1
|
Rodrigues PDA, de Oliveira AT, Ramos-Filho AM, de Pinho JV, Neves GL, Conte-Junior CA. Human health risks assessment of the fluctuations in mercury levels in seafood from different key regions of Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30467-30483. [PMID: 38607486 DOI: 10.1007/s11356-024-33267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Mercury (Hg) contamination on the Brazilian southeast coast has been highlighted, especially in relation to species of commercial importance. This study aimed to quantify the Hg concentration in species of mussels, fish, and crabs obtained from fishing colonies on the beaches of the west and south of the city of Rio de Janeiro, investigate the possible effect of seasonality, sex, and location sampling, and finally, the risk to consumer health in four different age groups. The difference between cooked and raw commercially available mussel samples was also verified. The main results highlight that the fish presented higher levels of Hg and that the mussel samples sold cooked presented lower levels of Hg when compared to the raw ones. For Micropogonias furnieri, Sardinella brasiliensis, and Callinectes spp., the season variable influenced Hg concentrations, while only for Merluccius merluccius was a difference between the sexes identified, with males having the highest values. Although Hg concentrations in animals were below the permitted limit, consumption of all species exceeded the monthly intake limit for this metal. For the hazard quotient (HQ) calculation, most species presented HQ > 1, especially when ingested by the child population. These results are fundamental for designing consumption strategies for these animals, in order to prioritize the acquisition of some species over others, depending on the location and/or season, for each age group, with the aim of maintaining seafood consumption with minimal risk to the population's health.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil.
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
| | - Adriano Teixeira de Oliveira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
- Animal Morphophysiology Laboratory, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus Centro Campus (CMC), Manaus, AM, 69020-120, Brazil
| | - Alexandre Mendes Ramos-Filho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Julia Vianna de Pinho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Gustavo Lata Neves
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24220-000, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941 909, Brazil
- Graduate Program in Biochemistry (PPGBq), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941 909, Brazil
| |
Collapse
|
2
|
He Y, Fang H, Pan X, Zhu B, Chen J, Wang J, Zhang R, Chen L, Qi X, Zhang H. Cadmium Exposure in Aquatic Products and Health Risk Classification Assessment in Residents of Zhejiang, China. Foods 2023; 12:3094. [PMID: 37628093 PMCID: PMC10453627 DOI: 10.3390/foods12163094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cadmium (Cd) pollution of food safety is a prominent food safety concern worldwide. The concentration of Cd in six aquatic food categories collected from 2018 to 2022 was analyzed using inductively coupled plasma mass spectrometry, and the Cd exposure levels were calculated by combining the Cd concentration and food consumption data of 18913 urban and rural residents in Zhejiang Province in 2015-2016. The mean Cd concentration was 0.699 mg/kg and the mean Cd exposure of aquatic foods was 0.00951 mg/kg BW/month for the general population. Marine crustaceans were the largest Cd contributor, corresponding to 82.7%. The regional distribution results showed that the average Cd exposure levels of 11 cities did not exceed the provisional tolerable monthly intake (PTMI). According to the subgroups, the Cd mean exposure level of 2-3-year-old children was significantly higher than that of the other age groups but did not exceed the PTMI. Health risk classification assessment demonstrated that the final risk score was six, and the health risk level of Cd exposure in aquatic products in the Zhejiang population was medium. These results demonstrated that the risk of Cd exposure in certain food types or age groups should be given more concern.
Collapse
Affiliation(s)
- Yue He
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hangyan Fang
- Hangzhou Linping District Center for Disease Control and Prevention, Hangzhou 311100, China;
| | - Xiaodong Pan
- Department of Physical-Chemistry, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China;
| | - Bing Zhu
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jikai Wang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Lili Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Xiaojuan Qi
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hexiang Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
3
|
Rodrigues PDA, de Pinho JV, Ramos-Filho AM, Neves GL, Conte-Junior CA. Mercury contamination in seafood from an aquatic environment impacted by anthropic activity: seasonality and human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85390-85404. [PMID: 37382820 DOI: 10.1007/s11356-023-28435-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Petroleum activity and the dumping of domestic and industrial sewage are important sources of mercury (Hg) contamination in the aquatic environment. Thus, this article aimed to biomonitor the Hg concentration in fish, mussels, and swimming crabs of commercial importance in southeastern Brazil. The quantifications were carried out over a year to verify the influence of seasonality. Finally, a risk assessment was applied to identify whether the concentrations found could lead to long-term damage to the population. Our results indicate that the contaminations were higher in spring, summer, and winter than in autumn, mainly among fish and swimming crabs. The results of quantification in the animal and estimated monthly intake, despite being below the limit established nationally and internationally, were indicative of risk for these two animals after calculating the Hazard quotient. The highest risk values were attributed to the infant population. Based on the data generated by this work, the consumption of mussels is encouraged throughout the year, to the detriment of the other types of seafood studied, especially during summer, spring, and winter. Our work reinforces the importance of risk assessment for a more reliable understanding of the impact of contaminants in seafood on the population's health.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil.
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
| | - Júlia Vianna de Pinho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Alexandre Mendes Ramos-Filho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Gustavo Lata Neves
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24220-000, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
4
|
Rodrigues PDA, Ferrari RG, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Toxic metal and metalloid contamination in seafood from an eutrophic Brazilian estuary and associated public health risks. MARINE POLLUTION BULLETIN 2022; 185:114367. [PMID: 36435023 DOI: 10.1016/j.marpolbul.2022.114367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Guanabara Bay (GB) is a highly contaminated estuarine system and an important fishing area in Southeastern Brazil. In this regard, knowledge concerning the association of certain contaminants in seafood to abiotic factors and human health risk assessments is still understudied. Therefore, this study aimed to quantify nine toxic elements in highly consumed crabs, shrimp, and squid, and associate the results with abiotic factors. A human health risk assessment was also performed. Our findings indicate that crabs are the main bioaccumulators. Transparency and depth were noteworthy for all three taxonomic groups. In general, contaminant concentrations were below the limits established by different international agencies, except for As, which was higher than the Brazilian limit (1 mg kg-1). However, the Hazard Index identified risks to consumer health for the ingestion of seafood. This study emphasizes the importance of jointly evaluating different toxic elements, for a more accurate health risk assessment.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraíba, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), 21040-360 Rio de Janeiro, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
5
|
de Almeida Rodrigues P, Ferrari RG, da Anunciação de Pinho JV, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Baseline titanium levels of three highly consumed invertebrates from an eutrophic estuary in southeastern Brazil. MARINE POLLUTION BULLETIN 2022; 183:114038. [PMID: 36029587 DOI: 10.1016/j.marpolbul.2022.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Titanium (Ti) is considered a contaminant of emerging interest, as it displays toxic potential and has been increasingly employed in everyday products, pharmaceuticals, and food additives, mainly in nanoparticle form. However, several knowledge gaps are still noted, especially concerning its dynamics in the water. In this context, this study aimed to quantify total Ti concentrations in highly consumed swimming crabs, squid, and shrimp from an important estuary located in southeastern Brazil. Ti concentrations were higher than those reported in most studies carried out worldwide. Animal length and weight, as well as, depth, transparency, dissolved oxygen, and salinity, significantly influence Ti concentrations in the animals. Human health risks were also noted after calculating a simulated exposure to titanium dioxide, especially considering the uncertainties regarding the effects of this element and the absence of regulatory limits.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Areia, PB 58051-900, Brazil
| | - Júlia Vianna da Anunciação de Pinho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-360, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
6
|
de Almeida Rodrigues P, Ferrari RG, Kato LS, Hauser-Davis RA, Conte-Junior CA. A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators. Biol Trace Elem Res 2022; 200:881-903. [PMID: 33788164 DOI: 10.1007/s12011-021-02685-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Metals, many of which are potentially toxic, are present in the aquatic environment originated from both natural and anthropogenic sources. In these ecosystems, these elements are mostly deposited in the sediment, followed by water dissolution, potentially contaminating resident biota. Among several aquatic animals, crustaceans are considered excellent bioindicators, as they live in close contact with contaminated sediment. The accumulation of metal, whether they are classified as essential, when in excessive quantities or nonessential, not only cause damage to the health of these animals, but also to the man who consumes seafood. Among the main toxic elements to animal and human health are aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel and silver. In this context, this systematic review aimed to investigate the dynamics of these metals in water, the main bioaccumulative tissues in crustaceans, the effects of these contaminants on animal and human health, and the regulatory limits for these metals worldwide. A total of 91 articles were selected for this review, and an additional 68 articles not found in the three assessed databases were considered essential and included, totaling 159 articles published between 2010 and 2020. Our results indicate that both chemical speciation and abiotic factors such as pH, oxygen and salinity in aquatic environments affect element bioavailability, dynamics, and toxicity. Among crustaceans, crabs are considered the main bioindicator biological system, with the hepatopancreas appearing as the main bioaccumulator organ. Studies indicate that exposure to these elements may result in nervous, respiratory, and reproductive system effects in both animals and humans. Finally, many studies indicate that the concentrations of these elements in crustaceans intended for human consumption exceed limits established by international organizations, both with regard to seafood metal contents and well as daily, weekly, or monthly intake limits set for humans, indicating consumer health risks.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraiba, Brazil.
| | - Lilian Seiko Kato
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
7
|
Rodrigues PDA, Ferrari RG, do Rosário DKA, Hauser-Davis RA, Lopes AP, Neves Dos Santos AFG, Conte-Junior CA. Interactions between mercury and environmental factors: A chemometric assessment in seafood from an eutrophic estuary in southeastern Brazil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105844. [PMID: 33991843 DOI: 10.1016/j.aquatox.2021.105844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Guanabara Bay (GB) is an estuary in Brazil, constantly the target of pollutants, such as mercury (Hg). Thus, our study aimed to evaluate (i) total mercury (THg) content in shrimp and squid species from GB; (ii) associate THg content to contamination in swimming crabs; (iii) explore potential differences between species, and size; (iv) correlate abiotic water data to the determined THg contents; (v) verify if Hg concentrations are below acceptable limits. Swimming crabs showed greater Hg contamination compared to other species. For shrimp only biometric variables are related to Hg, while for squid, only abiotic. Only squids did not show a correlation between Hg and animal size. Finally, the detected Hg values are below the tolerable limits established by legislations. Our results indicate that the dynamics of Hg contamination differs between groups and that further studies are needed to elucidate the mechanisms that affect bioaccumulation in different species.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil.
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraíba, Brazil.
| | - Denes Kaic Alves do Rosário
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), 21040-360 Rio de Janeiro, Brazil
| | - Amanda Pontes Lopes
- Laboratory of Theoretical and Applied Ichthyology, Department of Ecology and Marine Resources, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 22.290-240, Brazil
| | - Alejandra Filippo Gonzalez Neves Dos Santos
- Laboratory of Applied Ecology, Department of Zootechny and Sustainable Socioenvironmental Development, Fluminense Federal University (UFF), Rua Vital Brasil Filho, 64, 24230-340, Niterói, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
8
|
Delgado-Alvarez CG, Ruelas-Inzunza J, Osuna-Martínez CC, Bergés-Tiznado ME, Escobar-Sánchez O, Ocampo-Rodríguez PO, Soto-Romero KL, Garzón-Raygoza NL, Aguilar-Júarez M, Osuna-López JI, Frías-Espericueta M. Mercury and selenium concentrations in the crab Callinectes arcuatus from three coastal lagoons of NW Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10909-10917. [PMID: 33106905 DOI: 10.1007/s11356-020-11396-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Mercury and selenium concentrations and Se:Hg molar ratio in edible muscle and hepatopancreas of the crab Callinectes arcuatus from coastal lagoons of northwest Mexico were determined using atomic absorption spectrophotometry. The three coastal lagoons were Santa María La Reforma (SMLR), Urías (UR), and Huizache-Caimanero (HC); samplings were carried out from December 2016 to October 2017. The mercury ranges in the muscle of C. arcuatus in SMLR, UR, and HC lagoons were 0.31-0.52, 0.15-0.45, and 0.22-0.55 μg g-1, respectively. In hepatopancreas, the values ranged from 0.08 to 0.15, 0.06 to 0.15, and 0.05 to 0.12 μg g-1 in SMLR, UR, and HC lagoons, in that order. For selenium concentrations in C. arcuatus muscle, the ranges 11.64-20.14, 14.88-19.71, and 15.27-29.51 μg g-1 were determined in SMLR, UR, and HC lagoons, respectively. While for hepatopancreas, the ranges were 34.34-44.13, 27.77-40.45, and 15.16-49.80 μg g-1, in that order. No significant relationships (p > 0.05) between mercury and selenium concentrations (in white meat and hepatopancreas) were observed in C. arcuatus carapace width and length. Se:Hg molar ratio values were 98.1 ± 20.8, 171.4 ± 81.6, and 176.8 ± 51.2 for SMLR, UR, and HC lagoons, in that order. This high ratio (> 1) in C. arcuatus edible muscle indicated that selenium concentration was sufficient to neutralize possible mercury toxicity, so it does not represent danger to humans when it is consumed.
Collapse
Affiliation(s)
| | - Jorge Ruelas-Inzunza
- Instituto Tecnológico de Mazatlán, Calle Corsario 1, No. 203, C.P, 82070, Mazatlán, Sinaloa, Mexico
| | - Carmen Cristina Osuna-Martínez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P, 82000, Mazatlán, Sinaloa, Mexico
| | | | - Ofelia Escobar-Sánchez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P, 82000, Mazatlán, Sinaloa, Mexico
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Col Crédito Constructor, Del. Benito Juárez, C.P, 03940, Ciudad de México, Mexico
| | - Pedro Octavio Ocampo-Rodríguez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P, 82000, Mazatlán, Sinaloa, Mexico
| | - Karen Lizbeth Soto-Romero
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P, 82000, Mazatlán, Sinaloa, Mexico
| | - Nancy Lorena Garzón-Raygoza
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P, 82000, Mazatlán, Sinaloa, Mexico
| | - Marisela Aguilar-Júarez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P, 82000, Mazatlán, Sinaloa, Mexico
| | | | - Martín Frías-Espericueta
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P, 82000, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
9
|
Rodrigues PDA, Ferrari RG, Hauser-Davis RA, Neves dos Santos L, Conte-Junior CA. Dredging Activities Carried Out in a Brazilian Estuary Affect Mercury Levels in Swimming Crabs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124396. [PMID: 32570963 PMCID: PMC7345188 DOI: 10.3390/ijerph17124396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
(1) Although suffers from intense pollution inputs, Guanabara Bay, the most socioeconomically and environmentally important estuary in Rio de Janeiro, Brazil, is still home to a diverse fauna, including several fish and crab species consumed by humans. The bay presents high sedimentation rates and sediment contamination, further aggravated by dredging processes carried out in recent years. In this context, this study aimed to verify the effect of the dredging process on total mercury (THg) concentrations at Guanabara Bay through swimming crab assessments sampled before (2016), during (2017), and after (2018) the dredging process, and mainly, if the detected concentrations can be harmful to consumer health; (2) Methods: Swimming crab samplings were carried out at the same time and sampling points in 2016, 2017 and 2018 and the total Hg was determined using a Direct Mercury Analyzer (DMA-80, Milestone, Bergamo, Italy); (3) Results: Increased Hg concentrations were observed during the dredging process, decreasing to lower values, close to the initial concentrations, at the end of the process. Some of the investigated abiotic factors favor Hg dynamics in the aquatic environment, while others were positively altered at some of the assessed sampling areas at the end of the dredging process; (4) Conclusions: Although crab Hg levels were below maximum permissible limits for human consumption, it is important to note that these animals are significantly consumed around Guanabara Bay, which may lead to public health issues in the long term.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói 24230-340, Brazil; (P.d.A.R.); (C.A.C.-J.)
| | - Rafaela Gomes Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói 24230-340, Brazil; (P.d.A.R.); (C.A.C.-J.)
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Correspondence:
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Luciano Neves dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Department of Ecology and Marine Resources, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 22290-240, Brazil;
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói 24230-340, Brazil; (P.d.A.R.); (C.A.C.-J.)
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|