating five such characteristics: (i) pesticide concentrations in surface and groundwater causing risks to ecological health (ii) impacts on human health, (iii) water scarcity, (iv) agricultural production, and (v) biodiversity richness. We applied this framework in an agricultural region of the Lower Ganges Basin in West Bengal, India. We measured concentrations of selected organochlorine pesticides (OCPs) in surface and groundwater within an 8 km2 area in 2019. Of 20 banned and restricted OCPs, 11 were detected as causing high risk to ecological health and 10 at concentrations above the Accepted Carcinogenic Risk Limit (ACRL) for humans. In the pre-monsoon, the mean concentrations of ΣOCPs in groundwater and surface water were 126.9 ng/L and 104 ng/L, in the monsoon they were 144.7 ng/L and 138 ng/L, and in the post-monsoon 122.1 ng/L and 147 ng/L respectively. In groundwater, no significant seasonal difference was observed in most pesticides. In the surface water, 7 pesticides were significantly higher in the monsoon and post-monsoon, which may be attributed to increased runoff as well as post monsoon application of OCPs. In September 2022 we again measured OCP concentrations in surface water and sediment. The mean concentration of 14 of the 20 measured OCPs were found to be significantly lower in the post-pandemic period compared to the pre-pandemic time. These lower pesticide concentrations may indicate a reduced use of OCPs in agricultural practices during the pandemic. This area was identified as being at the highest Level of Concern, even though the OCP concentrations alone conformed to general guidelines.
Collapse
Affiliation(s)
- Piya Mohasin
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India.
| | - Niharika Anand
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sujata Ray
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
9
|
Khuman SN, Park MK, Kim HJ, Hwang SM, Lee CH, Choi SD. Organochlorine pesticides in the urban, suburban, agricultural, and industrial soil in South Korea after three decades of ban: Spatial distribution, sources, time trend, and implicated risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119938. [PMID: 35970351 DOI: 10.1016/j.envpol.2022.119938] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Organochlorine pesticides in soil samples across urban, suburban, agricultural, and industrial sites were analyzed every year between 2013 and 2016 in South Korea. The study aims to understand the residual status, diminution of occurrence from the South Korean environment, and its risk to humans after three decades of the ban. A general decreasing trend of OCPs has been observed over the years. The OCP concentrations were below the guideline values prescribed for soil pollution. Metabolites like p,p'-DDD and endosulfan sulfate contributed a major portion to the total OCP concentration over the years. The agricultural sites showed higher OCP levels than other site types. Compositional profile and diagnostic ratios suggested that the occurrence of DDT and endosulfan residues were due to historical inputs, but those of HCH and chlordane reflect recent usage in some pockets. The calculated incremental lifetime cancer risk was within the safety limit for all age groups across the genders in the majority of the sites. It is evident that the OCP load on soil is decreasing since the ban on usage. However, regular monitoring with a special focus on metabolites can be an effective control measure to regulate and eliminate the contamination of OCPs.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon, 22689, Republic of Korea
| | - Seung-Man Hwang
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon, 22689, Republic of Korea
| | - Chang-Ho Lee
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon, 22689, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
10
|
Alshemmari H. Past, present and future trends of selected pesticidal and industrial POPs in Kuwait. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3191-3214. [PMID: 34661833 DOI: 10.1007/s10653-021-01113-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Given the background of current global initiatives for controlling persistent organic pollutants (POPs), an overview of the scientific knowledge about the POPs issues in Kuwait is presented in this study. Both acute and chronic exposure to POPs can be associated with a wide range of deleterious health effects, including illness and death. POPs have drawn significant political and scientific interest in their fate and actions, particularly where local releases have resulted in dispersed contamination far from the source regions. These concerns inevitably led to the establishment of the Stockholm Convention (SC) on POPs. In recent years, Kuwait has carried out a wide variety of environmental research, in particular, on the monitoring of POPs in different matrices. The technological development facilitated to achieve the opposite monitoring of pesticidal and industrial POPs. The majority of these POPs are from a point source. Kuwait does not have pesticide manufacturing facilities and has not produced pesticides for POPs in the past. In the agriculture sector, Kuwait primarily imports pesticides for pest and disease control. This review encompasses the historical presence and current status of (pesticidal) organochlorine pesticides (OCPs) and (industrial POPs) PCBs and PBDEs in Kuwait based on the export, import, consumption and usage. This research also contrasts pesticide and industrial POP data from various Kuwaiti environmental matrices with data from other parts of Asia, the EU, the USA and Africa.
Collapse
Affiliation(s)
- Hassan Alshemmari
- Environmental and Climate Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, State of Kuwait.
- Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, State of Kuwait.
| |
Collapse
|
11
|
Ashesh A, Singh S, Linthoingambi Devi N, Chandra Yadav I. Organochlorine pesticides in multi-environmental matrices of India: A comprehensive review on characteristics, occurrence, and analytical methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Xie J, Tao L, Wu Q, Bian Z, Wang M, Li Y, Zhu G, Lin T. Bioaccumulation of organochlorine pesticides in Antarctic krill (Euphausia superba): Profile, influencing factors, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128115. [PMID: 34959217 DOI: 10.1016/j.jhazmat.2021.128115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Accumulation of organochlorine pesticides (OCPs) in Antarctic krill (Euphausia superba), a keystone species in the Southern Ocean, is potentially harmful to the Antarctic ecosystem and human health. In the current study, we collected E. superba specimens (including muscle and carapace tissues) from Bransfield Strait in northern Antarctic Peninsula and South Georgia to analyze the profile, influencing factors and mechanisms of OCPs bioaccumulation in them. Results indicated that the biological traits (δ13C, δ15N and lipid contents) of krill were significantly affected by habitat. There may exist growth dilution of OCPs in Antarctic krill and no fresh OCPs input in Antarctica, except for endosulfan I. Based on lipid-normalized concentrations, no significant differences were observed between the two regions at most sampling sites. However, OCP levels showed tissue and sex dependence. Boosted regression trees (BRTs) and partial least squares structural equation models (PLS-SEMs) were built to better investigate the main factors affecting the bioaccumulation of OCPs. Lipid content, negatively correlated with OCP levels, was the main factor. In vitro silicon modeling indicated that CYP3A4 metabolism capacity in krill contributed to the OCP residues except for endosulfan I. The results of this study expand current knowledge of OCPs in Antarctic marine biota, as well as their influencing factors and potential mechanisms.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihe Bian
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Mengqiu Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guoping Zhu
- Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China; Polar Marine Ecosystem Group, Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Selvaraj S, Gaonkar O, Kumar B, Cincinelli A, Chakraborty P. Legacy persistent organochlorine pollutants and polycyclic aromatic hydrocarbons in the surface soil from the industrial corridor of South India: occurrence, sources and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2105-2120. [PMID: 33392898 DOI: 10.1007/s10653-020-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Conversion of agricultural fields into the industrial corridor under the State Industries Promotion Corporation of Tamil Nadu Limited (SIPCOT) necessitated the investigation of soil-borne organic contaminants. This study is the first attempt to evaluate the occurrence of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in soils from Mambakkam and Cheyyar SIPCOT belt, along the residential, industrial and agricultural transects. Concentrations of Σ28PCBs, Σ16PAHs and OCPs were in the range 0.3-9 ng/g, 33-2934 ng/g and nd-81.4 ng/g, respectively. Residential areas showed higher OCP concentrations than other site types, probably due to their frequent use in vector control programmes. DDT isomers and α-isomer of endosulfan showed low concentrations indicating past usage of these OCPs. Principal component analysis indicated that high-temperature combustion and industrial processes might be the major sources of high molecular weight PAHs, while low-temperature combustion processes might be responsible for low molecular weight PAHs. PCBs in soil were probably attributed to unaccounted combustion processes of e-waste in the region. Carcinogenic PAHs and Σ28PCBs were higher in the industrial sites. Mean Σ28PCBs at Mambakkam (4.8 ng/g) was significantly higher (p < 0.05) than that at the incipient industrial corridor Cheyyar (2.7 ng/g). Lower chlorinated PCBs (3-Cl and 4-Cl) amounted to more than half of Σ28PCBs in 75% of the sites. Total toxic equivalents (TEQs) of PAHs (total BaPeq) were found to be maximum in industrial areas. Maximum contribution to TEQs due to dioxin-like-PCBs was from PCB-157, followed by PCB-189.
Collapse
Affiliation(s)
- Sakthivel Selvaraj
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Omkar Gaonkar
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Bhupander Kumar
- Central Pollution Control Board, East Arjun Nagar, Delhi, 110032, India
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Paromita Chakraborty
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
14
|
Basu S, Chanda A, Gogoi P, Bhattacharyya S. Organochlorine pesticides and heavy metals in the zooplankton, fishes, and shrimps of tropical shallow tidal creeks and the associated human health risk. MARINE POLLUTION BULLETIN 2021; 165:112170. [PMID: 33621901 DOI: 10.1016/j.marpolbul.2021.112170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Studies on organochlorine pesticides (OCPs) and heavy metals (HMs) from tidal creeks are scarce. Sixteen OCPs and seven HMs were measured in the surface water, zooplankton, two fishes (Harpadon nehereus and Pampus argenteus), and one shrimp (Penaeus indicus) collected from three tidal creeks of the Indian Sundarban. The surface water was polluted by hexachlorocyclohexane isomers (ΣHCH: 525-1581 ng l-1), dichlorodiphenyltrichloroethane congeners (ΣDDT: 188-377 ng l-1), endosulfan congeners (ΣEND: 687-1474 ng l-1), and other OCPs (512-1334 ng l-1). However, the mean HM concentrations in the surface water were <1 μg l-1. The zooplankton community exhibited bioaccumulation of both OCPs and HMs. Aldrin, Heptachlor, and α-HCH levels in the edible biotas could lead to cancer. Co and Cd levels could lead to non-cancerous risks, and Pb levels could pose a cancerous risk. This study showed that creeks could be potential sites of both OCP and HM pollution.
Collapse
Affiliation(s)
- Sanghamitra Basu
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Abhra Chanda
- School of Oceanographic Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Pranab Gogoi
- Central Inland Fisheries Research Institute, CGO Complex, DF Block, Kolkata 700064, West Bengal, India
| | - Subarna Bhattacharyya
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| |
Collapse
|
15
|
Khuman SN, Vinod PG, Bharat G, Kumar YSM, Chakraborty P. Spatial distribution and compositional profiles of organochlorine pesticides in the surface soil from the agricultural, coastal and backwater transects along the south-west coast of India. CHEMOSPHERE 2020; 254:126699. [PMID: 32361015 DOI: 10.1016/j.chemosphere.2020.126699] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
South-west coast of India has a history of using pesticidal persistent organic pollutants (POPs) particularly endosulfan until aerial spraying was banned during early 2000. Since soil acts as a repository for such pesticidal persistent organic contaminants, we have monitored residues of seventeen organochlorine pesticides (OCPs) in the surface soil samples from the agricultural, coastal, and backwater transects along the south-west coast of India. OCPs concentration in soil were in the order agricultural > coastal > backwaters transects. Endrins, hexachlorocyclohexane (HCH) and heptachlors were among the dominant OCPs quantified in this study. Dominance of metabolites such as dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD) and endosulfan sulfate indicates past usage. All the OCPs were dominant in the agricultural transect where plantations/agricultural activities are prevalent. In some specific sites, traces of HCH isomers showed ongoing usage of technical HCH in those sites contradicting the ban in agricultural sector. Backwater sites which are background locations showed positive correlation between soil organic carbon and soil borne OCPs thereby indicating an aged source possibly due to the short/long atmospheric transport from the site of application. Based on the policies regarding control, prevention and other measures for the management of pesticides in Kerala, it was concluded that the implementation on the ground level and the legal framework should be strengthened to prevent further illegal use of the banned pesticides.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - P G Vinod
- GeoVin Solutions (P) Ltd, Kerala, India
| | | | | | - Paromita Chakraborty
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|